高二数学等差数列与等比数列的运用2
高中数学选择性必修二 4 3 1(第2课时)等比数列的性质及应用 教案

重点
等比数列的性质、等比数列的应用
难点
等比数列的运算、等比数列的性质及应用
教学过程
教学环节
教师活动
学生活动
设计意图
导入新课
温故知新
等比数列
等差数列
定义
公比(公差)
q不可以是0
d可以是0
等比(差)中项
等比中项
等差中项 2A=a+b
等比数列的性质及应用教学设计
课题
等比数列的性质及应用
单元
第一单元
学科
数学
年级
高二
教材分析
《等比数列》是人教A版数学选择性必修第二册第四章的内容。本节是数列这一章的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中蕴涵的类比、化归、分类讨论、整体变换和方程思想方法,都是学生今后学习和工作中必备的数学素养。
分析:复利是把前一期的利息与本金之和算作本金,再计算下一期的利息,所以若原始本金为a元,每期的利率为r,则从第一期开始,各期的本利和 构成等比数列.
解:(1)设这笔钱存n个月以后的本利和组成一个数列 ,则 是等比数列,
首项 ,
公比q=1+0.400%,所以
所以,
12个月后的利息为 (元)
(2)设季度利率为r,这笔钱存n个季度以后的本金和组成一个数列 ,则 也是一个等比数列,首项 ,公比为1+r,于是
因此,以季度复利计息,存4个季度后的利息为 元.
解不等式 ,得
所以,当季度利率不小于1.206%时,按季结算的利息不少于按月结算的利息.
例5已知数列Байду номын сангаас的首项 .
等比数列教学设计课件2023-2024学年高二上学期数学人教A版(2019)选择性必修第二册

三个数成等比数列的设法:
设为 ,a,aq.
推广到一般:奇数个数成等比数列设为…, , ,a,aq,aq2,…
思路所述等比数列求前n项和的方法,我们称为“错位相减法”.
思路二围绕基本概念,从等比数列的定义出发,运用等比数列的性质,推导出了公式.
思路三利用方程的思想,推导过程中显示了巨大的威力,在已知量和未知量之间搭起桥梁,使我们不拘泥于课本,又能使问题得到解决.
(1)解由S1= (a1-1),得a1= (a1-1),∴a1=- .
又S2= (a2-1),即a1+a2= (a2-1),得a2= .
(2)证明当n≥2时,
an=Sn-Sn-1= (an-1)- (an-1-1),
得 =- .又a1=- ,
所以{an}是首项为- ,公比为- 的等比数列.
(二)等比数列的多项关系
概念辨析:
(1)若G2=ab,则a,G,b不一定成等比数列.
(2)只有同号的两个实数才有等比中项.
(3)若两个实数有等比中项,则一定有两个,互为相反数.
累乘法推导等比数列通项公式: =q; =q;…
=q; =q.
将上述n-1个累乘,整理得
an=a1qn-1,
当n=1时,上式也成立.
等比数列单调性:
(1)当a1>0,q>1时,数列{an}为正项的递增等比数列.
核心知识
等比数列的定义,通项公式、前n项和公式及它们的性质.
教学内容及教师活动设计
(含情景设计、问题设计、学生活动设计等内容)
教师个人复备
第1课时等比数列的概念及通项公式
融入数学文化,引出课题.
观察上述数列,发现规律:
第一组: =9, =9, =9,…,也就是说从第二项起,每一项与它的前一项的比都等于9;
高二数学必修五--数列知识点总结及解题技巧(含答案)---强烈-推荐

数学数列部分知识点梳理一数列的概念1)数列的前n 项和与通项的公式①n n a a a S +++= 21; ⎩⎨⎧≥-==-)2()1(11n S S n S a n n n2)数列的分类:①递增数列:对于任何+∈N n ,均有n n a a >+1.②递减数列:对于任何+∈N n ,均有n n a a <+1.③摆动数列:例如: .,1,1,1,1,1 ---④常数数列:例如:6,6,6,6,…….⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >. 一、等差数列 1)通项公式d n a a n )1(1-+=,1a 为首项,d 为公差。
前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=. 2)等差中项:b a A +=2。
3)等差数列的判定方法:⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列;⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列.4)等差数列的性质:⑴数列{}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列;⑵在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd .⑶d m n a a m n )(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a )⑷若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a +=+;⑸若等差数列{}n a 的前n 项和n S ,则⎭⎬⎫⎩⎨⎧n S n 是等差数列; ⑹当项数为)(2+∈N n n ,则nn a aS S nd S S 1,+==-奇偶奇偶;当项数为)(12+∈-N n n ,则nn S S a S S n 1,-==-奇偶偶奇. (7)设是等差数列,则(是常数)是公差为的等差数列;(8)设,,,则有;(9)是等差数列的前项和,则;(10)其他衍生等差数列:若已知等差数列,公差为,前项和为,则①.为等差数列,公差为;②.(即)为等差数列,公差;③.(即)为等差数列,公差为.二、等比数列 1)通项公式:11-=n n q a a ,1a 为首项,q 为公比 。
人教A版高中数学高二必修5课件2.4等比数列(二)

2.4 等比数列(二)
6
(6)等比数列的项的对称性:在有穷等比数列中,与首末两项
“等距离”的两项之积等于首末两项的积,即a1·an=
2.4 等比数列(二)
29
规律方法 (1)在等差数列与等比数列的综合问题中, 特别要注意它们的区别,避免用错公式.(2)方程思想的 应用往往是破题的关键.
2.4 等比数列(二)
30
跟踪演练4 已知{an}是首项为19,公差为-2的等差数列, Sn为{an}的前n项和. (1)求通项公式an及Sn; 解 因为{an}是首项为19,公差为-2的等差数列,所以an =19-2(n-1)=-2n+21,
的m的个数;若不存在,请说明理由.
解 若存在m,使b1,b4,bt成等差数列, 则2b4=b1+bt,
∴ 7 ×2= 1 + 2t-1 ,
7+m
1+m 2t-1+m
2.4 等比数列(二)
28
7m+1 7m-5+36
∴t=
=
=7+
36
,
m-5
m-5
m-5
由于m、t∈N*且t≥5. 令m-5=36,18,9,6,4,3,2,1, 即m=41,23,14,11,9,8,7,6时,t均为大于5的整数. ∴存在符合题意的m值,且共有8个.
2.4 等比数列(二)
26
(1)由 bn=an+an m(m∈N*)知 b1=1+1 m,b2=3+3 m,b8=151+5 m,
∵b1,b2,b8成等比数列,
高二数学等差数列与等比数列的运用2

利赢国际下载网址
[单选,A2型题,A1/A2型题]严重的中鼻甲下缘平面以上部位出血可结扎()。A.上颌动脉B.颈内动脉C.颈外动脉D.筛前动脉E.上唇动脉 [名词解释]磨筒体有效直径 [单选]在海上拖运超大型沉箱,申请发布航行通告出面申请应包括()。A.拖轮名称B.超大型沉箱的结构C.船长姓名D.超大型沉箱的制作单位和使用单位 [单选]在慢性气道阻塞的患者中最常见的肺气肿隔型E.间质型 [单选]以下关于“生存率”的叙述,正确的是()。A.是指观察对象活过某时刻的概率B.是指观察对象在某时段内存活的概率C.等于1-死亡概率D.若资料存在截尾值,则无法计算生存率E.复发 [单选]既能润肠通便,又能利水消肿的药物是()A.知母B.杏仁C.决明子D.郁李仁E.火麻仁 [多选]施工现场临时用电工程必须经过验收方可使用,需由()等部门共同验收。A.编制部门B.审核部门C.合约部门D.批准部门E.分包单位 [单选]酒店管理者在工作中能够妥善解决所遇到的问题,克服所遇到的困难,处理好酒店横向和纵向的人际关系,树立为宾客及员工服务的理念描述的是下面哪个?()A、职业认识B、职业感情 [单选]我国知识产权的主体包括著作权、专利权和()。A.发现权B.商标专用权C.发明权D.其他科技成果权 [单选]下列式子中,不正确的是()A.R-S=R-(R∩S)B.R=(R-S)∪(R∩S)C.R∩S=S-(S-R)D.R∩S=S-(R-S) [单选,A1型题]阿片类麻醉药的解毒药是()A.解磷定B.阿托品C.纳洛酮D.亚甲蓝E.以上都错 [单选]中央启动第五届全国道德模范评选表彰活动,推动广泛深入地开展道德模范学习宣传,树立讲道德、尊道德、守道德的良好风尚,为协调推进“四个全面”战略布局提供源源不断的()。 [单选,A2型题,A1/A2型题]原色组织标本制作方法不包括()。A.凯氏法(Kaiserling法)B.柯氏法C.一氧化碳法D.新鲜标本冷冻、干燥和塑化E.MASSON法 [单选,A1型题]马的初情期年龄是()A.10~15月龄B.6~12月龄C.8~15月龄D.12月龄E.8~10月龄 [单选]治疗肺结核咯血最有效的药物是()A.酚磺乙胺B.止血芳酸C.垂体后叶素D.维生素K1E.云南白药 [单选]表明建筑红线、工程的总体布置及其周围的原地形情况的施工图是(),它是新建建筑物确定位置、确定高程及施工场地布置的基本依据。A.基础平面图B.建筑平面图C.总平面图D.建 [单选]近海航区,系指中国渤海、黄海及东海距岸不超过()海里的海域。A.100B.150C.200D.250 [单选]导致充填材料与洞壁界面间产生微渗漏的原因中不包括()A.充填材料小于牙体组织的热膨胀系数B.充填材料体积收缩C.充填压力不够D.洞缘的垫底材料溶解E.备洞时未去除无基釉 [多选]某大型工程项目进行施工招标,招标人编制了完整。详细的招标文件,内容包括:(1)招标公告;(2)投标须知;(3)通用条件;(4)专用条件;(5)合同格式;(6)图纸;(7)工程量清单;(8)中标通 [单选]吸入性损伤的治疗下列哪项最关键()A.住层流病房B.应用广谱抗生素C.严格消毒隔离制度D.湿化气道E.高营养支持 [单选,A1型题]认知疗法的治疗目标是()A.改变患者的不良行为B.帮助患者建立理性的认知模式C.消除不良嗜好D.帮助患者自我实现E.挖掘患者的最大潜力 [单选]以下有关变更控制方面的描述,不正确的是()。A.任何变更都要得到三方(建设单位、监理单位和承建单位)的书面确认,严禁擅自变更B.承建单位或建设单位是变更的申请者,监理方 [多选]下面对于“如何服从上司”说法正确的是?()A、服从、汇报B、补台、挡驾C、尽职、贪功D、尊重、参谋 [填空题]软尺是用来测量()尺寸的必备工具。 [问答题,简答题]为了保证GFM电池的长寿命和可靠性,和GFM电池配套的充电机应具备哪些功能? [单选]类风湿关节炎最终导致的主要肾脏病变为()。A.肾小球基膜多种免疫复合物沉积B.肾脏淀粉样变性C.局灶节段坏死性肾小球肾炎D.肾小管酸中毒E.小动脉内皮细胞增生 [单选]从()入手,立足当前,着眼长远,整体推进,突出重点,综合施策,标本兼治,全面提高质量管理水平,推动建设质量强国,促进经济社会又好又快发展。A.强化法治、落实责任、加强 [单选,A2型题,A1/A2型题]MRI检查前准备不包括()A.认真核对MRI检查申请单B.确认病人没有禁忌证C.有心理障碍者应用麻醉药物D.给患者讲述检查过程,消除恐惧心理E.婴幼儿、烦躁不安及 [单选]期货市场的套期保值功能是将市场价格风险转移给了()。A.套期保值者B.生产经营者C.期货交易所D.期货投机者 [单选]医嘱要求肝硬化门静脉高压症肝功能较差的病人控制蛋白质摄入的主要理由是预防()A.胶体渗透压升高B.肝性脑病C.变态反应D.消化不良E.消化道出血 [单选]()是铁路运价的基本形式。A.普通运价B.地方运价C.优待运价D.联运运价 [单选]下列关于冠状动脉瘤的CT表现哪项是正确的()A.多层螺旋CT不能显示动脉瘤全貌B.CT横断面图像不利于观察动脉瘤壁C.多见附壁血栓D.动脉瘤壁无钙化E.CT横断面图像不利于观察动脉瘤 [单选]有关椎骨间连结的说法,正确的是()A.只有前、后纵韧带B.相邻椎弓板之间由黄韧带连结C.横突之间无连结组织D.颈椎间无椎间盘E.后纵韧带有限制脊柱过度后伸的作用 [填空题]直流系统发生()接地时,其负极对地电压降低,而正极对地电压升高。 [单选]碳四塔回流泵全坏,相关需要调整操作的塔是()。A、脱丙烷塔B、脱乙烷塔C、丙烯塔D、碳四塔 [单选,A2型题,A1/A2型题]用下列方法消毒灭菌时,可以有人在室内的是()A.臭氧消毒B.甲醛熏蒸消毒C.过氧乙酸熏蒸消毒D.循环风紫外线空气消毒器E.电离辐射灭菌 [多选]下面由收入决定的货币需求是()。A.投机需求B.交易需求C.预防性需求D.投资需求 [问答题,简答题]什么是“抄表段”? [填空题]在公路中桩测量中碰到虚交时,应先解三角形,求出()的位置,然后再根据普通交点的敷设方法,计算曲线各要素桩。 [名词解释]声级计
高二数学数列与等比数列的求和公式的应用题解析

高二数学数列与等比数列的求和公式的应用题解析数列是数学中常见的基本概念,它由一系列按照特定规律排列的数字组成。
数列的求和是数列中各项数字的加和过程,其中等比数列是一种特殊的数列,它的每一项都与前一项成等比关系。
本文将通过具体的应用题解析,探讨高二数学中数列与等比数列的求和公式及其应用。
1. 等差数列与等差数列的求和公式考虑以下等差数列:3,6,9,12,15...首先,我们可以观察到该数列的公差为3,即每一项与前一项的差为3。
为了求出数列的前n项和Sn,我们可以使用等差数列的求和公式:Sn = n/2 * (a1 + an)其中,n为项数,a1为首项,an为最后一项。
对于上述例子,首项a1为3,最后一项an为15,项数n为待求项数。
代入公式可以得到:Sn = n/2 * (a1 + an)= n/2 * (3 + 15)= 9n2. 等比数列与等比数列的求和公式考虑以下等比数列:2,4,8,16,32...我们可以观察到该数列的公比为2,即每一项与前一项的比为2。
为了求出数列的前n项和Sn,我们可以使用等比数列的求和公式:Sn = a1 * (1 - q^n) / (1 - q)其中,a1为首项,q为公比,n为项数。
对于上述例子,首项a1为2,公比q为2,项数n为待求项数。
代入公式可以得到:Sn = 2 * (1 - 2^n) / (1 - 2)= 2 * (1 - 2^n) / (-1)= -2 * (1 - 2^n)= -2^n + 23. 应用题解析现在我们将通过一个应用题来进一步理解数列与等差数列的求和公式的应用。
假设小明每天早上向学校走路,第一天他走了2千米,而后每天前一天的路程的一半再加上2千米。
请问他连续走了7天,总共走了多少千米?解答:我们可以观察到小明走的路程构成了一个等比数列,首项为2,公比为0.5(前一天的路程的一半)。
而我们需要求的是连续走了7天的总路程,即前7项的和。
根据等比数列求和公式,我们可以得到:Sn = a1 * (1 - q^n) / (1 - q)= 2 * (1 - 0.5^7) / (1 - 0.5)= 2 * (1 - 0.0078125) / 0.5= 2 * (0.9921875) / 0.5= 3.984375所以,小明连续走了7天,总共走了3.984375千米。
高二数学等差和等比数列的通项及求和公式 (2)
4.3.1 第二课时 等比数列的性质及应用(详细解析版)高二数学(人教A版2019选择性必修第二册)
4.3.1 第二课时 等比数列的性质及应用(习题课)[A 级 基础巩固]1.等比数列x,3x +3,6x +6,…的第四项等于( ) A .-24 B .0 C .12D .24详细解析:选A 由题意知(3x +3)2=x (6x +6),即x 2+4x +3=0,解得x =-3或x =-1(舍去),所以等比数列的前3项是-3,-6,-12,则第四项为-24.2.在正项等比数列{a n }中,a n +1<a n ,a 2·a 8=6,a 4+a 6=5,则a 5a 7等于( )A.56 D .65C.23D .32详细解析:选D 法一:设公比为q ,则由等比数列{a n }各项为正数且a n +1<a n 知0<q <1,由a 2·a 8=6,得a 25=6. ∴a 5=6,a 4+a 6=6q +6q =5.解得q =26,∴a 5a 7=1q 2=⎝⎛⎭⎫622=32. 法二:设公比为q ,由a n >0,且a n +1<a n 知0<q <1. ∵a 2·a 8=a 4·a 6=6,∴⎩⎪⎨⎪⎧ a 4·a 6=6,a 4+a 6=5,则⎩⎪⎨⎪⎧ a 4=3,a 6=2或⎩⎪⎨⎪⎧a 4=2,a 6=3(舍). ∴q 2=a 6a 4=23,∴a 5a 7=1q 2=32. 3.已知各项均为正数的等比数列{a n }中,lg(a 3a 8a 13)=6,则a 1·a 15的值为( )A .100B .-100C .10 000D .-10 000详细解析:选C ∵a 3a 8a 13=a 38,∴lg(a 3a 8a 13)=lg a 38=3lg a 8=6.∴a 8=100.∴a 1a 15=a 28=10 000,故选C.4.在等比数列{a n }中,T n 表示前n 项的积,若T 5=1,则( ) A .a 1=1 B .a 3=1 C .a 4=1D .a 5=1详细解析:选B 由题意,可得a 1·a 2·a 3·a 4·a 5=1,即(a 1·a 5)·(a 2·a 4)·a 3=1,又因为a 1·a 5=a 2·a 4=a 23,所以a 53=1,得a 3=1.5.已知等比数列{a n }中,a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9等于( ) A .2 B .4 C .8D .16详细解析:选C 等比数列{a n }中,a 3a 11=a 27=4a 7,解得a 7=4,等差数列{b n }中,b 5+b 9=2b 7=2a 7=8.6.在3和一个未知数间填上一个数,使三数成等差数列,若中间项减去6,成等比数列,则此未知数是________.详细解析:设此三数为3,a ,b ,则⎩⎪⎨⎪⎧2a =3+b ,(a -6)2=3b ,解得⎩⎪⎨⎪⎧ a =3,b =3或⎩⎪⎨⎪⎧a =15,b =27.所以这个未知数为3或27.答案:3或277.设数列{a n }为公比q >1的等比数列,若a 4,a 5是方程4x 2-8x +3=0的两根,则a 6+a 7=________. 详细解析:由题意得a 4=12,a 5=32,∴q =a 5a 4=3.∴a 6+a 7=(a 4+a 5)q 2=⎝⎛⎭⎫12+32×32=18. 答案:188.画一个边长为2厘米的正方形,再以这个正方形的对角线为边画第2个正方形,以第2个正方形的对角线为边画第3个正方形,这样一共画了10个正方形,则第10个正方形的面积等于________平方厘米.详细解析:这10个正方形的边长构成以2为首项,2为公比的等比数列{a n }(1≤n ≤10,n ∈N *),则第10个正方形的面积S =a 210=⎝⎛⎭⎫21122=211=2 048. 答案:2 0489.在由实数组成的等比数列{a n }中,a 3+a 7+a 11=28,a 2·a 7·a 12=512,求q . 解:法一:由条件得⎩⎪⎨⎪⎧a 7q -4+a 7+a 7q 4=28, ①a 7q -5·a 7·a 7q 5=512, ② 由②得a 37=512,即a 7=8. 将其代入①得2q 8-5q 4+2=0.解得q 4=12或q 4=2,即q =±142或q =±42.法二:∵a 3a 11=a 2a 12=a 27, ∴a 37=512,即a 7=8.于是有⎩⎪⎨⎪⎧a 3+a 11=20,a 3a 11=64,即a 3和a 11是方程x 2-20x +64=0的两根,解此方程得x =4或x =16.因此⎩⎪⎨⎪⎧ a 3=4,a 11=16或⎩⎪⎨⎪⎧a 3=16,a 11=4.又∵a 11=a 3·q 8,∴q =±⎝⎛⎭⎫a 11a 318=±418=±42或q =±⎝⎛⎭⎫1418=±142. 10.在正项等比数列{a n }中,a 1a 5-2a 3a 5+a 3a 7=36,a 2a 4+2a 2a 6+a 4a 6=100,求数列{a n }的通项公式.解:∵a 1a 5=a 23,a 3a 7=a 25,∴由题意,得a 23-2a 3a 5+a 25=36,同理得a 23+2a 3a 5+a 25=100,∴⎩⎪⎨⎪⎧ (a 3-a 5)2=36,(a 3+a 5)2=100.即⎩⎪⎨⎪⎧a 3-a 5=±6,a 3+a 5=10.解得⎩⎪⎨⎪⎧ a 3=2,a 5=8或⎩⎪⎨⎪⎧a 3=8,a 5=2.分别解得⎩⎪⎨⎪⎧ a 1=12,q =2或⎩⎪⎨⎪⎧a 1=32,q =12.∴a n =2n-2或a n =26-n .[B 级 综合运用]11.设各项为正数的等比数列{a n }中,公比q =2,且a 1·a 2·a 3·…·a 30=230,则a 3·a 6·a 9·…·a 30=( ) A .230 B .210 C .220D .215详细解析:选C ∵a 1·a 2·a 3·…·a 30=230, ∴a 301·q 1+2+3+…+29=a 301·q29×302=230, ∴a 1=2-272,∴a 3·a 6·a 9·…·a 30=a 103·(q 3)9×102 =(2-272×22)10×(23)45=220. 12.各项均为正数的等比数列{a n }满足:a 1>1,a 6+a 7>a 6a 7+1>2,记数列{a n }的前n 项积为T n ,则满足T n >1的最大正整数n 的值为( ) A .11 B .12 C .13D .14详细解析:选B ∵a 6+a 7>a 6a 7+1>2,∴⎩⎪⎨⎪⎧a 6a 7>1,(a 6-1)(a 7-1)<0, ∵a 1>1,∴⎩⎪⎨⎪⎧a 6>1,a 7<1,由a 6a 7>1得a 1a 12=a 2a 11=…=a 6a 7>1,∴T 12>1, ∵a 7<1,∴a 1a 13=a 2a 12=…=a 27<1,∴T 13<1, ∴n 的最大值为12,故选B.13.若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则a 3a 18=________,ln a 1+ln a 2+…+ln a 20=________.详细解析:因为{a n }为等比数列,所以a 1a 20=a 2a 19=…=a 9a 12=a 10a 11.又a 10a 11+a 9a 12=2e 5,所以a 3a 18=a 10a 11=a 9a 12=e 5,所以ln a 1+ln a 2+…+ln a 20=ln(a 1a 2…a 20)=ln[(a 1a 20)·(a 2a 19)·…·(a 10a 11)]=ln(a 10a 11)10=ln(e 5)10=ln e 50=50. 答案:e 5 5014.已知数列{a n }为等差数列,公差d ≠0,由{a n }中的部分项组成的数列ab 1,ab 2,…,ab n ,…为等比数列,其中b 1=1,b 2=5,b 3=17.求数列{b n }的通项公式.解:依题意a 25=a 1a 17,即(a 1+4d )2=a 1(a 1+16d ),所以a 1d =2d 2,因为d ≠0,所以a 1=2d ,数列{ab n }的公比q =a 5a 1=a 1+4da 1=3, 所以ab n =a 13n -1,① 又ab n =a 1+(b n -1)d =b n +12a 1,② 由①②得a 1·3n -1=b n +12·a 1. 因为a 1=2d ≠0,所以b n =2×3n -1-1.[C 级 拓展探究]15.容器A 中盛有浓度为a %的农药m L,容器B 中盛有浓度为b %的同种农药m L,A ,B 两容器中农药的浓度差为20%(a >b ),先将A 中农药的14倒入B 中,混合均匀后,再由B 倒入一部分到A 中,恰好使A 中保持m L,问至少经过多少次这样的操作,两容器中农药的浓度差小于1%?解:设第n 次操作后,A 中农药的浓度为a n ,B 中农药的浓度为b n ,则a 0=a %,b 0=b %. b 1=15(a 0+4b 0),a 1=34a 0+14b 1=15(4a 0+b 0);b 2=15(a 1+4b 1),a 2=34a 1+14b 2=15(4a 1+b 1);…;b n =15(a n -1+4b n -1),a n =15(4a n -1+b n -1).∴a n -b n =35(a n -1-b n -1)=…=35(a 0-b 0)·⎝⎛⎭⎫35n -1. ∵a 0-b 0=15,∴a n -b n =15·⎝⎛⎭⎫35n .依题意知15·⎝⎛⎭⎫35n<1%,n ∈N *,解得n ≥6.故至少经过6次这样的操作,两容器中农药的浓度差小于1%.。
等比数列的概念(第一课时)课件-高二上学期数学人教A版(2019)选择性必修第二册
a2
a3
以上各式相乘得:
a 2 a 3 a4
a1 a2 a3
an 1 an
q q q
a n 2 a n 1
an
q n1,an a1q n1
a1
q q n 1
n-1个
又a1=a1q0=a1q1-1,即当n=1时上式也成立.
an=a1qn-1 (n∈ ∗ )
所以 5 =± 576=±24
因此, 的第5项是24或-24
典例分析
例2 已知等比数列{an}的公比为q,试用{an}的第m项am表示an.
n 1
a
a
q
①
n
1
解:由题意,得
,
m 1
am a1q ②
①的两边分别除以②的两边,得
an
q n m ,即an am q n m .
常数列一定是等差数列,公差为0;
非零常数列是等比数列,公比为1.
追问3:是否存在既是等差数列又是等比数列的数列?
非零常数列既是等差数列又是等比数列,公差为0,公比为1.
新知探究二:等比中项
问题3 类比等差中项的概念,你能抽象出等比中项的概念吗?
等比中项
等差中项
定
义
关
系
如果三个数a,A,b组成等
如果三个数a,G,b组成等
q 3
解 2 :由题意,得a22 a1a3 36,∴a2 6.
a4
2
当a2 6时,a4 54,∴q
第2项与第4项的和等于136,第1项与第5项的和等于132. 求这个数列.
解:设前三项的公比为q,后三项的公差为d ,则数列的各项的各项依次为
等比数列的概念(第二课时)课件高二上学期数学人教A版(2019)选择性必修第二册
现出任意性.
知识梳理
知识梳理
判定与证明等比数列的方法
a
*且n≥2,q为不为0的常数);
q
1.定义法: n =____(n∈N
an-1
*且n≥2);
an-1an+1
2.等比中项法:a2n=________(n∈N
a1qn-1 a1·qn =A·qn(A≠0).
3.通项公式法:an=_______=
q
即
(
2 n 2),
则当n 2时,
2,
an 1 1
bn 1 an 1 1
an 1 1
an 1 1
∴ 数列{ + 1}是首项为2,公比为2的等比数列.
(2)解:由(1)知等比数列{ + 1}的首项为2,公比为2,
∴ + 1=2 × 2−1 =2,∴ =2 − 1.
n
是否一定是等比数列? 如果数列{an }是各项均为正的等比数 列,
那么数列{log b an }是否一定是等差数列?
b an1
a n1 -a n
d
b
b
b an
➯
性质1:数列{an}是等差数列
⇔数列{b a n }是等比数列.
an1
logb a n1 logb an logb
logb q
1
又 S2=3(a2-1),
1
1
即 a1+a2=3(a2-1),得 a2=4.
典例分析
(2)求证:数列{an}是等比数列.
当n≥2时,
1
1
an=Sn-Sn-1=3(an-1)-3(an-1-1),
1
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天天乐娱乐官网 www.kmkiΒιβλιοθήκη
[单选,A2型题,A1/A2型题]下列哪项是错误的()A.HbA--α2β2B.HbA2--ζ2γ2C.HbGower2--α2ε2D.HbF--α2γ2E.HbBart--γ4 [单选]下列关于换热器投用前的条件错误的是()。A、换热器已吹扫干净B、换热器已进行过试压C、换热器安装已经验收D、换热器放空阀已打开 [单选,A1型题]前尿道损伤尿外渗部位是()A.膀胱周围B.会阴浅袋C.会阴深袋D.阴茎部E.阴囊部 [单选,A2型题]9岁儿童,中午吃了妈妈从市场买的熟牛肉后,下午4点出现呕吐,腹泻,发热等症状,家长赶紧将孩子送到医院,医生初步诊断为食物中毒,这时应该采取的措施不包括()A.尽 [填空题]裁片的排放是以裁片的()要求而定的。 [判断题]自动变速器主要由液力变矩器、行星齿轮机构组成。()A.正确B.错误 [单选,A2型题,A1/A2型题]胸部叩诊为鼓音不见于下列疾病()。A.空洞型肺结核B.肺脓肿空洞形成C.肺囊肿D.肺炎E.气胸 [单选]对引起行政补偿的合法行为,不应理解为()。A.结果合法B.目的合法C.程序合法D.形式合法 [单选,A2型题,A1/A2型题]DSA的中文全称叫做()A.数字减影成像B.数字血管成像C.数字减影血管造影D.数字造影血管减影E.数字血管断层成像 [单选]患者男性,55岁,因外伤致截瘫,护士告知家属应注意预防压疮,尤其是骶尾部更易发生,家属在进行局部皮肤按摩的时候,有一些不正确的做法,请指出A.用手鱼际部分按摩B.用手蘸5 [配伍题,B型题]出自《希波克拉底誓言》的内容是()。</br>出自《迈蒙尼提斯祷文》的内容是()。A."启我爱医术,复爱世间人,愿绝名利心,尽力为病人。"B."医本活人 [单选,A1型题]每张应用到麻醉药品注射剂的处方,其用量()A.不得超过1日常用量B.不得超过2日常用量C.不得超过3日常用量D.不得超过5日常用量E.不得超过7日常用量 [单选,A1型题]先进行动态显像获得局部灌注和血池影像,间隔一定的时间后再进行静态显像,这种联合显像的方法称为()。A.延迟显像B.多相显像C.介入显像D.负荷显像E.阳性显像 [单选,A2型题,A1/A2型题]下列碘过敏试验方法哪项是错误的()A.皮下试验B.眼结膜试验C.舌下试验D.口服法试验E.静脉注射法试验 [判断题]境外个人在境内取得的经常项目合法人民币收入,凭本人有机效身份证件和有交易额的相关证明材料办理购汇。A.正确B.错误 [判断题]居住在境内的中国公民实名证件为居民身份证或者临时居民身份证。()A.正确B.错误 [单选]原发单纯疱疹的特征性临床表现是()A.神经痛B.水疱C.大疱D.群集性小水疱E.局部淋巴结肿大 [单选]治疗糖尿病酮症酸中毒,首选药物是()A.注射胰岛素后+口服降糖药B.口服降糖药C.注射普通胰岛素D.注射鱼精蛋白锌胰岛素E.注射珠蛋白胰岛素 [单选,A2型题,A1/A2型题]LD酶有几种结构不同的同工酶().A.2B.3C.4D.5E.6 [单选,A1型题]关于免疫耐受,错误的是()A.多次注射耐受原可延长免疫耐受状态B.静脉注射抗原易诱导免疫耐受C.聚合的蛋白抗原易诱导免疫耐受D.遗传背景与免疫耐受相关E.克隆清除是形 [名词解释]单级水泵 [单选]紧急电话系统根据传输介质可分为()。A.电缆型紧急电话系统和光缆型紧急电话系统B.有线型紧急电话系统和无线型紧急电话系统C.交通专网型紧急电话系统和电信公网型紧急电话系统 [单选,A2型题,A1/A2型题]紫外线杀菌的主要机制是()A.损伤细胞壁B.破坏酶系统C.干扰DNA的复制D.干扰蛋白质的合成E.损伤细胞膜 [单选]抢救口服有机磷农药中毒患者洗胃时最常用的洗胃液是()A.生理盐水、温开水B.热开水C.2%碳酸氢钠D.1:5000高锰酸钾液E.以上均可 [单选]性联鱼鳞病的临床特点不正确的是()A.仅见于男性,女性仅为携带者B.皮损往往遍布全身,面、颈部亦常受累C.掌趾无角化过度D.症状随年龄增长而减轻 [单选]电缆护层中钢带起()作用。A.屏蔽B.抗侧压C.屏蔽和抗侧压D.防护 [单选,A1型题]一般认为,眼轴每增长1mm,屈光度如何改变()。A.不变B.减少-2.50~-3.00DC.增加-2.50~-3.00DD.减少-1.50~-2.00DE.增加-1.50~-2.00D [单选]英国经济学家庇古于20世纪初在其《福利经济学》书中建立了一种()模型,这一模型讨论了劳动关系双方关于工资的集体谈判范围。A.收入分配幅度B.短期工资决定C.效率合约D.帕累托 [单选]患者,男性,30岁,送水工人,在搬水时扭伤腰部,腰剧痛并向下肢放射,不能平卧,伴下肢麻木,无足下垂,大小便正常。诊断最可能为()A.急性腰扭伤B.坐骨神经损伤C.腰椎压缩性 [单选]不属再生障碍性贫血的发病机制是()A.造血干细胞损伤B.造血微环境损伤C.免疫性造血抑制DNA合成障碍E.以上均是 [单选,B1型题]脾虚带下的病机是()A.脾虚失运,痰浊内生B.脾胃虚弱,胃失和降C.脾虚湿盛,流注下焦D.脾失健运,水湿泛滥E.脾虚下陷,统摄无权 [单选]在原料液组成及溶剂化(S/F)相同条件下,将单级萃取改为多级萃取,如下参数的变化趋势是萃取率()、萃余率()。A、提高不变B、提高降低C、不变降低D、均不确定 [单选,A1型题]根据Gullstrand模型眼计算,眼在使用最大调节力时屈光力可达()。A.58DB.65DC.70DD.75DE.80D [单选,A2型题,A1/A2型题]铁染色常用于哪种疾病的诊断()A.巨幼细胞贫血B.慢性疾病性贫血C.缺铁性贫血D.骨髓增生异常综合征E.溶血性贫血 [单选]下列哪项不是风湿性心脏瓣膜病主动脉瓣狭窄的血流动力学变化().A.左心室收缩压高于主动脉收缩压B.主动脉收缩压正常或低于正常C.冠状动脉血流量减少D.左心室和主动脉有舒张期 [单选]事实证明,借助职业道德的导向功能进行()是一种行之有效的方式。A、思想提高B、法律约束C、正面教育D、考核 [单选]提到信用一般就会想到银行和贷款。长期以来我国的信用交易主要集中在()A.企业B.银行C.投资基金D.政府债券 [单选,A型题]超品种配药指在一个科室门诊就医的处方上,西药处方大于()。A.5个B.4个C.6个D.3个E.7个 [单选]下列的会计恒等式,不正确的是()。A.资产=权益=债权人权益+所有者权益B.资产=负债+所有者权益C.所有者权益=资产+负债D.收入一费用=利润 [填空题]普通话包括语音、()、语法三个方面。