八年级数学下复习测试题1

合集下载

人教版初中数学八年级数学下册第一单元《二次根式》测试卷(有答案解析)(1)

人教版初中数学八年级数学下册第一单元《二次根式》测试卷(有答案解析)(1)

一、选择题1.已知a =,2b =-a 与b 大小关系是( ) A .a b ≥B .a b ≤C .a b <D .a b = 2.下列各式变形中,正确的是( )A .236x x x ⋅=B xC .2211x x x x x ⎛⎫-⋅=- ⎪⎝⎭ D .2211234x x x ⎛⎫-+=- ⎪+⎝⎭3.的结果估计在( ) A .10到11之间 B .9到10之间C .8到9之间D .7到8之间4.已知0<x<3,化简=的结果是( )A .3x-4B .x-4C .3x+6D .-x+65.下列二次根式的运算:==5=,2=-;其中运算正确的有( ).A .1个B .2个C .3个D .4个 6.下列式子中是二次根式的是( )A B C D 7.下列各式计算正确的是( )A +=B .26=(C 4=D =8.下列运算正确的是( )A +=B 132= CD .1)1=9.=x 可取的整数值有( ).A .1个B .2个C .3个D .4个 10.下列计算正确的是( )A .3236362⨯==B 4=±C .()()15242⎛⎫-÷-⨯-=± ⎪⎝⎭D .(223410-⨯++=11.下列二次根式:4、12、50、1 2中与2是同类二次根式的个数为()A.1个B.2个C.3个D.4个12.若根式1x-在实数范围内有意义,则().A.1x≤B.1x<C.1≥x D.1x≠二、填空题13.已知2443y x x x=-+-+,当x分别取1,2,3,,2020⋯时,所对应的y值的总和是_________.14.化简()3750a b b>=________.15.如果最简二次根式123b a++和3a b+是同类二次根式,则ab=____________.16.13aa+=,则aa+=______.17.计算:2(32)(32)+-=______.18.若最简二次根式132-+b a与ab-4是同类二次根式,则a+b=___.19.化简-15827102÷31225a=___________.当1<x<4时,|x-4|-221x x-+=____________.20.已知实数a、b在数轴上的位置如图所示,化简2()a b a b-++=_____________三、解答题21.计算:(183(26)27+(211513(1)(0.5)2674÷;(3)52311x yx y+=⎧⎨+=⎩;(4)4(2)153123x yy x+=-⎧⎪+⎨=-⎪⎩.22.(16224348(2)解不等式组:2(3)8(1)22x x x x x --<⎧⎪⎨--≤-⎪⎩ 23.0111()2π--+. 24.101120202-⎛⎫-+- ⎪⎝⎭. 25.先化简,再求值:221141⎛⎫++-÷- ⎪⎝⎭x x x x x,其中12=x . 26.计算.(1(2)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据分母有理化将a =进行整理即可求解. 【详解】 解:2a =+=2=-又2b =-a b ∴=.故选:D .【点睛】此题主要考查分母有理化的应用,正确掌握分母有理化是解题关键.2.D解析:D【分析】依据同底数幂的乘法法则、二次根式的性质、完全平方公式以及分式的运算法则,即可得出结论.【详解】解:A .x 2•x 3=x 5,故本选项不合题意;x =,故本选项不合题意; C.2311x x x x ⎛⎫-⋅=- ⎪⎝⎭,故本选项不合题意; D.2211234x x x ⎛⎫-+=- ⎪+⎝⎭,故本选项符合题意; 故选:D .【点睛】本题考查了同底数幂的乘法法则、二次根式的性质、完全平方公式以及分式的运算法则,解题的关键是熟练掌握运算法则.3.D解析:D【分析】先根据二次根式的乘法计算得到原式为4的范围,即可得出答案.【详解】解:原式4=== ∵34<<, ∴748<<,故选:D .【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式. 4.A解析:A【分析】先根据0<x<3判定2x+1和x-5的正负,然后再根据二次根式的性质和绝对值的性质化简,最后合并同类项即可.【详解】解:∵0<x<3∴2x+1>0,x-5<0∴=2x+1+x-5=3x-4.故答案为A .【点睛】本题主要考查了二次根式的性质和绝对值的性质,根据0<x<3判定2x+1和x-5的正负是解答本题的关键.5.C解析:C【分析】由二次根式的性质、二次根式的混合运算进行计算,再进行判断,即可得到答案.【详解】=,故①正确;==②正确;=,故③正确;2,故④错误;∴正确的3个;故选:C.【点睛】本题考查了二次根式的性质、二次根式的混合运算,解题的关键是熟练掌握运算法则进行计算.6.C解析:C【分析】利用二次根式的定义进行解答即可.【详解】a<时,不是二次根式,故此选项不符合题意;A中,当0x<-时,不是二次根式,故此选项不符合题意;B1x+≥恒成立,因此该式是二次根式,故此选项符合C=()210题意;-<,不是二次根式,故此选项不符合题意;D20故选:C.【点睛】a≥)的式子叫做二次根式.(07.D解析:D【分析】根据二次根式的运算法则一一判断即可.【详解】AB 、错误,212=(;C ==D ==故选:D .【点睛】本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型. 8.D解析:D【分析】根据二次根式运算求解即可.【详解】A. 原式不能合并,不符合题意;B. 原式==C. 原式=D. 原式=2−1=1,符合题意,故选:D.【点睛】此题考查了二次根式的混合运算,熟练掌握运算法则是解本题的关键.9.B解析:B【分析】根据二次根式有意义的条件列出不等式,求出x 的范围,得到答案.【详解】解:由题意得,40x -≥,50x -≥,解得,45x ≤≤,则x 可取的整数是4、5,共2个,故选:B .【点睛】本题考查了二次根式有意义的条件,掌握二次根式有意义的条件是被开方数是非负数是解题的关键.10.D解析:D【分析】根据乘方运算,算术平方根的定义,有理数的乘除运算以及二次根式的加减的混合运算进【详解】A 、32322754⨯=⨯=,故A 错误;B 4=,故B 错误;C 、()()()11155252224⎛⎫⎛⎫⎛⎫-÷-⨯-=-⨯-⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故C 错误;D 、(22346410-⨯+=-+=,故D 正确.故选:D .【点睛】本题考查了有理数的乘方,算术平方根的定义,有理数的乘除运算以及二次根式的加减的混合运算,熟记运算法则是解题的关键. 11.B解析:B【分析】先把各二次根式化简为最简二次根式,再根据同类二次根式的概念解答即可.【详解】被开方数不同,故不是同类二次根式;被开方数不同,故不是同类二次根式;被开方数相同,故是同类二次根式;被开方数相同,故是同类二次根式.2个,故选:B .【点睛】此题主要考查了同类二次根式的定义即化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.12.A解析:A【分析】根据被开方数大于等于0列式计算即可得解.【详解】10x -≥,解得,1x ≤.故选:A .本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.二、填空题13.2022【分析】将原式化简为然后根据x 的不同取值求出y 的值最后把所有的y 值加起来即可【详解】解:当时当时当时∴当分别取时所有值的总和是:故答案是:2022【点睛】本题考查二次根式的化简解题的关键是掌解析:2022【分析】 将原式化简为23y x x =--+,然后根据x 的不同取值,求出y 的值,最后把所有的y 值加起来即可.【详解】解:3323y x x x x =+=+=--+,当2x ≥时,231y x x =--+=,当2x <时,2352y x x x =--+=-,当1x =时,523y =-=,∴当x 分别取1,2,3,,2020⋯时,所有y 值的总和是:312019320192022+⨯=+=. 故答案是:2022.【点睛】本题考查二次根式的化简,解题的关键是掌握二次根式的性质进行化简.14.【分析】根据二次根式的性质化简【详解】故答案为:【点睛】此题考查二次根式的化简掌握二次根式的性质是解题的关键解析:5【分析】根据二次根式的性质化简. 【详解】=5故答案为:5【点睛】此题考查二次根式的化简,掌握二次根式的性质是解题的关键.15.0【分析】根据最简二次根式及同类二次根式的定义得求出ab 的值代入计算即可【详解】由题意得解得∴ab=0故答案为:0【点睛】此题考查最简二次根式及同类二次根式的定义解二元一次方程组熟记定义是解题的关键 解析:0根据最简二次根式及同类二次根式的定义得12233ba a b+=⎧⎨+=+⎩,求出a、b的值代入计算即可.【详解】由题意得12233ba a b+=⎧⎨+=+⎩,解得10 ba=⎧⎨=⎩,∴ab=0,故答案为:0.【点睛】此题考查最简二次根式及同类二次根式的定义,解二元一次方程组,熟记定义是解题的关键.16.【分析】把平方后得到取算数平方根即可求解【详解】∵∴∴(舍负)故答案为:【点睛】此题考查了完全平方公式熟练掌握完全平方公式是解决此题的关键【分析】平方后,得到13aa+=,取算数平方根即可求解.【详解】∵13aa+=,∴212325aa=++=+=,∴=.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解决此题的关键.17.【分析】先将化成再运用平方差公式计算从而可得解【详解】解:===故答案为:【点睛】此题主要考查了二次根式的混合运算熟练运用乘法公式是解答此题的关键【分析】先将2化成,再运用平方差公式计算,从而可得解.【详解】解:2==22⎡⎤-⎣⎦=【点睛】此题主要考查了二次根式的混合运算,熟练运用乘法公式是解答此题的关键.18.2【分析】根据同类二次根式的定义:被开方数相同的二次根式列方程即可解答【详解】解:∵最简二次根式与是同类二次根式∴解得:则a+b =2故答案为:2【点睛】本题考查了同类二次根式:把各二次根式化为最简二解析:2【分析】根据同类二次根式的定义:被开方数相同的二次根式,列方程,即可解答.【详解】解:∵最简二次根式132-+b a 与a b -4是同类二次根式,∴31224b a b a -=⎧⎨+=-⎩, 解得:11a b =⎧⎨=⎩, 则a+b =2,故答案为:2.【点睛】本题考查了同类二次根式:把各二次根式化为最简二次根式后若被开方数相同,那么这样的二次根式叫同类二次根式.19.;【分析】由二次根式的性质进行化简然后计算除法运算即可;由绝对值的意义和二次根式的性质进行化简即可求出答案【详解】解:-÷====;∵∴∴;∴;故答案为:;【点睛】本题考查了二次根式的乘除运算二次根解析:2- 25x -+.【分析】由二次根式的性质进行化简,然后计算除法运算即可;由绝对值的意义和二次根式的性质进行化简即可求出答案.【详解】解:-15827102÷31225a=158-=158-=2=2-∵14x <<,∴40x -<,10x ->,∴44x x -=-∴44(1)25x x x x -=---=-+;故答案为:2-25x -+.【点睛】本题考查了二次根式的乘除运算,二次根式的性质,绝对值的意义,解题的关键是熟练掌握运算法则,正确的进行解题.20.【分析】先根据数轴的定义可得从而可得再化简绝对值和二次根式然后计算整式的加减即可得【详解】由数轴的定义得:则因此故答案为:【点睛】本题考查了数轴绝对值二次根式整式的加减熟练掌握数轴的定义是解题关键 解析:2a -【分析】先根据数轴的定义可得0a b <<,从而可得0,0a b a b -<+<,再化简绝对值和二次根式,然后计算整式的加减即可得.【详解】由数轴的定义得:0a b <<,则0,0a b a b -<+<,因此()a b b a a b -=-+--,b a a b =---,2a =-,故答案为:2a -.【点睛】本题考查了数轴、绝对值、二次根式、整式的加减,熟练掌握数轴的定义是解题关键.三、解答题21.(1;(2;(3)41xy=⎧⎨=⎩;(4)31xy=-⎧⎨=⎩【分析】(1)先进行二次根式的乘法运算,然后化简后合并即可;(2)利用二次根式的乘除法则运算;(3)利用加减消元法解方程组;(4)先把原方程组整理后,然后利用加减消元法解方程组.【详解】(1++=;(2(÷=-16;(3)52311x yx y+=⎧⎨+=⎩①②,②﹣①×2得3y﹣2y=1,解得y=1,把y=1代入①得x+1=5,解得x=4,所以方程组的解为41xy=⎧⎨=⎩;(4)原方程组整理为457233x yx y+=-⎧⎨+=-⎩①②,①﹣②×2得﹣y=﹣1,解得y=1,把y=1代入②得2x+3=﹣3,解得x=﹣3,所以原方程组的解为31xy=-⎧⎨=⎩.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了解二元一次方程组. 22.(1)2)﹣2<x≤2【分析】(1)先算乘除,再算加减;(2)分别求出两个一元一次不等式的解即可;【详解】(1)原式=,=;(2)2(3)8(1)22x x x x x --<⎧⎪⎨--≤-⎪⎩, 解不等式2(3)8--<x x 得:x >﹣2; 解不等式(1)22--≤-x x x 得:x≤2; 所以,不等式组的解集为:﹣2<x≤2.【点睛】本题主要考查了二次根式的混合运算和一元一次不等式组的求解,准确计算是解题的关键.23.【分析】根据二次根式、绝对值、零指数幂、负整数指数幂的性质计算,即可得到答案.【详解】0111()2π--+=112-+= 【点睛】 本题考查了二次根式、绝对值、零指数幂、负整数指数幂的知识,解题的关键是熟练掌握二次根式、绝对值、零指数幂、负整数指数幂的性质,然后根据实数的运算法则计算,即可完成求解.24.【分析】利用二次根式的化简,去绝对值,负整数指数幂,零指数幂进行计算,再进行混合加减即可.【详解】101120202-⎛⎫+- ⎪⎝⎭121=+-=.【点睛】本题考查二次根式的混合运算.掌握二次根式的化简,绝对值、负整数指数幂、零指数幂的意义是计算本题的关键.25.121x -【分析】根据分式的混合运算法则把原式化简,代入计算即可.【详解】 解:221141⎛⎫++-÷- ⎪⎝⎭x x x x x ()21421-+-+=÷x x x x x x 22141+-=÷x x x x ()()212121+=⋅-+x x x x x121=-x ,当12=x 时,原式11212=⎫-⎪⎭=4=. 【点睛】本题考查了分式的混合运算以及二次根式的运算,熟练掌握分式和二次根式的运算法则是解决本题的关键.26.(1)-1;(2)-【分析】(1)先将二次根式利用平方差公式进行化简,再合并即可;(2)先去括号,同时化简二次根式然后计算乘法,将二次根式进行合并即可.【详解】解:(1)=22-=2-3=-1;(2)6,=-【点睛】本题考查二次根式的计算,熟练掌握二次根式的运算法则与乘法公式是关键,还要注意最后结果需要化成最简二次根式.。

北师大版八年级下册数学第五章复习1试题

北师大版八年级下册数学第五章复习1试题

第五章复习一、填空题 1.当x 时,分式2+x x有意义。

2.在函数y=22-x 中,自变量x 的取值范围是 。

3.当m = 时,关于x 的分式方程213x mx +=--无解4.当x = 时,分式33x x --为0。

5.约分:112--x x = 。

6.化简211x x x -÷的结果是 .7.方程423532=-+-xx x 的解是 . 8.某市对一段全长1500米的道路进行改造.原计划每天修x 米,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天修路比原计划的2倍还多35米,那么修这条路实际用了 天。

二.、选择题 9、代数式42,1,3,31nm b a b a ,x -++π中,分式有( ) A 、1个; B 、2个; C 、3个; D 、4个。

10.若分式122--x x 的值为0,则x 的值为( ) A. 1B. -1C. ±1D.211.计算22()ab ab 的结果为( )A.bB .aC.1 D1b12、将分式yx x +2中的x 、y 的值同时扩大3倍,则 扩大后分式的值( )A 、扩大3倍;B 、缩小3倍;C 、保持不变;D 、无法确定。

13.计算()a b a bb aa+-÷的结果为( ) A .a b b - B .a b b + C .a b a - D .a b a+14、小马虎在下面的计算中只作对了一道题,他做对的题目是( )A 、b a b a 22=⎪⎭⎫ ⎝⎛ B 、23a a a =÷ C 、b a b a +=+211 D 、1-=---y x y x 15.一件工作,甲独做a 小时完成,乙独做b 小时完成,则甲、乙两人合作完成需要( )小时. A.11a b +; B.1ab ; C.1a b +; D.aba b+ 三.简答题 16.(212x x --2144x x -+)÷222x x -17、解方程:22221=-+-xxx18.先化简,再求值:221111121x x x x x +-÷+--+,其中1x =.19.(课堂上,李老师出了这样一道题:已知352008x -=,求代数式)1x 3x 1(1x 1x 2x 22+-+÷-+-,小明觉得直接代入计算太繁了,请你来帮他解决,并写出具体过程。

(必考题)初中数学八年级数学下册第一单元《三角形的证明》测试题(包含答案解析)(1)

(必考题)初中数学八年级数学下册第一单元《三角形的证明》测试题(包含答案解析)(1)

一、选择题1.如图的网格中,每个小正方形的边长为1,A ,B ,C 三点均在格点上,结论错误的是( )A .AB=25B .∠BAC=90°C .ABC S 10=D .点A 到直线BC 的距离是22.如图,在ABC 中,AB AC =,BD 平分ABC ∠,将BCD △连续翻折两次,C 点的对应点E 点落在边AB 上,B 点的对应点F 点恰好落在边AC 上,则下列结论正确的是( )A .18,2A AD BD ∠=︒=B .18,A AD BC BD ∠=︒=+ C .20,2A AD BD ∠=︒=D .20,A AD BC BD ∠=︒=+3.下列说法中,不正确的有( ) ①不在角的平分线上的点到这个角的两边的距离不相等;②三角形两内角的平分线的交点到各边的距离相等;③到三角形三边距离相等的点有1个④线段中垂线上的点到线段两端点的距离相等,⑤到三角形三个顶点距离相等的点有1个A .0个B .1个C .2个D .3个4.下列命题中真命题的个数( )(1)面积相等的两个三角形全等(2)无理数包含正无理数、零和负无理数(3)在直角三角形中,两条直角边长为n 2﹣1和2n ,则斜边长为n 2+1;(4)等腰三角形面积为12,底边上的高为4,则腰长为5.A .1个B .2个C .3个D .4个 5.如图,在△ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,若∠A =30°,BD =1,则AD 的长为( )A .3B .2C .3D .236.如图,ABC 中,D 、E 为线段BE 上两点,且AC DC =,BA BE =,若52DAE BAC ∠=∠,则DAE ∠的度数为( )A .40︒B .45︒C .50︒D .60︒ 7.下列四组线段中,可以构成直角三角形的是( ) A .1,2,3B .2,3,4C .4,5,6D .()5,12,130a a a a >8.如图,在ABC 中,90BAC ∠=︒,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于G ,交BE 于H .下列结论:①BE BCE S S =△A △;②2BAG ACF ∠=∠;③AFG AGF ∠=∠;④BH CH =.其中所有正确结论的序号是( )A .①③B .①②③C .②③④D .①②③④ 9.如图,ABC 中,BAC 60∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于点D ,DE AB ⊥交AB 的延长线于点E ,DF AC ⊥于点F ,现有下列结论:①DE DF =;②DE DF AD +=;③DM 平分ADF ∠;④2AB AC AE +=.其中正确的有( )A .①②B .①②③④C .①②④D .②④ 10.如图,在△ABC 中,AD 平分∠BAC ,过B 点作BE ⊥AD 于E ,过E 作EF //AC 交AB 于F ,则( )A .不确定B .AF=BFC .AF >BFD .AF <BF11.如图,在ABC 中,∠C =90°,∠B =30°,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以M ,N为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列结论不正确的是( )A .AD 平分∠BACB .∠ADC =60° C .点D 在AB 的垂直平分线上 D .:DAC ABC S S =1:212.如图,以△ABC 的边AB 、AC 为边向外作等边△ABD 与等边△ACE ,连接BE 交DC 于点F ,下列结论:①CD =BE ;②FA 平分∠DFE ;③∠BFC =120°;④AFE EFC S AF S FC∆∆=.其中正确的有( )A .4个B .3个C .2个D .1个二、填空题13.如图,在ABC 中,10,12,CA CB AB AB ===边上的中线8,CD AE =平分BAC ∠,P 是线段AE 上的一点,,PF AB PG BC ⊥⊥,若:1:2PF PG =,则PG =_________.14.如图所示,有n +1个边长为1的等边三角形,点A 、C 1、C 2、C 3、…、C n 都在同一条直线上,若记△B 1C 1D 1的面积为S 1,△B 2C 2D 2的面积为S 2,△B 3C 3D 3的面积为S 3,…,△B n C n D n 的面积为S n ,则(1)S 1=_____;(2)S n =_____.15.如图,某住宅小区在施工过程中留下了一块空地四边形ABCD ,经测量,3m AB =,4m BC =,12m CD =,13m DA =,90B ∠=︒.小区美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地需花_________元.16.如图,在ABC 中,6,,BC AD DC =分别平分,BAC ACB ∠∠,点E 为BC 上一点,若105ADC ︒∠=,则CD DE +的最小值为________.17.如图,在ABC 中,分别以点A 和点B 为圆心,大于12AB 为半径画弧,两弧相交于点M 、N ,作直线MN ,交BC 于点D ,ADC 的周长为15,7AB =,则ABC 的周长为______.18.如图所示,在ABC 中,AB AC =,BAD ∠=α,且AE AD =,则EDC ∠=______.19.已知:如图,在ABC 中,AB AC =,30C ∠=︒,AB AD ⊥,4cm AD =,则BC 的长为__________cm .20.如图,在ABC 中,AB AC =,38A ∠=︒,AB 的垂直平分线交AC 点E ,垂足为点D ,连接BE ,则EBC ∠的度数为________.三、解答题21.如图,已知E 、F 分别是ABC 的边AB 和AC 上的两个定点,在BC 上找一点M ,使EFM △的周长最小.(不写作法,保留作图痕迹)22.在ABC ∆中,AB AC =,点D 是直线BC 上一点(不与B ,C 重合),以AD 为一边在AD 的右侧作ADE ∆,使AD AE =,DAE BAC ∠=∠,连接CE .(1)如图1,当点D 在线段BC 上,如果90BAC ∠=︒,则BCE ∠=__度;(2)如图2,如果60BAC ∠=︒,求BCE ∠的度数是多少?(3)设BAC α∠=,BCE β∠=.①如图3,当点D 在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D 在直线BC 上移动,请直接写出α,β之样的数量关系,不用证明.23.(1)猜想:如图1,已知:在ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E 试猜想DE 、BD 、CE 有怎样的数量关系,请直接写出;(2)探究:如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在ABC 中,AB AC =,D ,A 、E 三点都在直线m 上,并且有BDA AEC BAC α∠=∠=∠=(其中α为任意锐角或钝角)如果成立,请你给出证明;若不成立,请说明理由.(3)解决问题:如图3,F 是角平分线上的一点,且ABF 和ACF 均为等边三角形,D 、E 分别是直线m 上A 点左右两侧的动点D 、E 、A 互不重合,在运动过程中线段DE 的长度始终为n ,连接BD 、CE ,若BDA AEC BAC ∠=∠=∠,试判断DEF 的形状,并说明理由.24.如图,网格中每个小正方形的边长均为1,点A ,B 都在格点上,点A 的坐标为(-1,4),点B 的坐标为(-3,2),请按要求回答下列问题:(1)请你在网格中建立合适的平面直角坐标系;(2)在y 轴左侧找一格点C ,使△ABC 是以AB 为腰的等腰直角三角形,则点C 的坐标为____,△ABC 的周长是 ;(3)在x 轴上是否存在点P ,使△ABP 的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由.25.如图,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,BE 、CD 交于F .(1)求证:BE =CD ;(2)连接CE ,若BE =CE ,求证:从“①DE ⊥AC”、“②DE ∥AB”中选择一个填入(2)中,并完成证明26.已知:如图,在ABC 中,,90AC BC ACB =∠=︒,D 是AB 延长线上一点,过点C 作CE CD ⊥,使CE CD =,连结,BE DE .(1)求证:AD BE =.(2)求DBE ∠的度数.(3)连结AE ,若ADE 是等腰三角形,1AB =,求DE .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据勾股定理以及其逆定理和三角形的面积公式逐项分析即可得到问题答案.【详解】解:22242025+=A 正确,不符合题意;∵AC 22125+=BC 2234255=+==,∴22252025AC AB BC +=+==,∴△ACB 是直角三角形,∴∠CAB=90°,故选项B 正确,不符合题意;S △ABC 111442421345222=⨯-⨯⨯-⨯⨯-⨯⨯=,故选项C 错误,符合题意; 点A 到直线BC 的距离2552AC AB BC ===,故选项D 正确,不符合题意; 故选:C .【点睛】本题考查了勾股定理以及逆定理的运用,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么 222+=a b c .熟记勾股定理的内容是解题得关键.2.D解析:D【分析】设∠ABC=∠C=2x ,根据折叠的性质得到∠BDE=∠BDC=∠FDE=60°BD=DF ,BC=BE=EF ,在△BDC 中利用内角和定理列出方程,求出x 值,可得∠A ,再证明AF=EF ,从而可得AD =BC+BD .【详解】解:∵AB=AC ,BD 平分∠ABC ,设∠ABC=∠C=2x ,则∠A=180°-4x ,∴∠ABD=∠CBD=x ,第一次折叠,可得:∠BED=∠C=2x ,∠BDE=∠BDC ,第二次折叠,可得:∠BDE=∠FDE ,∠EFD=∠ABD=x ,∠BED=∠FED=∠C=2x ,∵∠BDE+∠BDC+∠FDE=180°,∴∠BDE=∠BDC=∠FDE=60°,∴x+2x+60°=180°,∴x=40°,即∠ABC=∠ACB=80°,∴∠A=20°,∴∠EFD=∠EDB=40°,∴∠AEF=∠EFD-∠A=20°,∴AF=EF=BE=BC ,∴AD=AF+FD=BC+BD ,故选D .【点睛】本题考查了翻折的性质,等腰三角形的判定和性质,三角形内角和,熟练掌握折叠的性质是解题的关键.3.C解析:C【分析】根据角平分线的性质和线段垂直平分线的性质逐一进行判断即可.【详解】①根据角平分线的判定可知①正确;②根据角平分线的性质可知②正确;③缺乏前提条件:在三角形内部,若不限制条件,到三角形三边距离相等的点有4个,故③错误;④根据垂直平分线的性质可知④正确;⑤缺乏前提条件:在平面内,若不在平面内到三角形三个顶点距离相等的点有无数个,故⑤错误,∴错误的有2个,故选:C .【点睛】本题主要考查角平分线的性质和判定及垂直平分线的性质,掌握角平分线的性质和垂直平分线的性质是解题的关键.4.B解析:B【分析】根据三角形全等的性质、无理数的定义、勾股定理进行判断即可;【详解】面积相等的三角形不一定全等,故(1)是假命题;零不是无理数,故(2)是假命题;()()222242214211n n n n n -+=++=+,故(3)是真命题; 根据题意可得,底边长为12246⨯÷=,则底边长的一半为623÷=,腰长为5=,故(4)是真命题;综上所述,真命题有2个;故答案选B .【点睛】本题主要考查了命题的真假判断,结合全等三角形的定义、无理数定义、勾股定理判断是解题的关键.5.C解析:C【分析】求出∠BCD=30°,根据含30°角的直角三角形的性质求出BC=2,求出AB=4,即可得出答案.【详解】解:∵△ABC 中,∠ACB=90°,∠A=30°,∴∠B=60°,∵CD是高,∴∠CDB=90°,∴∠BCD=30°,∵BD=1,∴BC=2BD=2,∵在△ACB中,∠ACB=90°,∠A=30°,∴AB=2BC=4,∴AD=AB-BD=4-1=3,故选:C.【点睛】本题考查了三角形的内角和定理,含30度角的直角三角形的性质的应用,解题的关键是得出BC=2BD和AB=2BC,难度适中.6.A解析:A【分析】根据等腰三角形的性质可得出∠BAE=∠BEA,∠ADC=∠DAC,然后分别用外角的知识表示出这个关系,进而结合5∠DAE=2∠BAC可得出∠DAE的值.【详解】解:∵AC=DC,BA=BE,∴∠DAE+∠EAC=∠ADE=∠B+∠BAD①,∠EAD+∠BAD=∠AED=∠C+∠EAC②,①+②可得:∠DAE+∠EAC+∠EAD+∠BAD=∠B+∠BAD+∠C+∠EAC,整理,得∠DAE+∠BAC=180°﹣∠DAE,又5∠DAE=2∠BAC,设∠DAE=2x,则∠BAC=5x,上式即为2x+5x=180°-2x,解得:x=20°,即∠DAE=40°.故选:A.【点睛】本题考查等腰三角形的性质及三角形的内角和定理,有一定的难度,解答本题需用到等腰三角形的两底角相等、三角形的内角和等于180°.7.D解析:D【分析】根据勾股定理逆定理判断即可;【详解】≠A不正确;≠B不正确;≠C不正确;=,故D正确;故答案选D.【点睛】本题主要考查了勾股定理逆定理,准确计算是解题的关键.8.B解析:B【分析】根据中线的性质即可判断①;根据三角形内角和定理求出∠BAD=∠ACB,再用角平分线的定义推出②;根据三角形内角和定理求出∠ABC=∠DAC,再用外角的性质可判断③;根据等腰三角形的判定判断④.【详解】解:∵BE是中线,∴AE=CE,∴△ABE的面积=△BCE的面积,故①正确;∵AD为高,∴∠ADB=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ABC+∠BAD=90°,∴∠ACB=∠BAD,∵CF是∠ACB的平分线,∴∠ACB=2∠ACF,∴∠BAD=2∠ACF,即∠BAG=2∠ACF,故②正确;∵CF是角平分线,∴∠ACF=∠BCF,∵AD为高,∴∠ADC=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ACB+∠CAD=90°,∴∠ABC=∠CAD,∵∠AFG=∠ABC+∠BCF,∠AGF=∠CAD+∠ACF,∴∠AFG=∠AGF,故③正确;根据已知条件不能推出∠HBC=∠HCB,即不能推出BH=CH,故④错误;故选:B.【点睛】本题考查了三角形内角和定理,三角形的外角性质,三角形的角平分线、中线、高,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键.9.C解析:C【分析】①由角平分线的性质可知①正确;②由题意可知∠EAD=∠FAD=30°,故此可知ED=12AD,DF=12AD,从而可证明②正确;③若DM平分∠EDF,则∠EDM=60°,从而得到∠ABC为等边三角形,条件不足,不能确定,故③错误;④连接BD、DC,然后证明△EBD≌△DFC,从而得到BE=FC,从而可证明④.【详解】解:如图所示:连接BD、DC.①∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴ED=DF.∴①正确.②∵∠EAC=60°,AD平分∠BAC,∴∠EAD=∠FAD=30°.∵DE⊥AB,∴∠AED=90°.∵∠AED=90°,∠EAD=30°,∴ED=12AD.同理:DF=12 AD.∴DE+DF=AD.∴②正确.③由题意可知:∠EDA=∠ADF=60°.假设MD平分∠EDF,则∠ADM=30°.则∠EDM=60°,又∵∠E=∠BMD=90°,∴∠EBM=120°.∴∠ABC=60°.∵∠ABC是否等于60°不知道,∴不能判定MD平分∠EDF,故③错误.④∵DM 是BC 的垂直平分线,∴DB=DC .在Rt △BED 和Rt △CFD 中DE DF BD DC ⎧⎨⎩==, ∴Rt △BED ≌Rt △CFD .∴BE=FC .∴AB+AC=AE-BE+AF+FC又∵AE=AF ,BE=FC ,∴AB+AC=2AE .故④正确.故选:C .【点睛】本题主要考查的是全等三角形的性质和判定、角平分线的性质、线段垂直平分线的性质,掌握本题的辅助线的作法是解题的关键.10.B解析:B【分析】根据角平分线的定义和两直线平行,内错角相等的性质得到FAE FEA ∠=∠,即可得到AF=EF ,再根据BE ⊥AD ,得到90AEB =︒∠,再根据等角的余角相等得到ABE BEF ∠=∠,根据等边对等角的性质得到BF=EF ,即可得解;【详解】∵AD 平分∠BAC ,EF //AC ,∴FAE FEA ∠=∠,∴AF=EF ,∵BE ⊥AD ,∴90FAE ABE ∠+=︒,90AEF BEF ∠+∠=︒, ∴ABE BEF ∠=∠, ∴BF=EF ,∴AF=BF ;故答案选B .【点睛】本题主要考查了平行线的性质、三角形的角平分线,准确分析证明是解题的关键. 11.D解析:D【分析】由作图可得:AD 平分,BAC ∠ 可判断A ,再求解1302DAC DAB BAC ∠=∠=∠=︒, 可得60,ADC ∠=︒ 可判断B ,再证明,DA DB = 可判断C ,过D 作DF AB ⊥于,F 再证明,DC DF = 再利用ACD ACD ABC ACD ABD S S SS S =+ ,可判断,D 从而可得答案. 【详解】解:90,30,C B ∠=︒∠=︒903060,BAC ∴∠=︒-︒=︒由作图可得:AD 平分,BAC ∠ 故A 不符合题意;1302DAC DAB BAC ∴∠=∠=∠=︒, 903060,ADC ∴∠=︒-︒=︒ 故B 不符合题意;30,DAB B ∠=∠=︒,DA DB ∴=D ∴在AB 的垂直平分线上,故C 不符合题意;过D 作DF AB ⊥于,F90,C AD ∠=︒平分,BAC ∠,DC DF ∴=30B ∠=︒,2,AB AC ∴=11,,22ACD ABD S AC CD S AB DF ∴== 121122ACDACD ABC ACD ABD AC CD SS S S S AC CD AB DF ∴==++ 1.233AC AC AC AC AB AC AC AC ====++ 故D 符合题意; 故选:.D【点睛】 本题考查的是三角形的内角和定理,角平分线的作图,角平分线的性质,线段垂直平分线的判定,等腰三角形的判定,掌握以上知识是解题的关键.12.A解析:A【分析】过点A 作AM ⊥CD 于M ,AN ⊥BE 于N ,过点C 作CH ⊥BE 于H ,证明△ADC ≌△ABE ,可判断①,再证明AM =AN ,结合AM ⊥CD 于M ,AN ⊥BE 于N ,可判断②,证明∠ACF +∠BEC +∠ACE =120°,结合三角形的外角的性质可判断③,证明∠FAN =∠FCH =30°, 利用含30的直角三角形的性质与勾股定理可得: 33,,22AN AF HC FC == 再利用三角形的面积公式可判断④.【详解】解:过点A 作AM ⊥CD 于M ,AN ⊥BE 于N ,过点C 作CH ⊥BE 于H ,∵△ABD ,△ACE 都是等边三角形,∴AD =AB ,AE =AC ,∠DAB =∠EAC =60°,∴∠DAC =∠BAE .在△ADC 和△ABE 中,AD AB DAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△ABE (SAS ),∴CD =BE ,∠AEB =∠ACD ,故①正确∵△ADC ≌△ABE ,∴AM =AN .∵AM ⊥CD 于M ,AN ⊥BE 于N ,∴AF 平分∠DFE ,故②正确.∵∠AEB =∠ACD ,∴∠AEC +∠ACE =120°=∠AEB +∠BEC +∠ACE ,∴∠ACF +∠BEC +∠ACE =120°,∴∠BFC =∠ACF +∠BEC +∠ACE =120°,故③正确,∴∠DFE =120°, ∴∠DFA =∠EFA =60°=∠CFE .∵AN ⊥BE ,CH ⊥EF ,∴∠FAN =∠FCH =30°,∴22222,3,2,3,AF FN AN AF FN FN FC FH HC FC FH FH ==-===-=∴,,22AN AF HC FC ==∴12.12AEF EFC EF AN AF S AN AF S CH FC EF CH ⨯⨯====⨯⨯故④正确. 故选:A .【点睛】本题考查的是全等三角形的判定与性质,等边三角形的性质,角平分线的判定与性质,勾股定理的应用,掌握以上知识是解题的关键.二、填空题13.【分析】连接PBPC 过P 作PH ⊥AC 垂足为H 设PF=x 求出CD 的长从而算出△ABC 的面积再根据S △ABC=S △ABP+S △ACP+S △BCP=求出x 值可得结果【详解】解:连接PBPC 过P 作PH ⊥AC解析:167【分析】连接PB ,PC ,过P 作PH ⊥AC ,垂足为H ,设PF=x ,求出CD 的长,从而算出△ABC 的面积,再根据S △ABC =S △ABP +S △ACP +S △BCP =21x ,求出x 值,可得结果.【详解】解:连接PB ,PC ,过P 作PH ⊥AC ,垂足为H ,∵AP 平分∠BAC ,∴PF=PH ,设PF=x ,则PH=x ,PG=2x ,∵CA=CB=10,CD 是AB 中线,AB=12,∴AD=BD=6,则=8,∴S △ABC =12AB CD ⨯⨯=48, 又S △ABC =S △ABP +S △ACP +S △BCP =()12AB PF AC PH BC PG ⨯⋅+⋅+⋅ =()11210202x x x ⨯++ =21x=48解得:x=167, 即PG=167, 故答案为:167.【点睛】本题考查了等腰三角形三线合一的性质,角平分线的性质,勾股定理,三角形的面积,解题的关键是利用△ABC 的面积列出方程.14.【分析】首先求出S1S2S3…探究规律后即可解决问题【详解】解:如图过点B 作BE ⊥AC1于点E ∵△ABC1是等边三角形AB=AC1=BC1=1∴AE=∴∴由题意可知=…所以∵∴故答案为:【点睛】本题 解析:38 34(1)n n + 【分析】首先求出S 1,S 2,S 3,…,探究规律后即可解决问题.【详解】解:如图,过点B 作BE ⊥AC 1于点E ,∵△ABC1是等边三角形,AB=AC1=BC1=1∴AE=12, ∴22221312BE AB AE ⎛⎫=-=-= ⎪⎝⎭∴1113312AC B S ∆=⨯=由题意可知,11111111122B C D AC B AC B S S S S ∆∆∆====133248⨯=, 222211121233B C D AC B AC B S S S S ∆∆∆===, 333321131344B C D AC B AC B S S S S ∆∆∆===, …,所以111n AC B n S S n ∆=+, ∵111331224AC B S ∆=⨯⨯=, ∴3n n S =. 故答案为:3,3n 【点睛】本题考查了等边三角形的性质,三角形的面积等知识,解题的关键是学会从特殊到一般的探究方法,学会利用规律解决问题,属于中考常考题型.15.3600【分析】连接AC 根据勾股定理的性质计算得AC ;根据勾股定理的逆定理推导得计算得从而得四边形面积;结合草坪每平方米100元通过计算即可得到答案【详解】如图连接AC ∵∴∵∴∴∴∴四边形面积为:∵解析:3600【分析】连接AC ,根据勾股定理的性质,计算得AC 、ABC S ;根据勾股定理的逆定理,推导得90ACD ∠=︒,计算得ACD S,从而得四边形ABCD 面积;结合草坪每平方米100元,通过计算即可得到答案.【详解】如图,连接AC∵3m AB =,4m BC =,90B ∠=︒∴225AC AB BC m =+=,2162ABC S AB BC m =⨯=△ ∵12m CD =,13m DA =∴22222512169DA AC CD =+=+=∴90ACD ∠=︒∴21302ACD S AC CD m =⨯=△ ∴四边形ABCD 面积为:236ABC ACD S S m +=△△∵草坪每平方米100元∴铺满这块空地需花:361003600⨯=元,故答案为:3600.【点睛】本题考查了勾股定理及其逆定理的知识;解题的关键是熟练掌握勾股定理和勾股定理逆定理,从而完成求解.16.3【分析】如图过作于连接先说明平分当时可得可得所以当三点共线时此时最短再求解结合从而可得答案【详解】解:如图过作于连接分别平分平分当时则所以当三点共线时此时最短分别平分即的最小值是故答案为:【点睛】 解析:3【分析】如图,过D 作DP AB ⊥于,P 连接,BD 先说明BD 平分,ABC ∠ 当DE BC ⊥时,可得,DP DE = 可得,CD DE CD DP +=+ 所以当,,C D P 三点共线时,,CD DP CP += 此时最短,再求解30ABC ∠=︒,结合,CP AB ⊥ 从而可得答案. 【详解】解:如图,过D 作DP AB ⊥于,P 连接,BD,AD DC 分别平分,BAC ACB ∠∠,BD ∴平分,ABC ∠当DE BC ⊥时,则,DP DE =,CD DE CD DP ∴+=+所以当,,C D P 三点共线时,,CD DP CP += 此时最短,105ADC ∠=︒,18010575DAC DCA ∴∠+∠=︒-︒=︒,,AD DC 分别平分,BAC ACB ∠∠,()2150,BAC BCA DAC DCA ∴∠+∠=∠+∠=︒18015030ABC ∴∠=︒-︒=︒,,CP AB ⊥116322CP BC ∴==⨯=, 即CD DE +的最小值是3,故答案为:3.【点睛】本题考查的是三角形的内角和定理,三角形的角平分线的性质,含30的直角三角形的性质,垂线段最短,掌握以上知识是解题的关键.17.22【分析】根据题意可得MN 为AB 的垂直平分线故即可求解【详解】解:根据题意可得MN 为AB 的垂直平分线∴∴的周长为故答案为:22【点睛】本题考查尺规作图-线段垂直平分线线段垂直平分线的性质得到MN 为 解析:22【分析】根据题意可得MN 为AB 的垂直平分线,故AD BD =,即可求解.【详解】解:根据题意可得MN 为AB 的垂直平分线,∴AD BD =,∴ABC 的周长为22AC AB BC AC CD BD AB AC CD AD AB ++=+++=+++=,故答案为:22.【点睛】 本题考查尺规作图-线段垂直平分线、线段垂直平分线的性质,得到MN 为AB 的垂直平分线是解题的关键.18.【分析】根据等边对等角和三角形的外角性质列出等式整理即可得出结论【详解】解:根据题意:在△ABC 中AB=AC ∴∠B=∠C ∵AE=AD ∴∠ADE=∠AED ∴∠B+∠α-∠EDC=∠C+∠EDC 化简可得 解析:12α 【分析】根据等边对等角,和三角形的外角性质列出等式整理即可得出结论.【详解】解:根据题意:在△ABC 中,AB=AC ,∴∠B=∠C,∵AE=AD,∴∠ADE=∠AED,∴∠B+∠α-∠EDC=∠C+∠EDC,化简可得:∠α=2∠EDC,∴∠EDC=12α,故答案为:12 .【点睛】本题考查了等腰三角形的性质,三角形外角定理,关键是熟悉三角形的一个外角等于与它不相邻的两个内角的和的知识点.19.【分析】已知AB=AC根据等腰三角形的性质可得∠B的度数再求出∠DAC 的度数然后根据30°角直角三角形的性质求得BD的长再根据等角对等边可得到CD的长即可求得BC的长【详解】∵AB=AC∠C=30°解析:12【分析】已知AB=AC,根据等腰三角形的性质可得∠B的度数,再求出∠DAC的度数,然后根据30°角直角三角形的性质求得BD的长,再根据等角对等边可得到CD的长,即可求得BC的长.【详解】∵AB=AC,∠C=30°,∴∠B=∠C=30°,∴∠BAC=120°,∵AB⊥AD,AD=4,∴∠BAD=90°,BD=2AD=8,∴∠DAC=120°-90°=30°,∴∠DAC =∠C=30°,∴AD=CD=4,∴CB=DB+CD=12故答案为:12【点睛】本题考查了等腰三角形的判定与性质及30°角直角三角形的性质,熟练运用等腰三角形的性质及30°角直角三角形的性质是解决问题的关键.20.33°【分析】先根据等腰三角形的性质求出再根据垂直平分线的性质求解即可;【详解】∵在中∴∵的垂直平分线交点垂足为点∴AE=BE∴∴;故答案是【点睛】本题主要考查了等腰三角形的判定与性质垂直平分线的性解析:33°【分析】先根据等腰三角形的性质求出71ABC C ∠=∠=︒,再根据垂直平分线的性质求解即可;【详解】∵在ABC 中,AB AC =,38A ∠=︒,∴71ABC C ∠=∠=︒,∵AB 的垂直平分线交AC 点E ,垂足为点D ,∴AE=BE ,∴38A ABE ∠=∠=︒,∴713833EBC ∠=︒-︒=︒;故答案是33︒.【点睛】本题主要考查了等腰三角形的判定与性质、垂直平分线的性质,准确计算是解题的关键.三、解答题21.画图见解析【分析】先作E 点关于直线BC 的对称点1,E 则1,ME ME = 再连接1,FE 交BC 于,M 从而可得到EFM △的周长最短.【详解】解:如图,EFM △是所求作的周长最小的三角形,【点睛】本题考查的轴对称的性质,过直线外一点作已知直线的垂线,线段的垂直平分线的性质,掌握利用轴对称的性质求解两条线段的和的最小值是解题的关键.22.(1)90;(2)120°;(3)①180αβ+=︒;见解析;②180αβ+=︒或αβ=【分析】(1)由等腰直角三角形的性质可得∠ABC =∠ACB =45°,由“SAS ”可证△BAD ≌△CAE ,可得∠ABC =∠ACE =45°,可求∠BCE 的度数;(2)由条件可得△ABC 为等边三角形,由“SAS ”可证△ABD ≌△ACE 得出∠ABD =∠ACE =60°,则可得出结论;(3)①由“SAS ”可证△ABD ≌△ACE 得出∠ABD =∠ACE ,再用三角形的内角和即可得出结论;②分两种情况画出图形,由“SAS ”可证△ABD ≌△ACE 得出∠ABD =∠ACE ,再用三角形的内角和即可得出结论.【详解】解:(1)∵AB =AC ,∠BAC =90°,∴∠ABC =∠ACB =45°,∵∠DAE =∠BAC ,∴∠BAD =∠CAE ,且AB =AC ,AD =AE ,∴△BAD ≌△CAE (SAS )∴∠ABC =∠ACE =45°,∴∠BCE =∠ACB +∠ACE =90°,故答案为:90;(2)∵∠BAC =60°,AB =AC ,∴△ABC 为等边三角形,∴∠ABD =∠ACB =60°,∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,在△ABD 和△ACE 中,∵∠BAD =∠CAE ,且AB =AC ,AD =AE ,∴△ABD ≌△ACE (SAS ),∴∠ABD =∠ACE =60°,∴∠BCE =∠ACE +∠ACB =60°+60°=120°,故答案为:120.(3)①α+β=180°,理由:∵∠BAC =∠DAE ,∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC .即∠BAD =∠CAE .在△ABD 与△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ),∴∠B =∠ACE .∴∠B +∠ACB =∠ACE +∠ACB .∵∠ACE +∠ACB =β,∴∠B +∠ACB =β,∵α+∠B +∠ACB =180°,∴α+β=180°.②如图1:当点D 在射线BC 上时,α+β=180°,连接CE ,∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ),∴∠ABD =∠ACE ,在△ABC 中,∠BAC +∠B +∠ACB =180°,∴∠BAC +∠ACE +∠ACB =∠BAC +∠BCE =180°,即:∠BCE +∠BAC =180°,∴α+β=180°,如图2:当点D 在射线BC 的反向延长线上时,α=β.连接BE ,∵∠BAC =∠DAE ,∴∠BAD =∠CAE ,且AB =AC ,AD =AE ,∴△ABD ≌△ACE (SAS ),∴∠ABD =∠ACE ,∴∠ABD =∠ACE =∠ACB +∠BCE ,∴∠ABD +∠ABC =∠ACE +∠ABC =∠ACB +∠BCE +∠ABC =180°,∵∠BAC =180°﹣∠ABC ﹣∠ACB ,∴∠BAC =∠BCE .∴α=β;综上所述:点D 在直线BC 上移动,α+β=180°或α=β.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,三角形的内角和定理,证明△ABD ≌△ACE 是解本题的关键.23.(1)DE BD CE =+;(2)成立,见解析;(3)等边三角形,见解析【分析】(1)根据垂直的定义得到90BAD CAE ∠+∠=︒,根据等角的余角相等得到ABD CAE ∠=∠,再证明()ADB CEA AAS ≌△△,根据全等三角形的性质即可得解; (2)根据条件证明()BAD ACE AAS ≌即可得解;(3)根据等边三角形的判定证明即可;【详解】解:(1)DE BD CE =+,理由:∵90BAC ∠=︒,∴90BAD CAE ∠+∠=︒,∵BD m ⊥,CE m ⊥,∴90ADB CEA ∠=∠=︒,∴90BAD ABD ∠+∠=︒,∴ABD CAE ∠=∠,在ADB △和CEA 中,90ADB CEA ABD CAE AB AC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴()ADB CEA AAS ≌△△, ∴BD AE =,AD CE =,∴DE AD AE BD CE =+=+,故答案为DE BD CE =+;(2)结论DE BD CE =+成立;理由如下:∵BAD CAE 180BAC ∠∠∠+=︒-,BAD ABD 180ADB ∠∠∠+=︒-,90BAD ABD ∠+∠=︒,∴ABD CAE ∠=∠, 在BAD 和ACE 中,ABD CAE ADB CEA AB AC α∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴()BAD ACE AAS ≌,∴BD AE =,AD CE =,∴DE DA AE BD CE =+=+;(3)DFE △为等边三角形,理由:由(2)得,BAD ACE ≌△△,∴BD AE =,ABD CAE ∠=∠,∴ABD FBA CAE FAC ∠+∠=∠+,即FBD FAE ∠=∠,在FBD 和FAE 中,FB FA FBD FAE BD AE =⎧⎪∠=∠⎨⎪=⎩,∴()FBD FAE SAS ≌,∴FD FE =,BFD AFE ∠=∠,∴60DFE DFA AFE DFA BFD ∠=∠+∠=∠+∠=︒, ∴DFE 为等边三角形.【点睛】 本题主要考查了三角形综合,结合三角形全等证明、等边三角形的判定是解题的关键. 24.(1)图见解析;(2)(-1,0),442+;(3)P 7(,0)3-. 【分析】(1)根据AB 坐标可知,A 点向右1个单位,向下4个单位即是原点(0,0),由此即可建立平面直角坐标系;(2)由网格的特点易得点,再根据勾股定理可求AB 边长为22,进而即可得出答案, (3)作点B 关于x 轴的对称点B ′,连接AB ′,交x 轴于点P ,则点P 即所求,再利用一次函数与直线交点求法求出交点P .【详解】解:(1)平面直角坐标系如图所示;(2)如图,当在y 轴左侧点C (-1,0)时,△ABC 为等腰直角三角形,此时222222AB BC ==+=故△ABC 的周长为42222442BC AB BC ++=+=+故填:(-1,0),442+;(3)如图,作点(3,2)B -关于x 轴的对称点(3,2)B '--,连接AB ′,交x 轴于点P ,则点P 即所求,设直线AB ′的解析式为y =kx +b ,将A (−1,4),B ′(−3,−2)代入得423k b k b=-+⎧⎨-=-+⎩, 解得37k b =⎧⎨=⎩, ∴直线AB ′的解析式为y =3x +7. 将y =0代入得,73x =-, ∴0()7,3P -.【点睛】本题考查了一次函数应用,勾股定理,轴对称与线段最小值等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.25.(1)见解析;(2)见解析【分析】(1)根据“SAS”证明△BAE ≌△CAD ,然后根据全等三角形的性质解答即可;(2)根据线段垂直平分线的判定可知CA 垂直平分DE ,进而可证明结论成立.【详解】证明:(1)∵∠BAC =∠DAE =90°,∴∠DAE +∠DAB =∠BAC +∠DAB ,即∠BAE =∠CAD ,在△BAE 与△CAD 中, AD AE CAD BAE AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△BAE ≌△CAD (SAS ),∴BE =CD ;(2)∵BE =CD ,BE =CE ,∴CE =CD ,又∵AD =AE ,∴CA 垂直平分DE ,∴DE ⊥AC (可得①),又∵∠BAC =90°,∴DE//AB (可得②).【点睛】本题主要考查了全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.也考查了线段垂直平分线的判定、平行线的判定等知识.26.(1)见解析;(2)90°;(35【分析】(1)用SAS 证明△ACD ≌△BCE ,即可得到结论;(2)根据全等三角形的性质得到∠EBC=∠BAC=45°,可得∠DBE ;(3)分DA=DE ,DA=AE ,DE=AE ,三种情况根据等腰三角形的性质求解.【详解】解:(1)∵CE ⊥CD ,∴∠DCE=90°=∠ACB ,∴∠ACB+∠BCD=∠DCE+∠BCD ,即∠ACD=∠ECB ,∴在△ACD 和△BCE 中,AC BC ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴AD=BE ;(2)由(1)可知:△ACD ≌△BCE ,∴∠EBC=∠BAC=45°,∴∠DBE=180°-∠EBC-∠ABC=90°;(3)∵△ADE 是等腰三角形,若DA=DE ,则∠DAE=∠DEA ,∵∠DAC=∠DEC ,∴∠CAE=∠CEA ,∴AC=EC ,∵AC≠EC ,∴DA≠DE ;若DA=AE ,∵∠EBA=90°,∴AE>BE,∵△ACD≌△BCE,∴AD=BE,∴AE≠AD;若DE=AE,∵EB⊥AD,AE=DE,∴B是AD中点,∴AD=2AB=2BD=1,∵△ACD≌△BCE,∴BE=AD=2,由(2)可知:∠DBE=90°,∴DE=225+=;BE DB综上:DE的值为5.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,解题的关键是注意分类讨论,灵活运用等腰三角形的性质.。

专题07 八年级下册期末模拟试卷一(解析版)-2020-2021学年八年级数学期末复习特训(人教版)

专题07 八年级下册期末模拟试卷一(解析版)-2020-2021学年八年级数学期末复习特训(人教版)

专题07 八年级下册期末模拟试卷一(解析版)一.选择题(共10小题,满分30分,每小题3分)1.(3分)在▱ABCD中,AB=6,AD=4,则▱ABCD的周长为()A.10B.20C.24D.12【解答】解:∵四边形ABCD是平行四边形,∴AB=CD=6,AD=BC=4,∴▱ABCD的周长为:2×(AB+AD)=2×(6+4)=20,故选:B.2.(3分)下列二次根式中,是最简二次根式的是()A.B.C.D.【解答】解:A.,故本选项不合题意;B.,故本选项不合题意;C.是最简二次根式,故本选项符合题意;D.,故本选项不合题意.故选:C.3.(3分)若甲、乙、丙、丁四人参加跳远比赛,经过几轮初赛,他们的平均成绩相同,方差分别是:=0.34,S乙2=0.21,S丙2=0.4,S丁2=0.45.你认为最应该派去的是()A.甲B.乙C.丙D.丁【解答】解:∵=0.34,S乙2=0.21,S丙2=0.4,S丁2=0.45,∴S乙2<<S丙2<S丁2,∴乙的成绩更加稳定,故选:B.4.(3分)下列计算正确的是()A.÷=B.﹣=C.+=D.×=【解答】解:A、原式==,所以A选项错误;B、与不能合并,所以B选项错误;C、与不能合并,所以C选项错误;D、原式==,所以D选项正确.故选:D.5.(3分)下列线段不能构成直角三角形的是()A.5,12,13B.2,3,C.4,7,5D.1,,【解答】解:A、52+122=169=132,故是直角三角形,不符合题意;B、22+()2=9=32,故是直角三角形,不符合题意;C、42+52=41≠72,故不是直角三角形,符合题意;C、12+()2=()2,故是直角三角形,不符合题意.故选:C.6.(3分)下列各曲线中不能表示y是x的函数的是()A.B.C.D.【解答】解:当x取一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.选项A中的曲线,当x取一个值时,y的值可能有2个,不满足对于自变量的每一个确定的值,函数值有且只有一个值与之对.故A中曲线不能表示y是x的函数,故选:A.7.(3分)数学老师为了判断小颖的数学成绩是否稳定,对小颖在中考前的6次模拟考试中的成绩进行了统计,老师应最关注小颖这6次数学成绩的()A.方差B.中位数C.平均数D.众数【解答】解:由于方差反映数据的波动大小,故老师最关注小颖这6次数学成绩的稳定性,就是关注这6次数学成绩的方差.故选:A.8.(3分)在下列给出的条件中,能判定四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠DC.AD∥BC,AD=BC D.AB=AD,CD=BC【解答】解:A.由AB∥CD,AD=BC,不能判定四边形ABCD是平行四边形,故本选项不合题意;B.由∠A=∠B,∠C=∠D,不能判定四边形ABCD是平行四边形,故本选项不合题意;C.由AD∥BC,AD=BC,能判定四边形ABCD是平行四边形,故本选项符合题意;D.由AB=AD,CD=BC,不能判定四边形ABCD是平行四边形,故本选项不合题意;故选:C.9.(3分)如图,一次函数y1=x+b与一次函数y2=kx+4的图象相交于点P(2,﹣2),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2B.x<﹣2C.x<2D.x>2【解答】解:∵一次函数y1=x+b与一次函数y2=kx+4的图象相交于点P(2,﹣2),∴当x>2时,x+b>kx+4,即关于x的不等式x+b>kx+4的解集是x>2.故选:D.10.(3分)将一张正方形纸片按如图的步骤,通过折叠得到④,再沿虚线剪去一个角,展开平铺后得到⑤,其中FM、GN为折痕,若正方形EFGH与五边形MCNGF的面积之比为4:5,则的值为()A.B.C.D.【解答】解:如图,连接HF,直线HF与AD交于点P,∵正方形EFGH与五边形MCNGF的面积之比为4:5,设正方形EFGH与五边形MCNGF的面积为4x2,5x2,∴GF2=4x2,∴GF=2x,∴HF==2x,由折叠可知:正方形ABCD的面积为:4x2+4×5x2=24x2,∴PM2=24x2,∴PM=2x,∴FM=PH=(PM﹣HF)=(2x﹣2x)=(﹣)x,∴==.故选:A.二.填空题(共6小题,满分18分,每小题3分)11.(3分)若二次根式有意义,则x的取值范围是x≥.【解答】解:∵二次根式有意义,∴2x﹣1≥0,解得:x≥.故答案为:x≥.12.(3分)如图,在校园内有两棵树相距12米,一棵树高14米,另一棵树高9米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞13米.【解答】解:如图所示,AB,CD为树,且AB=14米,CD=9米,BD为两树距离12米,过C作CE⊥AB于E,则CE=BD=12,AE=AB﹣CD=5,在直角三角形AEC中,AC===13.答:小鸟至少要飞13米.故答案为:13.13.(3分)已知a,b,c,d的平均数是3,则2a﹣1,2b﹣1,2c﹣1,2d﹣1的平均数是5.【解答】解:∵a,b,c,d的平均数是3,∴a+b+c+d=12,∴[(2a﹣1)+(2b﹣1)+(2c﹣1)+(2d﹣1)]÷4=(2a﹣1+2b﹣1+2c﹣1+2d﹣1)÷4=[2(a+b+c+d)﹣4]×=﹣1=﹣1=6﹣1=5,故答案为:5.14.(3分)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的面积分别是3、5、2、3,则正方形E的边长是.【解答】解:设中间两个正方形的边长分别为x、y,正方形E的边长为z,则由勾股定理得:x2=3+5=8,y2=2+3=5,z2=x2+y2=13;即最大正方形E的面积为:z2=13.则正方形E的边长是.故答案为:.15.(3分)已知直线y=kx+b,若k+b+kb=0,且kb>0,那么该直线不经过第一象限.【解答】解:∵k+b+kb=0,且kb>0,∴k+b=﹣kb<0,k和b同号,∴k<0,b<0,∴直线y=kx+b经过第二、三、四象限,不经过第一象限,故答案为:一.16.(3分)已知三角形一边上的中线,与三角形三边有如下数量关系:三角形两边的平方和等于第三边一半的平方与第三边中线平方之和的2倍.即:如图1,在△ABC中,AD是BC边上的中线,则有AB2+AC2=2(BD2+AD2).请运用上述结论,解答下面问题:如图2,点P为矩形ABCD外部一点,已知P A=PC=3,若PD=1,则AC的取值范围为﹣1≤AC<2.【解答】解:如图,连接BD交AC于O,连接PO,∵四边形ABCD是矩形,∴AC=BD,AO=CO=BO=DO,∵PO是△ACP的中线,也是△PBD的中线,∴P A2+PC2=2(AO2+PO2),PB2+PD2=2(PO2+OD2),∴P A2+PC2=PB2+PD2,∴9+9=1+PB2,∴PB=,在△PBD中,﹣1≤BD≤+1,∴﹣1≤AC≤+1,当点P在AD上时,CD===2,∴AC===2,故答案为:﹣1≤AC<2.三.解答题(共8小题,满分72分)17.(6分)计算:(1)﹣+;(2)(+1)(﹣1)+÷.【解答】解:(1)原式=3﹣4+=0;(2)原式=()2﹣1+=2﹣1+=1+.18.(8分)如图,在△ABC中,点D、E、F分别是BC、AC、AB边上的中点.(1)求证:四边形BDEF是平行四边形;(2)若AB=BC,连接BE、DF.请判断BE与DF的位置关系,并说明理由.【解答】(1)证明:∵D、E、F分别是BC、AC、AB的中点,∴DE是△CAB的中位线,EF是△ABC的中位线,∴DE∥AB,EF∥BC,∴四边形BDEF是平行四边形;(2)解:BE与DF的位置关系为:BE⊥DF,如图所示,理由如下:由(1)得:DE是△CAB的中位线,EF是△ABC的中位线,∴DE=AB,EF=BC,∵AB=BC,∴DE=EF,∵四边形BDEF是平行四边形,∴四边形BDEF是菱形,∴BE⊥DF.19.(8分)已知一次函数y=(m﹣3)x+m+1的图象经过点(1,2).(1)求此一次函数解析式,并画出函数图象;(2)求此一次函数图象与坐标轴围成图形的面积.【解答】解:(1)把x=1,y=2代入一次函数解析式,得(m﹣3)+m+1=2.解得m=2.所以一次函数解析式为:y=﹣x+3.函数图象见右图.(2)当x=0时,y=3;当y=0时,x=﹣3.所以直线和x、y轴围成的三角形的面积为:×3×3=.20.(8分)某校九年级的一次数学小测试由20道选择题构成,每题5分.共100分.为了了解本次测试中同学们的成绩情况,某调查小组从中随机调查了部分同学,并根据调查结果绘制了如下尚不完整的统计图:请根据以上信息解答下列问题:(1)本次调查的学生人数为50人;(2)调查的学生中,该次测试成绩的中位数是90分;(3)调查的学生中,该次测试成绩的众数为95分;(4)补全条形统计图;(5)若测试成绩80分或80分以上为“优秀”,则估计该校九年级800名学生中,本次测试成绩达到“优秀”的人数是多少?【解答】解:(1)本次调查的学生有:5÷10%=50(人),故答案为:50;(2)∵3+18=21,21+12=33,∴这组数据的中位数是(90+90)÷2=90(分),故答案为:90;(3)85分的学生有50﹣(2+5+12+18+3)=10(人),故这组数据的众数是95分,故答案为:95;(4)由(3)知,85分的学生有10人,补全的条形统计图如右图所示;(5)800×=768(人),即该校九年级800名学生中,本次测试成绩达到“优秀”的人数是768人.21.(8分)如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,将△DCE沿DE翻折,使点C落在点A处.(1)设BD=x,在Rt△ABC中,根据勾股定理,可得关于x的方程62+x2=(8﹣x)2;(2)分别求DC、DE的长.【解答】解:(1)∵将△DCE沿DE翻折,使点C落在点A处.∴AD=CD,AE=EC,设BD=x,则DC=AD=8﹣x,∵AB2+BD2=AD2,∴62+x2=(8﹣x)2,故答案为:62+x2=(8﹣x)2;(2)由(1)得62+x2=(8﹣x)2,解得x=,∴BD=,∴DC=BC﹣BD=8﹣=.∵AB=6,BC=8,∴AC===,∴CE=AC=5,∴DE===.22.(10分)甲、乙两名同学沿直线进行登山,甲、乙沿相同的路线同时从山脚出发到达山顶.甲同学到达山顶休息1小时后再沿原路下山.他们离山脚的距离S(千米)随时间t(小时)变化的图象如图所示.根据图象中的有关信息回答下列问题:(1)分别求出甲、乙两名同学上山过程中S与t的函数解析式;(2)若甲同学下山时在点F处与乙同学相遇,此时点F与山顶的距离为0.75千米;①求甲同学下山过程中S与t的函数解析式;②相遇后甲、乙两名同学各自继续下山和上山,求当乙到山顶时,甲离乙的距离是多少千米?【解答】解:(1)设甲、乙两同学登山过程中,路程s(千米)与时间t(时)的函数解析式分别为S甲=k1t,S=k2t乙由题意,得2=4k1,2=6k2∴k1=,k2=,∴解析式分别为S甲=t,S乙=t;(2)①当y=4﹣0.75时,,解得t=,∴点F(,),甲到山顶所用时间为:4=8(小时)由题意可知,点D坐标为(9,4),设甲同学下山过程中S与t的函数解析式为s=kt+b,则:,解答,∴甲同学下山过程中S与t的函数解析式为s=﹣t+13;②乙到山顶所用时间为:(小时),当x=12时,s=﹣12+13=1,当乙到山顶时,甲离乙的距离是:4﹣1=3(千米).23.(12分)已知菱形ABCD的边长为2,∠ABC=60°,对角线AC、BD相交于点O.点M从点B向点C运动(到点C时停止),点N为CD上一点,且∠MAN=60°,连接AM交BD于点P.(1)求菱形ABCD的面积;(2)如图1,过点D作DG⊥AN于点G,若BM=4﹣2,求NG的长;(3)如图2,点E是AN上一点,且AE=AP,连接BE、OE.试判断:在运动过程中,BE+OE是否存在最小值?若存在,请求出;若不存在,请说明理由.【解答】解:(1)如图1中,∵四边形ABCD是菱形,∴AB=BC=CD=AD=2,∠ABC=∠ADC=60°,AC⊥BD,∴△ABC,△ACD都是等边三角形,∵∠AOB=90°,∠ABO=∠CBO=30°,∴OA=AB=1,OB=OA=,∴AC=2AO=2,BD=2OB=2,∴S菱形ABCD=•BD•AC=×2×2=2.(2)如图1中,过点A作AT⊥CD于T.∵△ABC,△ACD都是等边三角形,∴∠ACN=∠ABM=60°,AB=AC,∵∠MAN=∠BAC=60°,∴∠BAM=∠CAN,∴△BAM≌△ACN(ASA),∴BM=CN=4﹣2,∵AC=AD,AT⊥CD,∴CT=DT=1,AT=,∴TN=CT﹣CN=1﹣(4﹣2)=2﹣3,∴AN===3﹣,∵S△ADN=•AN•DG=•DN•AT,∴DG==,∴GN===2﹣.(3)如图2中,取CD的中点G,连接BG,CE,EG,过点G作GH⊥BD于H.∵∠BAC=∠P AE=60°,∴∠BAP=∠CAE,∵AB=AC,AP=AE,∴△BAP≌△CAE(SAS),∴∠ABP=∠ACE=30°,∵∠ACD=60°,∴∠OCE=∠GCE,∵∠COD=90°,∠ODC=∠ADC=30°,∴CD=2OC,∵CG=GD,∴OC=CG,∵CE=CE,∴△OCE≌△GCE(SAS),∴OE=EG,∴BE+OE=BE+EG≥BG,在Rt△BGH中,∵∠GHB=90°,GH=DG=,BH=,∴BG===,∴BE+OE≥,∴BE+OE的最小值为.24.(12分)如图,在平面直角坐标系xOy中,已知直线l1:y=x﹣2和直线l2:y=2x﹣4相交于点A.(1)已知点P(1﹣t,9﹣3t),求证:无论t为何值,点P总在直线y=3x+6上;(2)直线y=3x+6分别与x轴、y轴交于B、C两点,平移线段BC,使点B、C的对应点M、N分别落在直线l1和l2上,请你判断四边形BMNC的形状,并说明理由;(3)在(2)问的条件下,已知直线y=mx﹣6m+8 把四边形BMNC的面积分成1:3两部分,求m的值.【解答】(1)证明:对于直线y=3x+6,当x=1﹣t时,y=3(1﹣t)+6=﹣3t+9,∴P(1﹣t,9﹣3t)在直线y=3x+6上.(2)解:∵直线y=3x+6分别与x轴、y轴交于B、C两点,∴B(﹣2,0),C(0,6),∵线段MN是由线段BC平移得到,∴可以假设M(t,t﹣2),N(t+2,t﹣2+6),即N(t+2,t+4),∵N(t+2,t+4)在直线y=2x﹣4上,∴t+4=2(t+2)﹣4,解得t=4,∴M(4,2),N(6,8),∴BM==2,BC==2,∴BM=BC,∵BC=MN,BC∥MN,∴四边形BMNC是平行四边形,∵BC=BM,∴四边形BMNC是菱形.(3)∵直线y=mx﹣6m+8,∴x=6时,y=8,∴直线y=mx﹣6m+8经过定点(6,8),∴直线y=mx﹣6m+8经过点N(6,8),∵直线y=mx﹣6m+8把四边形BMNC的面积分成1:3两部分,∴直线y=mx﹣6m+8经过BC的中点G或经过BM的中点H,∵G是BC的中点,H是BM的中点,∴G(﹣1,3),H(1,1),把G(﹣1,3)代入y=mx﹣6m+8得到m=,把H(1,1)代入y=mx﹣6m+8得到m=,综上所述,满足条件的m的值为或.。

八年级下册数学第二章复习题

八年级下册数学第二章复习题

八年级下册数学第二章复习题八年级下册数学第二章复习题数学作为一门学科,无论在学校还是在社会中都占据着重要的地位。

它不仅仅是一种工具,更是一种思维方式和解决问题的能力。

在八年级下册的数学课程中,第二章的复习题是我们巩固和提高数学知识的重要环节。

在第二章的复习题中,我们将会回顾一些重要的数学概念和知识点。

首先,我们将复习整数的加减运算。

整数是由正整数、负整数和零组成的数集。

在整数的加减运算中,我们需要注意正负数的相加减法规则,即正数加正数为正数,负数加负数为负数,正数加负数和负数加正数的结果取决于绝对值较大的数的符号。

通过大量的练习,我们可以巩固这些运算规则,提高我们的计算能力。

其次,我们将学习有理数的乘除运算。

有理数包括整数和分数,它们可以表示正数、负数和零。

在有理数的乘除运算中,我们需要掌握乘法和除法的运算规则。

乘法运算中,两个有理数的符号相同则结果为正,符号不同则结果为负。

除法运算中,除数和被除数的符号相同则结果为正,符号不同则结果为负。

通过反复练习,我们可以熟练地进行有理数的乘除运算,提高我们的计算速度和准确性。

此外,我们还将学习到一些与有理数相关的性质和定理。

例如,有理数的乘法满足交换律和结合律,即乘法运算的结果与因子的顺序无关,以及多个有理数相乘的结果与先后顺序无关。

另外,我们还将学习到有理数的除法与乘法的关系,即有理数的除法可以转化为乘法运算。

这些性质和定理的理解和掌握,将有助于我们更好地理解和运用有理数的知识。

最后,我们还将学习到一些与有理数相关的实际问题。

例如,通过解决有理数的加减乘除问题,我们可以应用数学知识解决日常生活中的实际问题。

例如,计算购物时的折扣价格、计算行驶的里程和时间等等。

通过这些实际问题的练习,我们不仅可以提高数学计算的能力,还可以培养我们的数学思维和解决问题的能力。

综上所述,八年级下册数学第二章的复习题是我们巩固和提高数学知识的重要环节。

通过复习整数的加减运算、有理数的乘除运算、有理数的性质和定理以及与实际问题的应用,我们可以提高我们的数学水平和解决问题的能力。

华师大版八年级下册数学期末复习题1

华师大版八年级下册数学期末复习题1

期末复习一 姓名1. 假设把分式xy y x 2+中的x 和y 都扩大3倍,那么分式的值〔 〕A 、扩大3倍B 、不变C 、缩小3倍D 、缩小6倍2. 直线y=-2x+b 与两坐标轴围成的三角形的面积为4,那么b 的值为〔 〕A 、4B 、-4C 、±4D 、±2 3. 关于x 的分式方程211=--x m 的解为正数,那么m的取值范围〔 〕 A 、m>-1 B 、1≠m C 、m>1且 1-≠m D 、m>-1且1≠m 4. 假设函数()31222++-=-m x m y m 是一次函数,且y 随x 的增大而减小,那么m 的值为( )A 、±1B 、1C 、-1D 、-35. 直线b x y +-=2与直线42-=x y 的交点在x 轴上,那么b 的值为〔 〕A 、4B 、-4C 、-1D 、1 6. 反比例函数y =xa (a ≠0)的图象,在每一象限内,y 的值随x值的增大而减少,那么一次函数a ax y +-=的图象不经过...〔 〕 A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限7. 假设反比例函数22)12(--=m xm y的图像在第二、四象限,那么m 的值是〔 〕A 、-1或1B 、小于21的任意实数 C 、-1 D 、不能确定 8. 假设M(12-,1y )、N(14-,2y )、P(12,3y )三点都在函数ky x=〔k>0〕的图象上,那么1y 、2y 、3y 的大小关系是〔 〕A 、132y y y >>B 、312y y y >>C 、213y y y >>D 、123y y y >> 9. 如图,A 为反比例函数ky x=图象上一点,AB 垂直x 轴于B 点,假设AOB S ∆=5,那么k 的值为〔 〕 A 、10 B 、10- C 、 5- D 、25-10. 在同一直角坐标系中,函数y=kx-k 与(0)ky k x=≠的图像大致是〔 〕11. 以下各组条件中,能判定△ABC ≌△DEF 的是( )A 、AB =DE ,BC =EF ,∠A =∠D B 、∠A =∠D ,∠C =∠F ,AC =EF C 、AB =DE ,BC =EF ,△ABC 的周长= △DEF 的周长 D 、∠A =∠D ,∠B =∠E ,∠C =∠F12. 如右上图,要测量河两岸相对的两点A ,B 的距离,先在AB 的垂线B F 上取两点C ,D ,使CD =BC ,再定出B F 的垂线DE ,使A ,C ,E 在同一条直线上,如图,可以得到△EDC ≌△ABC ,所以ED =AB ,因此测得ED 的长就是AB 的长,判定△EDC ≌△ABC 的理由是〔 〕 A 、SAS B 、ASA C 、SSS D 、HL13. 对假命题“任何一个角的补角都不小于这个角〞举反例,正确的反例是〔 〕A.∠α=60º,∠α的补角∠β=120º,∠β>∠αB.∠α=90º,∠α的补角∠β=90º,∠β=∠αC.∠α=100º,∠α的补角∠β=80º,∠β<∠αD.两个角互为邻补角14. 如图,在△ABC 中,AB =AC ,高BD ,CE 交于点O ,AO 交BC 于点F ,那么图中共有全等三角形〔 〕A .7对B .6对C .5对D .4对15. 如图,在△ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于点D ,DE ⊥AB 于点E ,假设△DEB 的周长为10cm ,那么斜边AB 的长为〔 〕A .8 cmB .10 cmC .12 cmD . 20 cm16. 如图,△ABC 与△BDE 均为等边三角形,AB <BD ,假设△ABC 不动,将△BDE 绕点B 旋转,那么在旋转过程中,AE 与CD 的大小关系为〔 〕A .AE =CDB .AE >CDC .AE <CD D .无法确定17. 在⊿ABC 和⊿A /B /C /中,AB=A /B /,∠A=∠A /,假设证⊿ABC≌⊿A /B /C /还要从以下条件中补选一个,错误的选法是〔 〕A. ∠B=∠B /B. ∠C=∠C /C. BC=B /C /,D. AC=A /C /,18. 四边形ABCD 中,AC 与BD 交于O;〔1〕AD //BC 〔2〕AB=DC 〔3〕OA=OC 〔4〕AD=BC 〔5〕∠A BC =∠ADC;从以上五个条件中选择两个作为条件不一定能得到四边形ABCD 为平行四边形的是〔 〕 A 、〔1〕〔4〕 B 、〔1〕〔3〕 C 、〔1〕〔2〕 D 、〔1〕〔5〕 19. 四边形ABCD 中,AC 与BD 交于O;以下条件不一定能判定它是矩形的是〔 〕A 、AO=CO,BO=DO,AC=BDB 、AB //CD,AB=CD,∠BAD=090 C 、∠BAD=∠ABC=090,∠BCD+∠ADC=0180 D 、∠BAD=∠BCD,∠ABC=∠ADC=090 20. 假设分式231-+x x 的值为负数,那么x 的取值范围是__________。

(必考题)初中数学八年级数学下册第一单元《三角形的证明》测试题(答案解析)(1)

一、选择题1.如图,在Rt ABC △中,90,ACB AC BC ∠=︒≠.点P 是直角边所在直线上一点,若PAB △为等腰三角形,则符合条件的点P 的个数最多为( )A .3个B .6个C .7个D .8个2.如图,在ABC 中,BO 平分ABC ∠,CO 平分ACB ∠,EF 经过点O 且//EF BC ,若7AB =,8AC =,9BC =,则AEF 的周长是( )A .15B .16C .17D .243.如图,在ABC 中,4AB AC ==,ABC ∠和ACB ∠的平分线交于点E ,过点E 作//MN BC 分别交AB 、AC 于M 、N ,则AMN 的周长为( )A .12B .4C .8D .不确定 4.下列各组数分别为一个三角形三边的长,其中不能构成直角三角形的一组是( ) A .8,10,12 B .3,4,5 C .5,12,13 D .7,24,25 5.如图,△ABC 中,DC =2BD =2,连接AD ,∠ADC =60°.E 为AD 上一点,若△BDE 和△BEC 都是等腰三角形,且AD =31+,则∠ACB =( )A .60°B .70°C .55°D .75°6.如图,在OAB 和△OCD 中,OA OB =,OC OD =,OA OC >,40AOB COD ∠=∠=︒,连接AC ,BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠. 其中一定正确的为( )A .①②③B .①②④C .①③④D .②③④ 7.如图,在ABC 中,30C ∠=︒,点D 是AC 的中点,DE AC ⊥交BC 于E ;点O 在DE 上,OA OB =,2OD =,4OE =,则BE 的长为( )A .12B .10C .8D .68.如图,在Rt ABC △中,90BAC ︒∠=,AD BC ⊥于点D ,AE 平分BAD ∠交BC 于点E ,则下列结论一定成立的是( )A .AC AE =B .EC AE = C .BE AE =D .AC EC = 9.如图,在四边形ABCD 中,90A BDC ∠=∠=︒,C ADB ∠=∠,点P 是BC 边上的一动点,连接DP ,若3AD =,则DP 的长不可能是( )A .2B .3C .4D .510.如图,在ABC 中,以点A 为圆心,AC 的长为半径作弧,与BC 交于点E ,分别以点E 和点C 为圆心、大于12EC 的长为半径作弧,两弧相交于点P ,作射线AP 交BC 于点D .若45B ∠=︒,2C CAD ∠=∠,则BAE ∠的度数为( )A .15︒B .25︒C .30D .35︒11.如图,ABC 中,36A ∠=︒,72C ∠=︒,BD 平分ABC ∠,//ED BC ,则图中等腰三角形的个数是( )A .3B .4C .5D .612.如图,A ,B 两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C 也在格点上,且ABC 为等腰三角形,在图中所有符合条件的点C 的个数为( )A .7B .8C .9D .10二、填空题13.如图,已知ABC ∆中,90,C AC BC ∠=︒=,点D 在BC 上,DE AB ⊥,点E 为垂足,且DC DE =,联结AD ,则ADB ∠的大小为___________.14.如图,一副含30和45︒角的三角板ABC 和EDF 拼合在个平面上,边AC 与EF 重合,6cm AC =.当点E 从点A 出发沿AC 方向滑动时,点F 同时从点C 出发沿射线BC 方向滑动.当点E 从点A 滑动到点C 时,连接BD .则ABD △的面积最大值为_________2cm .15.如图,在ABC 中,AB AC =,AD 平分BAC ∠,PD 垂直平分AB 连接BD 并延长,交边AC 于点E .若BCE 是等腰三角形,则BAC ∠的度数为________.16.如图,已知△ABC 的周长是18,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =1,△ABC 的面积是_____.17.如图,AD 是△ABC 的平分线,DF ⊥AB 于点F ,DE =DG ,AG =16,AE =8,若S △ADG =64,则△DEF 的面积为 ________.18.如图,BD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,△ABC 的面积为60,AB =16,BC =14,则DE 的长等于_____.19.上午10时,一艘船从A 处出发以每小时25海里的速度向正北航行,中午12时到达B 处,从A 、B 两点观望灯塔C ,测得42DAC ∠=︒,84DBC ︒∠=,则B 到灯塔C 的距离是________海里.20.如图,ABC 是等边三角形,AD 是BC 边上的高,且6,33,AB AD E ==是AC 的中点,P 是AD 上的一个动点,PC 与PE 的和最小为______.三、解答题21.已知A (3, 5),B (-1, 2),C (1, 1).(1)在所给的平面直角坐标系中作出△ABC ;(2)△ABC 是直角三角形吗?请说明理由.22.已知:如图1,等边ABC 的边长为cm 6,点P ,Q 分别从B ,C 两点同时出发,点P 沿BC 向终C 运动,速度为1cm/s ;点Q 沿CA ,AB 向终点B 运动,速度为2cm/s .设它们运动的时间为s x .(1)当x = 时,//PQ AB ;(2)若PQ AC ⊥,求x ;(3)如图2,当点Q 在AB 上运动时,若PQ 与ABC 的高AD 交于点O ,请你补全图形,猜想OQ 与OP 是否总是相等?并说明理由.23.如图,在Rt ABC △中,CM 平分ACB ∠交AB 于点M ,过点M 作//MN BC 交AC 于点N ,且MN 平分AMC ∠,若1AN =.(1)求B 的度数;(2)求CN 的长.24.如图,Rt △ABC 中,∠BCA =90°,AC =BC ,点D 是BC 的中点,CE ⊥AD 于E ,BF ∥AC 交CE 的延长线于点F .(1)求证:△ACD ≌△CBF ;(2)连结DF ,求证:AB 垂直平分DF ;(3)连结AF ,试判断△ACF 的形状,并说明理由.25.如图.在△ABC 中,∠C =90 °,∠A =30°.(1)用直尺和圆规作AB 的垂直平分线,分别交AB 、AC 于D 、E ,交BC 的延长线于F ,连接EB .(不写作法,保留作图痕迹)(2)求证:EB 平分∠ABC .(3)求证:AE =EF .26.已知:如图,在ABC 中,,90AC BC ACB =∠=︒,D 是AB 延长线上一点,过点C 作CE CD ⊥,使CE CD =,连结,BE DE .(1)求证:AD BE =.(2)求DBE ∠的度数.(3)连结AE ,若ADE 是等腰三角形,1AB =,求DE .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】分为三种情况:①BP=AB,②AP=AB,③AP=BP,再求出答案即可.【详解】解:作BC、AC所在直线,然后分别以B、A点为圆心,以AB为半径作圆分别交BC、AC所在直线于6点,再作AB的垂直平分线与BC所在直线交于2点,总共符合条件的点P的个数最多有8个,故选:B.【点睛】本题考查了等腰三角形的判定,线段垂直平分线的性质.能求出符合的所有情况是解此题的关键.2.A解析:A【分析】先根据平行线的性质、角平分线的定义、等边对等角得到BE=OE,OF=CF,再进行线段的代换即可求出AEF的周长.【详解】解:∵EF∥BC,∴∠EOB=∠OBC,,∵BO平分ABC∴∠EBO=∠OBC,∴∠EOB=∠EBO,∴BE=OE,同理可得:OF=CF,∴AEF的周长为AE+AF+EF=AE+OE+OF+AF= AE+BE+CF+AF=AB+AC=7+8=15.故答案为:A【点睛】本题考查了等腰三角形的判定“等边对等角”,熟知平行线的性质,角平分线的定义和等腰三角形的判定定理是解题关键.3.C解析:C【分析】由角平分线的定义和平行线性质易证△BME和△CNE是等腰三角形,即BM=ME,CN=NE,由此可得△AMN的周长=AB+AC.【详解】解:∵∠ABC和∠ACB的平分线交于点E,∴∠ABE=∠CBE,∠ACE=∠BCE,∵MN//BC,∴∠CBE=∠BEM,∠BCE=∠CEN,∴∠ABE=∠BEM,∠ACE=∠CEN,∴BM=ME,CN=NE,∴△AMN的周长=AM+ME+AN+NE=AB+AC,∵AB=AC=4,∴△AMN的周长=4+4=8.故选C.【点睛】本题考查了等腰三角形的判定与性质,平行线的性质,熟记各性质是解题的关键.4.A解析:A【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形,最长边所对的角为直角来判定即可.【详解】解:A、∵82+102≠122,∴三条线段不能组成直角三角形,故A选项符合题意;B、∵32+42=52,∴三条线段能组成直角三角形,故B选项不符合题意;C、∵52+122=132,∴三条线段能组成直角三角形,故C选项不符合题意;D、∵72+242=252,∴三条线段能组成直角三角形,故D选项不符合题意;故选:A.【点睛】本题考查的是勾股定理逆定理,解题的关键是掌握勾股定理逆定理以及准确计算.5.D解析:D【分析】根据等腰三角形的性质求解即可;【详解】∵60EDC ∠=︒,∴60EBD BED ∠+∠=︒,∵△BDE 是等腰三角形,∴30EBD BED ∠=∠=︒,1BD DE ==,∵△BEC 是等腰三角形,∴30EBD ECD ∠=∠=︒,∵60EDC ∠=︒,∴90DEC ∠=︒,在Rt △DEC 中,∵30ECD ∠=︒,1DE =,∴tan 30DEEC ==︒又∵AD 1, ∴AE AD DE EC =-==,∴△AEC 为等腰三角形,又∵90DEC AEC ∠=∠=︒,∴45ECA EAC ∠=∠=︒,∴453075ACB ACE ECD ∠=∠+∠=︒+︒=︒;故答案选D .【点睛】本题主要考查了等腰三角形的性质应用,准确计算是解题的关键.6.B解析:B【分析】由SAS 证明△AOC ≌△BOD 得出∠OCA=∠ODB ,AC=BD 即可判断①;由全等三角形的性质得出∠OAC=∠OBD ,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD ,得出∠AMB=∠AOB=40°,即可判断②;作OG ⊥MC 于G ,OH ⊥MB 于H ,则∠OGC=∠OHD=90°,由AAS 证明△OCG ≌△ODH (AAS ),得出OG=OH ,由角平分线的判定方法得出MO 平分∠BMC ,即可判断④;由∠AOB=∠COD ,得出当∠DOM=∠AOM 时,OM 平分∠BOC ,假设∠DOM=∠AOM ,由△AOC ≌△BOD 得出∠COM=∠BOM ,由MO 平分∠BMC 得出∠CMO=∠BMO ,推出△COM ≌△BOM ,得OB=OC ,而OA=OB ,所以OA=OC 即可判断③;【详解】∵ ∠AOB=∠COD=40°,∴∠AOB+∠AOD=∠COD+∠AOD ,即∠AOC=∠BOD,在△AOC和△BOD中,OA OBOC ODAOC BOD=⎧⎪=⎨⎪∠=∠⎩,∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,故①正确;∴∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,∴∠AMB=∠AOB=40°,故②正确;作OG⊥MC于G,OH⊥MB于H,如图所示:则∠OGC=∠OHD=90°,在△OCG和△ODH中OCA ODBOGC OHD OC OD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△OCG≌△ODH(AAS),∴OG=OH,∴MO平分∠BMC,故④正确;∵∠AOB=∠COD,∴当∠DOM=∠AOM时,OM平分∠BOC,假设∠DOM=∠AOM,∵△AOC≌△BOD∴∠COM=∠BOM,∵MO平分∠BMC∴∠CMO=∠BMO,在△COM和△BOM中,COM BOMOM OMCMO BMO∠∠⎧⎪=⎨⎪∠=∠⎩,∴△COM≌△BOM(ASA)∴OB=OC,∵OA=OB,∴OA=OC 与OA >OC 矛盾,故③错误;故选:B .【点睛】本题考查了全等三角形的判定与性质,三角形的外角性质,角平分线的判定等知识,证明三角形全等是解题的关键;.7.C解析:C【分析】连接OC ,过点O 作OF BC ⊥于F ,求得212CE DE ==,60CED ∠=︒,再根据条件得出9030EOF OEF ∠=︒-∠=︒,得到122EF OE ==,即可得解; 【详解】连接OC ,过点O 作OF BC ⊥于F ,如图,∵2OD =,4OE =,∴6DE OD OE =+=, 在Rt △CDE 中,30C ∠=︒,∴212CE DE ==,9060CED C ∠=︒-∠=︒, ∵D 为AC 的中点,DE AC ⊥,∴OA OC =,∵OA OB =,∴OB OC =,∵OF BC ⊥,∴12CF BF BC ==, 在Rt △OEF 中, ∵60OEF ∠=︒, ∴9030EOF OEF ∠=︒-∠=︒,∴122EF OE ==, ∴10CF CE EF =-=,∴8BE BC CE =-=;故答案选C .【点睛】本题主要考查了等腰三角形的判定与性质,准确分析计算是解题的关键.8.D解析:D【分析】根据角平分线的性质得出∠BAE=∠DAE ,再根据∠CEA=∠B+∠BAE ,∠CAE=∠CAD+∠DAE 得出∠CAE=∠CEA 即可得出答案.【详解】解:∵90BAC ∠=︒,∴∠BAE+∠DAE+∠CAD=90°,∠B+∠C=90°∵AD ⊥BC∴∠BAE+∠DAE+∠B=90°,∠DAE+∠DEA=90°,∠CAD+∠C=90°∵AE 平分BAD ∠∴∠DAE=∠BAE∵∠B+∠C=90°∴∠CAD=∠B∵∠CEA=∠B+∠BAE∴∠CEA=∠DAE+∠CAD=∠CAE∴AC=EC ,其他选项均缺少条件,无法证明一定相等,故选:D .【点睛】本题考查直角三角形两锐角和为90°,角平分线的定义以及等腰三角形的判定等知识,解题的关键是灵活运用所学知识解决问题.9.A解析:A【分析】由三角形的内角和定理和角的和差求出∠ABD =∠CBD ,角平分线的性质定理得AD =DH ,垂线段定义证明DH 最短,求出DP 长的最小值为3,即可得到正确答案 .【详解】过点D 作DH ⊥BC 交BC 于点H ,如图所示:∵∠A=∠BDC=90°,又∵∠C+∠BDC+∠DBC=180°,∠ADB+∠A+∠ABD=180°,∴∠ABD=∠CBD,∴BD是∠ABC的角平分线,又∵AD⊥AB,DH⊥BC,∴AD=DH,又∵AD=3,∴DH=3,∴当点P在BC上运动时,点P运动到与点H重合时DP最短,其长度为DH长等于3,即DP长的最小值为3,故DP的长不可能是2,故选:A.【点睛】本题综合考查了三角形的内角和定理,角的和差,角平分线的性质定理,垂线段的定义等知识点,重点掌握角平分线的性质定理,难点是作垂线段找线段的最小值.10.A解析:A【分析】根据作图过程可得,AP是EC的垂直平分线,可得AE=AC,∠ADB=∠ADC=90°,再根据∠B=45°,∠C=2∠CAD,即可求出∠CAD的度数,进而即可求解.【详解】解:由作图过程可知:AP是EC的垂直平分线,也是∠CAE的角平分线,∴AE=AC,∠ADB=∠ADC=90°,∵∠B=45°,∴∠BAD=45°,∵∠C=2∠CAD,∴3∠CAD=90°,∴∠CAD=30°,∴∠EAD=30°,=45°-30°=15°.∴BAE故选:A.【点睛】本题考查了作图−基本作图,直角三角形的性质,解决本题的关键是掌握基本作图方法.11.C解析:C【分析】利用三角形内角和定理,平行线的性质,角平分线的定义求出各个角,再根据等腰三角形的判定定理,即可判断.【详解】解:∵∠A=36°,∠C=72°,∴∠ABC=180°−72°−36°=72°,∴∠ABC=∠C,∴△ABC是等腰三角形,∵DE∥BC,∴∠AED=∠ABC,∠ADE=∠C,∴∠AED=∠ADE,∴△AED是等腰三角形,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠A=∠ABD=36°,∠EDB=∠EBD=36°,∴△ABD,△BDE都是等腰三角形,∵∠BDC=180°-72°-36°=72°,∴∠C=∠BDC=72°,∴△BDC是等腰三角形,∴等腰三角形有5个,故选:C.【点睛】本题考查等腰三角形的判定,平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握等腰三角形的判定定理,属于中考常考题型.12.B解析:B【分析】分两种情况:①AB为等腰三角形的底边;②AB为等腰三角形的一条腰;画出图形,即可得出结论.【详解】解:如图所示:①AB为等腰三角形的底边,符合条件的点C的有5个;②AB为等腰三角形的一条腰,符合条件的点C的有3个.所以符合条件的点C共有8个.故选:B.【点睛】此题考查了等腰三角形的判定,熟练掌握等腰三角形的判定是解题的关键,注意数形结合的解题思想.二、填空题13.5°【分析】首先根据角平分线的判定方法判定AD 是∠BAC 的平分线然后利用外角性质求∠ADB 的度数即可【详解】解:∵∠C =90°DE ⊥AB ∴∠C=∠AED=90°在Rt∆ACD 和Rt∆AED 中∴Rt∆解析:5°【分析】首先根据角平分线的判定方法判定AD 是∠BAC 的平分线,然后利用外角性质求∠ADB 的度数即可.【详解】解:∵∠C =90°,DE ⊥AB∴∠C=∠AED=90°,在Rt∆ACD 和Rt∆AED 中DE DC AD AD=⎧⎨=⎩, ∴Rt∆ACD ≌Rt∆AED ,∴∠CAD=∠EAD ,∴AD 平分∠BAC ,∴∠CAD =12∠BAC , ∵∠C =90°,AC =BC ,∴∠B =∠CAB =45°,∴∠CAD =22.5°,∴∠ADB=∠CAD +∠C =112.5°.故答案为:112.5°.【点睛】本题考查了角平分线的判定方法以及三角形外角的性质,角平分线的判定方法是:到角的两边距离相等的点在这个角的平分线上.14.cm2【分析】过点作于点作于点连接由直角三角形的性质可得cmcmcm 由可证△△可得由三角形面积公式可求则时有最大值【详解】解:cmcmcmcm 当点从点滑动到点时得△过点作于点作于点连接且且△△当时有解析:cm 2【分析】过点D 作D N AC '⊥于点N ,作D M BC '⊥于点M ,连接BD ',AD ',由直角三角形的性质可得BC =,AB =,ED DF ==cm ,由“AAS ”可证△D NE ''≅△D MF '',可得D N D M ''=,由三角形面积公式可求111222AD B S BC AC AC D N BC D M '''=⨯+⨯⨯-⨯⨯△,则E D AC ''⊥时,AD B S '△有最大值.【详解】解:6AC =cm ,30A ∠=︒,45DEF ∠=︒, 233BC ∴==cm ,43AB =cm ,32ED DF ==cm ,当点E 从点A 滑动到点C 时,得△E D F ''',过点D 作D N AC '⊥于点N ,作D M BC '⊥于点M ,连接BD ',AD ',90MD N '∴∠=︒,且90E D F '''∠=︒,E D NF D M ''''∴∠=∠,且90D NE D MF ''''∠=∠=︒,E D D F ''''=,∴△D NE ''≅△()D MF AAS '',D N D M ''∴=,AD B ABC AD C BD C S S S S '''=+-△△△△当E D AC ''⊥时,AD B S '△有最大值,1111123(623)2222AD B S BC AC AC D N BC D M D N ''''∴=⨯+⨯⨯-⨯⨯=-⨯△ AD B S '∴△最大值1123(623)32(1239236)2=-⨯=cm 2. 故答案为:(1239236)cm 2.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,角平分线的性质,三角形面积公式等知识,确定AD B S '△有最大值时的图形位置是本题的关键.15.45°或36°【分析】设∠BAD=∠CAD=α根据三角形内角和定理和三角形外角的性质表示∠EBC ∠BEC 和∠C 再分三种情况讨论即可【详解】解:∵AD 平分∴设∠BAD=∠CAD=α∵AB=AC ∴∠AB解析:45°或36°.【分析】设∠BAD=∠CAD=α,根据三角形内角和定理和三角形外角的性质表示∠EBC 、∠BEC 和∠C ,再分三种情况讨论即可.【详解】解:∵AD 平分BAC ∠,∴设∠BAD=∠CAD=α,∵AB=AC ,∴∠ABC=∠C=1802902αα︒-=︒-, ∵PD 垂直平分AB ,∴AD=BD , ∴∠ABD=∠BAD=α,∠EBC=∠ABC-∠ABE=902α︒-,∴∠BEC=∠ABE+∠BAC=3α,当BE=BC 时,∴∠BEC=∠C ,即903αα︒-=,解得22.5α=︒,∴245BAC α∠==︒;当BE=CE 时,∠EBC=∠C ,此时E 点和A 点重合,舍去;当BC=CE 时,∴∠EBC=∠BEC ,即9023αα︒-=,解得18α=︒,∴236BAC α∠==︒,故答案为:45°或36°.【点睛】本题考查三角形外角的性质,等腰三角形的性质,三角形内角和定理,垂直平分线的性质.掌握方程思想,能正确表示相关角是解题关键.16.9【分析】过点O 作OE ⊥AB 于EOF ⊥AC 与F 连接OA 根据角平分线的性质求出OEOF 根据三角形面积公式计算得到答案【详解】解:过点O 作OE ⊥AB 于EOF ⊥AC 于F 连接OA ∵OB 平分∠ABCOD ⊥BC解析:9【分析】过点O 作OE ⊥AB 于E ,OF ⊥AC 与F ,连接OA ,根据角平分线的性质求出OE 、OF ,根据三角形面积公式计算,得到答案.【详解】解:过点O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,∵OB 平分∠ABC ,OD ⊥BC ,OE ⊥AB ,∴OE =OD =1,同理可知,OF =OD =1,∴△ABC 的面积=△OAB 的面积+△OAC 的面积+△OBC 的面积, =12×AB ×OE +12×AC ×OF +12×BC ×OD , =12×18×1, =9,故答案为:9.【点睛】本题主要考查了角平分线的性质,准确计算是解题的关键.17.16【分析】过点D 作于H 先利用三角形的面积公式计算出DH=8再利用角平分线的性质得到DF=DH=8接着证明得到证明得到利用等线段代换得到于是求出EF 的长然后根据三角形的面积公式计算即可【详解】过点D解析:16【分析】过点D 作DH AC ⊥于H ,先利用三角形的面积公式计算出DH=8,再利用角平分线的性质得到DF=DH=8,接着证明Rt DEF DGH △≌Rt △得到EF HG =,证明Rt ADF △≌Rt △ADH 得到AF AH =,利用等线段代换得到EF AG HG AE =--,于是求出EF 的长,然后根据三角形的面积公式计算即可【详解】过点D 作DH AC ⊥于H ,64S =△ADG ,16AG =1642AG DH ∴⨯⨯= 8DH ∴= AD 是ABC 的平分线,,DF AB DH AC ⊥⊥8DF DH ==∴在Rt DEF △和Rt DGH △中DE DG DF DH=⎧⎨=⎩\ ∴Rt DEF △≌Rt DGH △EF HG ∴=同理可得Rt ADF △≌Rt △ADHAF AH ∴=168EF AF AE AH AE AG HG AE EF =-=-=--=--4EF ∴= 11481622DEF S EF DF ∴=⨯⨯=⨯⨯=△ 【点睛】本题考查了角平分线的性质,全等三角形的判定和性质,熟练掌握角平分线的性质,全等三角形的判定定理是解题关键.18.【分析】过点D 作DF ⊥BC 垂足为F 根据角平分线的性质得到FD=DE 再利用面积求DE 即可【详解】解:过点D 作DF ⊥BC 垂足为F ∵BD 是△ABC 的角平分线DE ⊥ABDF ⊥BC ∴FD=DEDE=4故答案为解析:【分析】过点D 作DF ⊥BC ,垂足为F ,根据角平分线的性质得到FD=DE ,再利用面积求DE 即可.【详解】解:过点D 作DF ⊥BC ,垂足为F ,∵BD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥BC ,∴FD=DE ,182ABD SAB DE DE =⋅=, 172CBDS BC DF DE =⋅=, ABC ABD DBC S S S =+△△△,8760DE DE +=,DE=4,故答案为:4.【点睛】本题考查是角平分线的性质,解题关键是熟知角平分线性质,作垂线,利用面积求DE . 19.50【分析】根据题意得到证明BC=AB 即可得解;【详解】根据题意得:海里∵∴∴∴海里;故答案是50【点睛】本题主要考查了等腰三角形的判定与性质结合方位角计算是解题的关键解析:50【分析】根据题意得到C BAC ∠=∠,证明BC=AB ,即可得解;【详解】根据题意得:22550AB =⨯=海里,∵42DAC ∠=︒,84DBC ︒∠=,∴42C DBC DAC ∠=∠-∠=︒,∴C BAC ∠=∠,∴50BC AB ==海里;故答案是50.【点睛】本题主要考查了等腰三角形的判定与性质,结合方位角计算是解题的关键.20.【分析】连接BE 与AD 交于点P 连接CP 则BE 的长度即为PE 与PC 和的最小值根据三角形的面积公式即可证出从而得出结论【详解】如图连接BE 与AD 交于点P 连接CP ∵△ABC 是等边三角形AD ⊥BC ∴AD 垂直 解析:33【分析】连接BE ,与AD 交于点P ,连接CP ,则BE 的长度即为PE 与PC 和的最小值,根据三角形的面积公式即可证出33BE AD ==,从而得出结论.【详解】如图,连接BE ,与AD 交于点P ,连接CP∵△ABC 是等边三角形,AD ⊥BC ,∴AD 垂直平分BC ,BC=AC∴PC=PB ,∴PE+PC=PB+PE=BE ,根据两点之间线段最短,BE 的长就是PE+PC 的最小值,∵E 是AC 的中点,∴BE ⊥AC∵ABC S =12BC·AD=12AC·BE 6,33AB AD ==6AB BC AC ∴===∴BE=AD=33 即PC 与PE 的和最小值是33故答案为:33. 【点睛】本题考查了最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.三、解答题21.(1)见解析;(2)是,理由见解析【分析】(1)在平面直角坐标系中描出A 、B 、C 三点,再顺次连接三点即可做出△ABC ; (2)利用网格特点,分别求出AB 2、AC 2、BC 2,再根据勾股定理的逆定理判断即可.【详解】(1)如图所示;(2)△ABC 是直角三角形,理由为:∵AB 2=42+32=25,AC 2=22+42=20,BC 2=12+22=5,∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形,且∠C=90°.【点睛】本题考查平面直角坐标系、勾股定理及其逆定理,熟练掌握网格结构和平面直角坐标系,准确找出对应点的位置,会利用勾股定理的逆定理判断直角三角形是解答的关键. 22.(1)2x =;(2)65x =;(3)相等,画图和理由见解析 【分析】(1)当PQ //AB 时,△PQC 为等边三角形,根据PC=CQ 列出方程即可解出x 的值; (2)当PQ ⊥AC 时,可得1=2QC PC ,列出方程解答即可; (3)作QH ⊥AD 于点H ,计算得出QH=DP ,从而证明△OQH ≌△OPD (AAS )即可.【详解】解:(1)∵当PQ //AB 时,∴∠QPC=∠B=60°,又∵∠C=60°∴△PQC 为等边三角形∴PC=CQ ,∵PC=6-x ,CQ=2x ,由6-x=2x解得:2x =,∴当2x =时,PQ //AB ;(2)若PQ ⊥AC ,∵∠C=60°,∴∠QPC=30°, ∴1=2QC PC , 即12(6)2x x =-, 解得:65x = ∴当65x =时,PQ AC ⊥; (3)补全图形如图理由如下:作QH AD ⊥于H ,ABC 等边三角形,AD BC ⊥.30QAH ∴∠=,132BD BC ==, 12QH AQ ∴=1(26)32x x =-=-, 3DP BP BD x =-=-,QH DP ∴=,在OQH △和OPD △中,QOH POD QHO PDO QH PD ∠=∠⎧⎪∠=∠⎨⎪=⎩()OQH OPD AAS ∴△≌△,OQ OP ∴=.【点睛】本题考查了等边三角形的性质,含30°直角三角形的性质,全等三角形的性质及判定,几何中的动点问题,解题的关键是灵活运用等边三角形及全等三角形的性质及判定. 23.(1)30B ∠=︒;(2)2.【分析】(1)先利用直角三角形的两个锐角互余,得到一个等式,再利用平行线的性质,角平分线的性质,用B 的代数式表示这个等式,转化为B 的方程求解即可;(2)利用30°角所对的直角边等于斜边的一半计算MN ,再利用平行线的性质,角平分线的性质证明CN=MN ,问题得证.【详解】(1)∵CM 平分ACB ∠,MN 平分AMC ∠,∴ACM BCM ∠=∠,AMN CMN ∠=∠,又∵//MN BC ,∴AMN B ∠=∠,CMN BCM ∠=∠,∴B BCM ACM ∠=∠=∠,∵90A ∠=︒,∴90B ACB ∠+∠=︒,∴30B ∠=︒;(2)由(1)得,30AMN B ∠=∠=︒又∵90A ∠=︒ ∴12AN MN =∵1AN =∴2MN = ∵MCN CMN ∠=∠∴MN NC =,∴2CN =. 【点睛】本题考查了平行线的性质,角平分线的性质,等腰三角形的判定,直角三角形的性质,根据条件,熟练将问题与相应的知识准确对接是解答关键.24.(1)见解析;(2)见解析;(3)△ACF 是等腰三角形,理由见解析【分析】(1)由AAS 证明△ACD ≌△CBF 即可;(2)由全等三角形的性质得CD =BF ,由CD =BD ,得BF =BD ,证出∠ABC =∠ABF ,由等腰三角形的性质即可得出结论;(3)由全等三角形的性质得AD =CF ,由垂直平分线的性质得AD =AF ,得出AF =CF 即可.【详解】(1)证明:∵CE ⊥AD ,∠BCF +∠ADC =90°,∵∠BCA =90°,BF ∥AC ,∴∠CBF =180°﹣∠BCA =90°,∴∠BCF +∠CFB =90°,∴∠CFB =∠ADC ,在△ACD 和△CBF 中,ACD CBF ADC CFB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBF (AAS );(2)证明:由(1)得:△ACD ≌△CBF ,∴CD =BF ,∵D 为BC 的中点,∴CD =BD ,∴BF =BD ,∵∠BCA =90°,AC =BC ,∴∠ABC =45°,∴∠ABF =90°﹣∠ABC =45°,∴∠ABC =∠ABF ,∵BF =BD ,∴AB 垂直平分DF ;(3)解:△ACF 是等腰三角形,理由如下,如图:连接AF由(1)得:△ACD≌△CBF,∴AD=CF,由(2)得:AB垂直平分DF,∴AD=AF,∴AF=CF,∴△ACF是等腰三角形.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,直角三角形的性质,线段垂直平分线的性质等知识,熟练掌握等腰三角形的判定与性质,全等三角形的判定定理是解题关键.25.见解析【分析】(1)先作线段AB的垂直平分线DE,再延长BC即可;(2)先利用直角三角形的性质求∠ABC= 60︒,再垂直平分线的性质得到∠ABE=∠A=30︒,再求出∠EBC=∠ABC-∠ABE=30︒,即可得到∠EBC=∠ABE,得到答案;(3)证明:先利用直角三角形的性质求∠DEB=90︒-∠ABE =60︒再利用三角形外角的性质求∠EFB=∠DEB-∠EBC=60︒-30︒=30︒,进而得∠EFB=∠EBC,证得BE=EF,又因为AE= BE,利用等量代换即可求得答案.【详解】(1)如图,即为所求;(2)证明:∵DE 是AB 的垂直平分线∴DE ⊥AB∴AE=BE∵∠A=30︒,∠ACB=90︒∴∠ABE=∠A=30︒,∠ABC=90︒-∠A=60︒∴∠EBC=∠ABC-∠ABE=60︒-30︒=30︒∴∠EBC=∠ABE∴EB 平分∠ABC .(3)证明:∵DE 是AB 的垂直平分线∴DE ⊥AB∴∠DEB=90︒-∠ABE =60︒∴∠EFB=∠DEB-∠EBC=60︒-30︒=30︒∴∠EFB=∠EBC∴BE=EF又∵AE= BE∴AE=EF【点睛】本题考查了尺规作图和垂直平分线性质得应用,解决此题的关键利用尺规作图,画出图形.26.(1)见解析;(2)90°;(3【分析】(1)用SAS 证明△ACD ≌△BCE ,即可得到结论;(2)根据全等三角形的性质得到∠EBC=∠BAC=45°,可得∠DBE ;(3)分DA=DE ,DA=AE ,DE=AE ,三种情况根据等腰三角形的性质求解.【详解】解:(1)∵CE ⊥CD ,∴∠DCE=90°=∠ACB ,∴∠ACB+∠BCD=∠DCE+∠BCD ,即∠ACD=∠ECB ,∴在△ACD 和△BCE 中,AC BC ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴AD=BE ;(2)由(1)可知:△ACD ≌△BCE ,∴∠EBC=∠BAC=45°,∴∠DBE=180°-∠EBC-∠ABC=90°;(3)∵△ADE 是等腰三角形,若DA=DE,则∠DAE=∠DEA,∵∠DAC=∠DEC,∴∠CAE=∠CEA,∴AC=EC,∵AC≠EC,∴DA≠DE;若DA=AE,∵∠EBA=90°,∴AE>BE,∵△ACD≌△BCE,∴AD=BE,∴AE≠AD;若DE=AE,∵EB⊥AD,AE=DE,∴B是AD中点,∴AD=2AB=2BD=1,∵△ACD≌△BCE,∴BE=AD=2,由(2)可知:∠DBE=90°,∴DE=225+=;BE DB综上:DE的值为5.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,解题的关键是注意分类讨论,灵活运用等腰三角形的性质.。

人教版八年级下册数学《第19章 一次函数》单元测试 试题试卷 含答案解析(1)

人教版八年级数学下册《第19章一次函数》单元测试一、单选题1.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则()A .2k <B .2k >C .0k >D .0k <2.下列各曲线中表示y 是x 的函数的是()A .B .C .D .3.一次函数24y x =+的图像与y 轴交点的坐标是()A .(0,-4)B .(0,4)C .(2,0)D .(-2,0)4.已知一次函数y =kx +b ,当0≤x≤2时,对应的函数值y 的取值范围是-2≤y≤4,则k 的值为()A .3B .-3C .3或-3D .不确定5.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A .乙前4秒行驶的路程为48米B .在0到8秒内甲的速度每秒增加4米/秒C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度6.如图,直线y=ax+b 过点A (0,2)和点B (﹣3,0),则方程ax+b=0的解是()A .x=2B .x=0C .x=﹣1D .x=﹣37.若关于x 的函数||(1)5m y m x =--是一次函数,则m 的值为()A .±1B .1-C .1D .28.一次函数()224y k x k =++-的图象经过原点,则k 的值为()A .2B .2-C .2或2-D .39.在平面直角坐标系中,一次函数y =kx +b 的图象如图所示,则k 和b 的取值范围是().A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <010.一辆汽车从甲地以50km/h 的速度驶往乙地,已知甲地与乙地相距150km ,则汽车距乙地的距离s(km)与行驶时间t(h)之间的函数解析式是()A .s =150+50t(t≥0)B .s =150-50t(t≤3)C .s =150-50t(0<t <3)D .s =150-50t(0≤t≤3)11.如图,函数=2y x 和=+4y ax 的图象相交于A (m ,3),则不等式2+4x ax <的解集为()A .3x 2>B .x 3>C .3x 2<D .x 3<12.已知:将直线y =x ﹣1向上平移2个单位长度后得到直线y =kx +b ,则下列关于直线y =kx +b 的说法正确的是()A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小二、填空题13.对于圆的周长公式c=2πr ,其中自变量是______,因变量是______.14.若函数y =(k +1)x +k 2-1是正比例函数,则k 的值为________.15.已知一次函数y=kx+2k+3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所能取到的整数值为________.16.在平面直角坐标系中,已知一次函数21y x =+的图像经过111(,)P x y ,222(,)P x y 两点,若12x x <,则1y _______2y .(填”>”,”<”或”=”)17.如图,矩形ABCO 在平面直角坐标系中,且顶点O 为坐标原点,已知点B(3,2),则对角线AC 所在的直线l 对应的解析式为___.三、解答题18.已知函数y =(m +1)x 2-|m |+n +4.(1)当m ,n 为何值时,此函数是一次函数?(2)当m ,n 为何值时,此函数是正比例函数?19.已知一次函数的图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上;(3)求此函数与x 轴、y 轴围成的三角形的面积.20.某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤.设安排x 名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y 元,求y 与x 的函数关系式;(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.21.已知:如图,一次函数y1=﹣x﹣2与y2=x﹣4的图象相交于点A.(1)求点A的坐标.(2)若一次函数y1与y2的图象与x轴分别相交于点B、C,求△ABC的面积.(3)结合图象,直接写出y1≤y2时x的取值范围.22.如图,直角坐标系xOy中,一次函数y=﹣1x+5的图象l1分别与x,y轴交于A,B2两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.参考答案1.B2.D3.B4.C5.C6.D7.B8.A9.C10.D 11.C12.C13.r c14.115.-116.<17.y=23-x+2解:∵四边形ABCO为矩形,BC x\轴,AB y∥轴,∵B(3,2),∴OA=BC=3,AB=OC=2,∴A(3,0),C(0,2),设直线AC解析式为y=kx+b,把A与C坐标代入得:30 {2k bb+==,解得:2 {32 kb=-=,则直线AC解析式为2 2.3y x=-+故答案为2 2.3y x=-+18.(1)当m=1,n为任意实数时,这个函数是一次函数;(2)当m=1,n=−4时,这个函数是正比例函数.解:(1)根据一次函数的定义,得:2−|m|=1,解得:m=±1.又∵m+1≠0即m≠−1,∴当m=1,n为任意实数时,这个函数是一次函数;(2)根据正比例函数的定义,得:2−|m|=1,n+4=0,解得:m=±1,n=−4,又∵m+1≠0即m≠−1,∴当m=1,n=−4时,这个函数是正比例函数.19.(1)y=2x+1;(2)不在;(3)0.25.解:(1)设一次函数的表达式为y=kx+b ,则-3=-2k+b 、3=k+b ,解得:k=2,b=1.∴函数的解析式为:y=2x+1.(2)将点P (-1,1)代入函数解析式,1≠-2+1,∴点P 不在这个一次函数的图象上.(3)当x=0,y=1,当y=0,x=12-,此函数与x 轴、y 轴围成的三角形的面积为:11110.25224´´-==20.(1)y =-350x +63000.(2)安排7名工人进行采摘,13名工人进行加工,才能使一天的收入最大,最大收入为60550元.解:(1)根据题意得:()()70203540203513035063000y x x x x éù=--´´+-´´=-+ëû(2)因为7035(20)x x ³-,解得203x ³,又因为为正整数,且20x £.所以720x ££,且为正整数.因为3500-<,所以y 的值随着x 的值增大而减小,所以当7x =时,取最大值,最大值为35076300060550-´+=.答:安排7名工人进行采摘,13名工人进行加工,才能使一天的收入最大,最大收入为60550元.21.(1)(1,3)-;(2)9;(3)1³x 解:(1)联立两函数解析式可得方程组24y x y x =--ìí=-î,解得:13x y =ìí=-î,\点A 的坐标为(1,3)-;(2)当10y =时,20x --=,解得:2x =-,,0()2B \-,当20y =时,40x -=,解得:4x =,(4,0)C \,6CB \=,ABC D ∴的面积为:16392´´=;(3)由图象可得:12y y £时x 的取值范围是1³x .22.(1)m =2,l 2的解析式为y =2x ;(2)S △AOC ﹣S △BOC =15;(3)k 的值为32或2或﹣12.解:(1)把C (m ,4)代入一次函数y =﹣12x +5,可得4=﹣12m +5,解得m =2,∴C (2,4),设l 2的解析式为y =ax ,则4=2a ,解得a =2,∴l 2的解析式为y =2x ;(2)如图,过C 作CD ⊥AO 于D ,CE ⊥BO 于E ,则CD =4,CE =2,y =﹣12x +5,令x =0,则y =5;令y =0,则x =10,∴A (10,0),B (0,5),∴AO =10,BO =5,∴S △AOC ﹣S △BOC =12×10×4﹣12×5×2=20﹣5=15;(3)一次函数y =kx +1的图象为l 3,且11,l 2,l 3不能围成三角形,∴当l 3经过点C (2,4)时,k =32;当l 2,l 3平行时,k =2;当11,l 3平行时,k =﹣12;故k 的值为32或2或﹣12.。

八年级数学下册第一章《二次根式》综合测试题-浙教版(含答案)

八年级数学下册第一章《二次根式》综合测试题-浙教版(含答案)一.选择题(共7小题,满分28分)1.下列二次根式中,能与合并的是()A.B.C.D.2.要使二次根式有意义,那么x的取值范围是()A.x≥1B.x>1C.x<1D.x≥﹣13.下列计算中,正确的是()A.=±5B.=﹣3C.÷=2D.=50 4.下列二次根式中,属于最简二次根式的是()A.B.C.D.5.已知一个矩形面积是,一边长是,则另一边长是()A.12B.C.D.6.已知,则的值为()A.﹣2B.2C.2D.﹣27.若,则代数式x2﹣6x﹣8的值为()A.2005B.﹣2005C.2022D.﹣2022二.填空题(共7小题,满分28分)8.计算﹣的结果是.9.若b=﹣+6,则=.10.化简:(a>0)=.11.计算:=.12.一个三角形的三边长分别为,,2,则这个三角形的面积为.13.已知a,b,c为△ABC三边的长,化简=.14.已知+|b+1|=0,则=.三.解答题(共6小题,满分64分)15.计算:(1)﹣+;(2)÷﹣.16.计算下列各题:(1);(2).17.已知,x=+,y=﹣.求:(1)x+y和xy的值;(2)求x2﹣xy+y2的值.18.在一个长为,宽为的矩形内部挖去一个边长为的正方形,求剩余部分的面积.19.王老师在小结时总结了这样一句话“对于任意两个正数a,b,如果a>b,那么”,然后讲解了一道例题:比较和2的大小.解:=×200=8,(2)2=4×3=12.∵8<12,∴<2.参考上面例题的解法,解答下列问题:(1)比较﹣5与﹣6的大小;(2)比较+1与的大小.20.像,两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如:₅与+1与,与2﹣3₅等都是互为有理化因式,进行二次根式计算时,利用有理化因式,可以化去分母中的根号,请回答下列问题:(1)化简:①=.②=;(2)计算:.参考答案一.选择题(共7小题,满分28分)1.解:A、与不能合并,故A不符合题意;B、与不能合并,故B不符合题意;C、=3,与不能合并,故C不符合题意;D、=2,与能合并,故D符合题意;故选:D.2.解:由题意得,2x﹣2≥0,解得,x≥1,故选:A.3.解:A.=5,故A选项错误;B.=3,故B选项错误;C.==2,故C选项正确;D.=20,故D选项错误.故选:C.4.解:A、=,故A不符合题意;B、=2,故B不符合题意;C、=|x|,故C不符合题意;D、是最简二次根式,故D符合题意;故选:D.5.解:÷===2,故选:B.6.解:∵x=+1,y=﹣1,∴x+y=2,xy=1,∴+===2,故选:B.7.解:∵,∴x2﹣6x﹣8=x2﹣6x+9﹣8﹣9=(x﹣3)2﹣17=(3﹣﹣3)2﹣17=(﹣)2﹣17=2022﹣17=2005,故选:A.二.填空题(共7小题,满分28分)8.解:===,故答案为:.9.解:由题意得:,解得a=3,所以b=6,所以.故答案为:.10.解:∵﹣ab3≥0,a>0,∴b≤0.∴==|b|=﹣b.故答案为:﹣b.11.解:=×4﹣3+6=2﹣3+6=5,故答案为:5.12.解:∵三角形的三边长分别为,,2,∴()2+()2=(2)2,∴这个三角形是直角三角形,斜边长为2,∴这个三角形的面积为××=,故答案为:.13.解:∵a,b,c为△ABC三边的长,∴b+c>a,a+c>b,∴=|a﹣b﹣c|+|b﹣a﹣c|=﹣(a﹣b﹣c)﹣(b﹣a﹣c)=﹣a+b+c﹣b+a+c=2c.故答案为:2c.14.解:∵+|b+1|=0,∴a﹣2=0,b+1=0,∴a=2,b=﹣1,∴=×+=×+=+2,故答案为:+2.三.解答题(共6小题,满分64分)15.解:(1)﹣+=3=0;(2)÷﹣=4﹣=4+.16.解:(1)==12;(2)=6﹣2﹣(4﹣4+3)=4﹣7+4=4﹣3.17.解:(1)∵x=+,y=﹣,∴x+y=()+()=2,xy=()×(﹣)=3﹣2=1;(2)∵x+y=2,xy=1,∴x2﹣xy+y2=(x+y)2﹣3xy=(2)2﹣3×1=12﹣3=9.18.解:由题意可得,=.即剩余部分的面积为10+8.19.解:(1)(﹣5)2=25×6=150,(﹣6)2=36×5=180,∵150<180,∴﹣5>﹣6;(2)(+1)2=7+2+1=8+2=8+,(+)2=5+2+3=8+2=8+,∵<,∴+1<+.20.解:(1)①==,==,故答案为:,;(2)原式=﹣1+﹣+﹣+......+﹣=﹣1.。

人教版八年级数学下册第17章勾股定理单元复习测试题(最新整理)

三.解答题 16.已知:如下图,Rt△ABC 中,CD⊥AB 于 D,AC=4,BC=3,DB= .
(1)求 DC 的长; (2)求 AD 的长; (3)求 AB 的长.
17.《勾股圆方图》是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如 图 ( 1)). 设 每 个 直 角 三 角 形 中 较 短 直 角 边 为 a, 较 长 直 角 边 为 b, 斜 边 为 c
勾股定理 单元复习测试题
一.选择题
1.以下列各组数为边长,不能构成直角三角形的是( )
A.3,4,5
B.1,1,
C.8,12,13
D.
2.如图所示,△ABC 的顶点 A、 B、C 在边长为 1 的正方形网格的格点上,BD⊥AC 于点 D,
则 BD 的长为( )
A.
B.
C.
D.
3.如图,字母 B 所代表的正方形的面积是( )
错误.
第 8 页 共 16 页
故选:B.
8.解:①、设较短的一个直角边为 M,则另一个直角边为 2M,所以 M×2M=2,解得 M=
,2M=2 .根据勾股定理解得斜边为 .所以此项正确;
②、根据勾股定理解得,另一边=
= , 所以此项正确;
③、设∠A=x,则∠B=5x,∠C=6x.因为 x+5x+6x=180°解得 x=15°, 从而得到三
二.填空题(共 5 小题) 11.解:∵DE 是 AB 的中垂线,
∴DA=DB, 设 AD=x,则 DB=x,CD=BC﹣BD=8﹣x, 在 Rt△ACD 中,∵AC2+CD2=AD2, ∴62+(8﹣x)2=x2, 解得 x= , ∴CD=8﹣x= , 故答案为: .
第 10 页 共 16 页
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.已知ba,那么3a____3b
2.计算:21.1129.01.1213.0121_______.
3.“x的3倍与7的差是非负数。”用适当数学符号的关
系式表示这句话: 。 4.当x 时,分式242xx的无意义; 当x 时,分式242xx值为零。 5.分解因式:x3-16x=____ ;22364yx______. 6.若:mn =23 ,则m+nn = 。 7.已知6yx,4xy,则22xyyx的值为 。 8.两相似多边形的面积比是1:2,则它们的对应边的比是 9.化简:12122xxx___________. 10. 一项工程,甲单独做a h完成,乙单独做b h完成,甲、乙两人一起完成工程需_____ h. 11. 四条线段a,b,c,d成比例,其中b = 3 cm,c = 2 cm,d = 6 cm,则a = ______cm. 12.如图,平行四边形ABCD中,BD是对角线,E是BC中点,△AOD的周长是12 cm,则 △BOE 的周长是_____ cm. 13.如图,在长8 cm、宽6 cm的矩形中,截去一个矩形(图中阴影部分所示),使留下的矩形与原矩形相似,那么留下的矩形面积为_______ cm2. 14.下列由左到右变形,属于因式分解的是 ( ) A.94)32)(32(2xxx B.1)2(411842xxxx C. )3)(3(9)(2bababa D. 22244)2(yxyxyx 15.若a2表示一个整数,则整数a可以取的值有( ) A.1个 B.2个 C.3个 D.4个 16.若分式yxyx中的x、y的值都变为原来的3倍,则分式的值 ( )
A、不变 B、是原来的3倍

C、是原来的31 D、是原来的
17.以下两个图形必定相似的是( )
A、有两条边对应成比例的等腰三角形

B、有一角是o25的等腰三角形

C、有一个角是o100的等腰三角形
D、有一个角相等,两边成比例的三角形
18.某厂接到720件衣服的定单,预计每天做48件,正
好按时完成,后因客户要求提前5天交货,设每天
应多做x件,则x应满足的方程为 ( )

A、72048+x -72048 =5 B、72048 +5=72048-x

C、72048 -720x =5 D、72048 -72048+x =5.
三、分解因式:
19.(1)4233ayax (2)4)()(42baba

20.求不等式组03128)2(3xxxx 的解集,并把解集表示
在数轴上。

21.先化简,再求值
(1)(23xx-2xx)•xx42 其中x = 1

(2))1212xxxx(,其中3x.
(3)2242442xxxxx,其中2x
22.(1)解方程:2454262xxxx
⑵解方程:xxxxx273145
23.新域广场省政府办公楼前,五星红旗在空中飘扬,同学们为了测出旗杆的高度,设计了一种方案,如图所示,并测得,BO=60米;CD=3.4米,CD=1.7米; 请利用同学们实测的数据,计算出旗杆的高度并证明你的计算方法。 24.如图,将矩形ABCD沿对角线BD折叠,C点与E点 重合,若AB=3,BC=9,求折叠后重叠部分(△BDF)的面积 25.如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上, 这个正方形零件的边长是多少? 26.一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且
恰好用完购机款61000元,设购进A型手机x部,B
型手机y部,三款手机的进价和预售价如下表:
(1)用含x、y的式子表示购进C型手机的部数。
(2)求出y与x的函数关系式。
(3)假设所购进手机全部售出,综合考虑各种因
素,该手机经销商在购镑这批手机过程中需另支付各
种费用1500元。求出预估利润P(元)与x(部)的函数
关系式
(注:预估利润P=预售总额一购机款一各种费用)

相关文档
最新文档