2019-2020学年八年级数学上册 全等三角形 教案 新人教版.doc
人教版八年级上册数学《全等三角形》PPT教学课件

一个图形经过平移、翻折、旋转后,图形的位置变化了,但形状、大 小没变,即平移、翻折、旋转前后的图形全等,其中重合的顶点叫对 应点,重合的边叫对应边,重合的角叫对应角。(注意:书写全等三 角形时对应顶点的字母写在对应的位置上)
【例1】如图所示,图中有两个三角形全等,根据已知条件, △ABC ≌ △ ADC。写出其全等的对应边和对应角。 A
全等三角形
1 教学目标
目录
CON
2 教学重难点 3 教学过程
4 教学反思
教学目标
理解全等形,全等三角形的概念,会找全等 三角形的对应边,对应角和对应顶点。
掌握全等三角形的性质,并进行简单的推理和 计算。 通过图形变换,培养学生动态观点,研究几 何图形。
教学重难点
重
全等三角形的性质
难 找全等三角形的对应边、
点评归纳
全等三角形的对应边相等,全等三角形的对应角相等。
【例2】如图所示, △ABD ≌ △EBC,
D
AB=3cm,BC=5cm,求DE的长
E
A
B
C
教师导引:求DE的长只需求DB、BE的长,这可由△ABD △EBC得到。
小组讨论完成
解:∵ △ABD ≌ △EBC,∴AB=EB,BD=BC, ∵BD=ED+EB ∴DE=BD-EB=BC-AB=5-3=2cm.
对应角
教学过程
一、情景引入
请同学们观察下列各组图片,想一想,他们有什么共同特征?
结论
每组图片的大小和形状都相同
二、新知探究,合作交流 探究一:全等形及全等三角形的概念
你能举一些生活中类似于上面的图形吗?
?
把一块三角尺在纸板上,画下图形,照图形裁下来的 纸板与三角形的形状、大小是否完全一样?
12.2全等三角形的判定(HL)教学设计 2022-2023学年人教版八年级上册数学

12.2全等三角形的判定(HL)教学设计一、教学目标1.理解全等三角形的定义及判定条件之一——HL判定法;2.能够应用HL判定法判断两个三角形是否全等;3.能够解决与HL判定法相关的实际问题。
二、教学内容全等三角形的判定(HL)。
三、教学重点1.HL判定法的理解与应用;2.解决与HL判定法相关的实际问题。
四、教学难点理解HL判定法并灵活运用于实际问题的解决。
五、教学准备1.教师准备:–教材《人教版八年级上册数学》;–讲解PPT;–演示三角板。
2.学生准备:–尺子;–铅笔、橡皮擦;–教材。
六、教学过程步骤一:导入(5分钟)教师通过提问的方式,复习之前学过的两个全等三角形的判定方法——SAS和ASA,并引出本节课要学习的判定方法——HL判定法。
步骤二:概念讲解(15分钟)1.教师通过PPT展示HL判定法的定义。
HL判定法:如果两个直角三角形的斜边和一个锐角分别相等,则这两个直角三角形全等。
2.教师通过PPT和黑板演示HL判定法在判断两个三角形是否全等时的运用方法。
步骤三:示例分析(20分钟)教师通过示例分析的方式,引导学生掌握HL判定法的具体运用。
示例1:已知图中的∠ABC = 90°, BC = EF, AC = EF。
询问三角形ABC和三角形EFG 是否全等。
解析:根据题目,可以得知∠ABC = 90°,BC = EF,AC = EF。
由于∠ABC为直角,得出三角形ABC是直角三角形。
根据HL判定法,如果两个直角三角形的斜边和一个锐角分别相等,则这两个直角三角形全等。
在这个例子中,紧连接点C的两条边相等,所以三角形ABC和三角形EFG全等。
示例2:已知图中的∠LMN = 90°, MN = PQ, LM = QR。
询问三角形LMN和三角形NMQ 是否全等。
解析:根据题目,可以得知∠LMN = 90°,MN = PQ,LM = QR。
由于∠LMN为直角,得出三角形LMN是直角三角形。
人教版八年级数学上册《12-2 三角形全等的判定(第1课时)》教学课件PPT初二优秀公开课

分析:要证∠BAC=∠DAE,而这两个角所在 三角形显然不全等,我们可以利用等式的性质 将它转化为证∠BAD=∠CAE;由已知的三组相等线段可证明 △ABD≌ △ACE,根据全等三角形的性质可得∠BAD=∠CAE.
探究新知
这说明有三个角对应相等的两个三角形不一定全等.
探究新知
②三条边
已知两个三角形的三条边都分别为3cm、4cm、6cm .它 们一定全等吗?
3cm
4cm
6cm
6cm 4cm
4cm 6cm
3cm
3cm
探究新知
做一做 先任意画出一个△ABC,再画出一个△A′B′C′,使A′B′= AB ,B′C′
=BC, A′ C′ =AC.把画好的△A′B′C′剪下,放到△ABC上,它们全
D HC
课堂小结
边边边
内容
有三边对应相等的两个三角形 全等(简写成 “SSS”)
应用
思路分析 书写步骤
结合图形找隐含条件和现有 条件,找准备条件
四步骤
注意
1.说明两三角形全等所需的条件应按对 应边的顺序书写 2.结论中所出现的边必须在所证明的两 个三角形中
课后作业
作 业 内 容
教材作业
从课后习题中选 取 自主安排 配套练习册练 习
3.已知△ABC ≌ △DEF,找出其中相等的边与角.
A
D
B
①AB=DE
④ ∠A=∠D
C
E
② BC=EF
⑤ ∠B=∠E
F
③ CA=FD
⑥ ∠C=∠F
即:三条边分别相等,三个角分别相等的两个三角形全等.
八年级数学上册《边角边判定三角形全等》教案、教学设计

-学生Байду номын сангаас享学习收获,提出在学习过程中遇到的困难和问题;
-教师针对学生反馈,给予解答和指导。
3.形成性评价:
-对学生在课堂上的表现进行评价,关注知识掌握、能力提升和情感态度;
-鼓励学生在课后继续探究,提高自主学习能力。
五、作业布置
为了巩固学生对边角边(SAS)判定三角形全等知识的掌握,提高学生的实际应用能力,特布置以下作业:
b.有一块三角形形状的土地,其中两条边的长度分别为10m和15m,夹角为90°。现要将其划分为两个全等的三角形。请画出分割方案,并简要说明理由。
3.拓展提升题:
-探究:除了SAS、SSS和ASA,还有哪些方法可以判定三角形全等?试举例说明;
-研究以下问题,并尝试解决:
a.已知一个三角形的两边和它们之间的夹角,如何求第三边的长度?
-理解并掌握边角边(SAS)判定三角形全等的条件;
-学会运用SAS判定方法解决实际问题;
-熟悉全等三角形的性质及其应用。
2.教学难点:
-对SAS判定方法的理解,尤其是如何识别和运用;
-解决实际问题时,如何将问题转化为SAS判定全等的问题;
-对全等三角形性质的理解及其在解决问题中的应用。
(二)教学设想
二、学情分析
八年级的学生已经具备了一定的几何基础,掌握了三角形的基本概念和相关性质,能够运用这些知识解决一些简单的几何问题。在此基础上,学生对边角边(SAS)判定三角形全等的学习,既是对已有知识的巩固,也是对三角形全等判定方法的拓展。然而,学生在学习过程中可能会遇到以下困难:
1.对SAS判定方法的本质理解不够深入,容易混淆其他判定方法;
八年级数学上册《边角边判定三角形全等》教案、教学设计
《全等三角形》教学设计-2021-2022学年人教版初中数学八年级上册

《全等三角形》教学设计一、内容和内容解析1、内容全等三角形概念及性质2、内容解析本节课的内容是人教版数学八年级(上)§12.1全等三角形第一课时,主要内容是全等三角形概念及探索发现全等三角形的性质。
新课标对本节课的要求是“了解全等三角形的有关概念,探索并掌握全等三角形的性质.”本节课是在学生学习三角形的概念及相关知识的基础上,进一步探究全等三角形的有关知识。
三角形的全等是初中几何部分一个十分重要的内容,是研究图形的重要工具,它既和前面所学知识联系紧密,又为学习三角形全等的判定做准备,同时也为今后研究学习其他图形奠定坚实的基础。
二、目标1、了解全等形及全等三角形的概念,能理解全等三角形的性质,并能熟练找出两个全等三角形的对应角、对应边。
2、能用符号正确地表示两个三角形全等;能够运用全等三角形的性质解决简单的问题。
三、教学问题诊断分析:教学重点:探究全等三角形的性质.教学难点:掌握两个全等三角形的对应角、对应边的寻找规律,迅速正确的指出两个全等三角形的对应元素。
四、教学过程设计:1、整体感知,确立对象同学们,通过上一章的学习,我们对一个几何图形的研究路径及内容有了更进一步的了解。
一般从概念、性质、应用三方面来研究。
概念又要从它的组成元素、表示、读法去认识。
性质就是探究组成几何图形的基本元素和相关元素之间的稳定不变的规律,最后综合应用所学知识解决问题。
本章开始研究两个图形间的关系。
我们生活在丰富多彩的世界中,请欣赏几幅图片(幻灯片展示)同学们仔细观察一下,其中有形状不同的;有形状相同、但大小不同的;还有形状相同、大小也相同的;这些形状相同、大小也相同的图形,能够完全重合。
像这样,能够完全重合的两个图形叫做全等形。
2、动手操作,探究新知(1)小明将一块三角板按在纸板上,画下图形,照图形裁下来的纸板和三角尺的形状、大小完全一样吗?把三角尺和裁得的纸板放在一起能够完全重合吗?下面请同学们按照小明的方法动手操作并回答问题。
2019-2020人教版八年级数学上册第十二章全等三角形章末复习课件共58张

章末复习
相关题1 如图12-Z-11所示的4×4正方形网格中,∠1+∠2+ ∠3+∠4+∠5+∠6+∠7=__3_15_°.
章末复习
解析 由题图得∠1+∠7=90°,∠2+∠6=90°,∠3+∠5=90°, ∠4=45°,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=90°+90°+ 90°+45°=315°.
章末复习
相关题3-2 如图12-Z-9所示, 已知∠1=∠2, 请你添加一个条件, 证明AB=AC. (1)你添加的条件是________________; (2)请写出证明过程.
章末复习
解:(1)由 AD=AD,∠1=∠2 这两个已知条件,根据 “AAS”
或“ASA”写出第三个条件即可.添加的条件是∠B=∠C 或∠ADB
章末复习
解:答案不唯一,如以①②为题设,④为结论,可写出一个 真命题如下:
已知:如题图,在△ACD 和△ABE 中,点 D 在 AB 上,点 E 在
AC 上,AE=AD,AB=AC. 求证:∠B=∠C.
证明如下:在△ACD 与△ABE 中,
AC=AB,
∠A=∠A, AD=AE,
∴△ACD≌△ABE(SAS),∴∠B=∠C.
全等三角 形的性质
应用
角的平 分线
全等三角形
章末复习
全等三 角形
角的平 分线
全等三角形
边边边(SSS)
一般三 角形
直角三 角形
性质
边角边(SAS) 角边角(ASA) 角角边(AAS)
角的平分线上 的点到角的两 边的距离相等
SSS, SAS, ASA, AAS
HL(只适用于判定两 个直角三角形全等)
章末复习
最新人教版八年级上册数学教案
第十一章全等三角形11.1 全等三角形教学内容本节课主要介绍全等三角形的概念和性质.教学目标1.知识与技能领会全等三角形对应边和对应角相等的有关概念.2.过程与方法经历探索全等三角形性质的过程,能在全等三角形中正确找出对应边、对应角.3.情感、态度与价值观培养观察、操作、分析能力,体会全等三角形的应用价值.重、难点与关键1.重点:会确定全等三角形的对应元素.2.难点:掌握找对应边、对应角的方法.3.关键:找对应边、对应角有下面两种方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)对应边所对的角是对应角,•两条对应边所夹的角是对应角.教具准备四张大小一样的纸片、直尺、剪刀.教学方法采用“直观──感悟”的教学方法,让学生自己举出形状、大小相同的实例,加深认识.教学过程一、动手操作,导入课题1.先在其中一张纸上画出任意一个多边形,再用剪刀剪下,•思考得到的图形有何特点? 2.重新在一张纸板上画出任意一个三角形,再用剪刀剪下,•思考得到的图形有何特点?【学生活动】动手操作、用脑思考、与同伴讨论,得出结论.【教师活动】指导学生用剪刀剪出重叠的两个多边形和三角形.学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两张纸,注意整个过程要细心.【互动交流】剪出的多边形和三角形,可以看出:形状、大小相同,能够完全重合.这样的两个图形叫做全等形,用“≌”表示.概念:能够完全重合的两个三角形叫做全等三角形.【教师活动】在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的三角形会全等吗?【学生活动】动手操作,实践感知,得出结论:两个三角形全等.【教师活动】要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、三个角、三条边、每条边的边角、每个角的对边.【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:(1)何时能完全重在一起?(2)此时它们的顶点、边、角有何特点?【交流讨论】通过同桌交流,实验得出下面结论:1.任意放置时,并不一定完全重合,•只有当把相同的角旋转到一起时才能完全重合.2.这时它们的三个顶点、三条边和三个内角分别重合了.3.完全重合说明三条边对应相等,三个内角对应相等,•对应顶点在相对应的位置.【教师活动】根据学生交流的情况,给予补充和语言上的规范.1.概念:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,•重合的边叫做对应边,重合的角叫做对应角.2.证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,•如果本图11.1─2△ABC和△DBC全等,点A和点D,点B和点B,点C和点C是对应顶点,•记作△ABC≌△DBC.【问题提出】课本图11.1─1中,△ABC≌△DEF,对应边有什么关系?对应角呢?【学生活动】经过观察得到下面性质:1.全等三角形对应边相等;2.全等三角形对应角相等.二、随堂练习,巩固深化课本P4练习.【探研时空】1.如图1所示,△ACF≌△DBE,∠E=∠F,若AD=20cm,BC=8cm,你能求出线段AB的长吗?与同伴交流.(AB=6)2.如图2所示,△ABC≌△AEC,∠B=30°,∠ACB=85°,求出△AEC各内角的度数.•(∠AEC=30°,∠EAC=65°,∠ECA=85°)三、课堂总结,发展潜能1.什么叫做全等三角形?2.全等三角形具有哪些性质?四、布置作业,专题突破1.课本P4习题11.1第1,2,3,4题.2.选用课时作业设计.板书设计把黑板分成左、中、右三部分,左边板书本节课概念,中间部分板书“思考”中的问题,右边部分板书学生的练习.疑难解析由于两个三角形的位置关系不同,在找对应边、对应角时,可以针对两个三角形不同的位置关系,寻找对应边、角的规律:(1)有公共边的,•公共边一定是对应边;(2)有公共角的,公共角一定是对应角;(3)有对顶角的,对顶角一定是对应角;两个全等三角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角).11.2.1三角形全等的判定(SSS)教学内容本节课主要内容是探索三角形全等的条件(SSS),•及利用全等三角形进行证明.教学目标1.知识与技能了解三角形的稳定性,会应用“边边边”判定两个三角形全等.2.过程与方法经历探索“边边边”判定全等三角形的过程,解决简单的问题.3.情感、态度与价值观培养有条理的思考和表达能力,形成良好的合作意识.重、难点与关键1.重点:掌握“边边边”判定两个三角形全等的方法.2.难点:理解证明的基本过程,学会综合分析法.3.关键:掌握图形特征,寻找适合条件的两个三角形.教具准备一块形状如图1所示的硬纸片,直尺,圆规.(1) (2)教学方法采用“操作──实验”的教学方法,让学生亲自动手,形成直观形象.教学过程一、设疑求解,操作感知【教师活动】(出示教具)问题提出:一块三角形的玻璃损坏后,只剩下如图2所示的残片,•你对图中的残片作哪些测量,就可以割取符合规格的三角形玻璃,与同伴交流.【学生活动】观察,思考,回答教师的问题.方法如下:可以将图1•的玻璃碎片放在一块纸板上,然后用直尺和铅笔或水笔画出一块完整的三角形.如图2,•剪下模板就可去割玻璃了.【理论认知】如果△ABC≌△A′B′C′,那么它们的对应边相等,对应角相等.•反之,•如果△ABC与△A′B′C′满足三条边对应相等,三个角对应相等,即AB=A′B′,BC=B′C′,CA=C′A′,∠A=∠A′,∠B=∠B′,∠C=∠C′.这六个条件,就能保证△ABC≌△A′B′C′,从刚才的实践我们可以发现:•只要两个三角形三条对应边相等,就可以保证这两块三角形全等.信不信?【作图验证】(用直尺和圆规)先任意画出一个△ABC,再画一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画出的△A′B′C′剪下来,放在△ABC上,它们能完全重合吗?(即全等吗)【学生活动】拿出直尺和圆规按上面的要求作图,并验证.(如课本图11.2-2所示)画一个△A′B′C′,使A′B′=AB′,A′C′=AC,B′C′=BC:1.画线段取B′C′=BC;2.分别以B′、C′为圆心,线段AB、AC为半径画弧,两弧交于点A′;3.连接线段A′B′、A′C′.【教师活动】巡视、指导,引入课题:“上述的生活实例和尺规作图的结果反映了什么规律?”【学生活动】在思考、实践的基础上可以归纳出下面判定两个三角形全等的定理.(1)判定方法:三边对应相等的两个三角形全等(简写成“边边边”或“SSS”).(2)判断两个三角形全等的推理过程,叫做证明三角形全等.【评析】通过学生全过程的画图、观察、比较、交流等,逐步探索出最后的结论──边边边,在这个过程中,学生不仅得到了两个三角形全等的条件,同时增强了数学体验.二、范例点击,应用所学【例1】如课本图11.2─3所示,△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D 的支架,求证△ABD≌△ACD.(教师板书)【教师活动】分析例1,分析:要证明△ABD≌△ACD,可看这两个三角形的三条边是否对应相等.证明:∵D是BC的中点,∴BD=CD在△ABD和△ACD中,,.AB ACBD CDAD AD=⎧⎪=⎨⎪=⎩∴△ABD≌△ACD(SSS).【评析】符号“∵”表示“因为”,“∴”表示“所以”;从例1可以看出,•证明是由题设(已知)出发,经过一步步的推理,最后推出结论(求证)正确的过程.书写中注意对应顶点要写在同一个位置上,哪个三角形先写,哪个三角形的边就先写.三、实践应用,合作学习【问题思考】已知AC=FE,BC=DE,点A、D、B、F 在直线上,AD=FB(如图所示),要用“边边边”证明△ABC≌△FDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件?【教师活动】提出问题,巡视、引导学生,并请学生说说自己的想法.【学生活动】先独立思考后,再发言:“还应该有AB=FD,只要AD=FB两边都加上DB即可得到AB=FD.”【教学形式】先独立思考,再合作交流,师生互动.四、随堂练习,巩固深化课本P8练习.【探研时空】如图所示,AB=DF,AC=DE,BE=CF,BC与EF相等吗?•你能找到一对全等三角形吗?说明你的理由.(BC=EF,△ABC≌△DFE)五、课堂总结,发展潜能1.全等三角形性质是什么?2.正确地判断出全等三角形的对应边、对应角,•利用全等三角形处理问题的基础,你是怎样掌握判断对应边、对应角的方法?3.“边边边”判定法告诉我们什么呢?•(答:只要一个三角形三边长度确定了,则这个三角形的形状大小就完全确定了,这就是三角形的稳定性)六、布置作业,专题突破1.课本P15习题11.2第1,2题.2.选用课时作业设计.11.2.2 三角形全等判定(SAS )教学内容本节课主要内容是探索三角形全等的条件(SAS ),及利用全等三角形证明. 教学目标1.知识与技能 领会“边角边”判定两个三角形的方法.2.过程与方法 经历探究三角形全等的判定方法的过程,学会解决简单的推理问题. 3.情感、态度与价值观 培养合情推理能力,感悟三角形全等的应用价值. 重、难点及关键1.重点:会用“边角边”证明两个三角形全等. 2.难点:应用结合法的格式表达问题.3.关键:在实践、观察中正确选择判定三角形全等的方法. 教具准备 投影仪、直尺、圆规.教学方法 采用“操作──实验”的教学方法,让学生有一个直观的感受. 教学过程一、回顾交流,操作分析 【动手画图】【投影】作一个角等于已知角.【学生活动】动手用直尺、圆规画图. 已知:∠AOB .求作:∠A 1O 1B 1,使∠A 1O 1B 1=∠AOB . 【作法】(1)作射线O 1A 1;(2)以点O 为圆心,以适当长为半径画弧,交OA•于点C ,•交OB 于点D ;(3)以点O 1为圆心,以OC 长为半径画弧,交O 1A 1于点C 1;(4)以点C 1为圆心,以CD•长为半径画弧,交前面的弧于点D 1;(5)过点D 1作射线O 1B 1,∠A 1O 1B 1就是所求的角.【导入课题】教师叙述:请同学们连接CD 、C 1D 1,回忆作图过程,分析△COD 和△C 1O 1D 1•中相等的条件.【学生活动】与同伴交流,发现下面的相等量:OD=O 1D 1,OC=O 1C 1,∠COD=∠C 1O 1D 1,△COD ≌△C 1O 1D 1. 归纳出规律:两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS•”).【评析】通过让学生回忆基本作图,在作图过程中体会相等的条件,在直观的操作过程中发现问题,获得新知,使学生的知识承上启下,开拓思维,发展探究新知的能力. 【媒体使用】投影显示作法.【教学形式】操作感知,互动交流,形成共识. 二、范例点击,应用新知【例2】如课本图11.2-6所示有一池塘,要测池塘两侧A 、B 的距离,可先在平地上取一个可以直接到达A 和B 的点,连接AC 并延长到D ,使CD=CA ,连接BC 并延长到E ,•使CE=CB ,连接DE ,那么量出DE 的长就是A 、B 的距离,为什么?【教师活动】操作投影仪,显示例2,分析:如果能够证明△ABC ≌△DEC ,就可以得出AB=DE .在△ABC 和△DEC 中,CA=CD ,CB=CE ,如果能得出∠1=∠2,△ABC 和△DEC•就全等了.证明:在△ABC 和△DEC 中 12CA CD CB CE=⎧⎪∠=∠⎨⎪=⎩ ∴△ABC ≌△DEC (SAS )∴AB=DE想一想:∠1=∠2的依据是什么?(对顶角相等)AB=DE 的依据是什么?(全等三角形对应边相等)【学生活动】参与教师的讲例之中,领悟“边角边”证明三角形全等的方法,学会分析推理和规范书写.【媒体使用】投影显示例2.【教学形式】教师讲例,学生接受式学习但要积极参与.【评析】证明分别属于两个三角形的线段相等或角相等的问题,常常通过证明这两个三角形全等来解决.三、辨析理解,正确掌握 【问题探究】(投影显示)我们知道,两边和它们的夹角对应相等的两个三角形全等,由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?为什么?【教师活动】拿出教具进行示范,让学生直观地感受到问题的本质.操作教具:把一长一短两根细木棍的一端用螺钉铰合在一起,•使长木棍的另一端与射线BC 的端点B 重合,适当调整好长木棍与射线BC 所成的角后,固定住长木棍,把短木棍摆起来(课本图11.2-7),出现一个现象:△ABC 与△ABD 满足两边及其中一边对角相等的条件,但△ABC 与△ABD 不全等.这说明,•有两边和其中一边的对角对应相等的两个三角形不一定全等.【学生活动】观察教师操作教具、发现问题、辨析理解,动手用直尺和圆规实验一次,做法如下:(如图1所示)(1)画∠ABT ;(2)以A 为圆心,以适当长为半径,画弧,交BT 于C 、C ′;(3)•连线AC ,AC ′,△ABC 与△ABC ′不全等. 【形成共识】“边边角”不能作为判定两个三角形全等的条件. 【教学形式】观察、操作、感知,互动交流. 四、随堂练习,巩固深化 课本P10练习第1、2题. 五、课堂总结,发展潜能 1.请你叙述“边角边”定理.2.证明两个三角形全等的思路是:首先分析条件,•观察已经具备了什么条件;然后以已具备的条件为基础根据全等三角形的判定方法,来确定还需要证明哪些边或角对应相等,再设法证明这些边和角相等.六、布置作业,专题突破1.课本P15习题11.2第3、4题. 2.选用课时作业设计. 板书设计把黑板分成左、中、右三部分,其中右边部分板书“边角边”判定法,中间部分板书例题,右边部分板书练习题.D C B AE11.2.3 三角形全等判定(ASA )教学内容本节课主要内容是探索三角形全等的判定(ASA ,AAS ),•及利用全等三角形的证明. 教学目标1.知识与技能 理解“角边角”、“角角边”判定三角形全等的方法. 2.过程与方法经历探索“角边角”、“角角边”判定三角形全等的过程,能运用已学三角形判定法解决实际问题.3.情感、态度与价值观培养良好的几何推理意识,发展思维,感悟全等三角形的应用价值. 重、难点与关键1.重点:应用“角边角”、“角角边”判定三角形全等. 2.难点:学会综合法解决几何推理问题.3.关键:把握综合分析法的思想,寻找问题的切入点. 教具准备投影仪、幻灯片、直尺、圆规. 教学方法采用“问题教学法”在情境问题中,激发学生的求知欲. 教学过程一、回顾交流,巩固学习 【知识回顾】(投影显示) 情境思考:1.小菁做了一个如图1所示的风筝,其中∠EDH=∠FDH ,ED=FD ,•将上述条件注在图中,小明不用测量就能知道EH=FH 吗?与同伴交流.(1) (2)[答案:能,因为根据“SAS ”,可以得到△EDH ≌△FDH ,从而EH=FH]2.如图2,AB=AD ,AC=AE ,能添上一个条件证明出△ABC ≌△ADE 吗?[答案:BC=•DE (SSS )或∠BAC=∠DAE (SAS )].3.如果两边及其中一边的对角对应相等,两个三角形一定会全等吗?试举例说明. 【教师活动】操作投影仪,提出问题,组织学生思考和提问.【学生活动】通过情境思考,复习前面学过的知识,学会正确选择三角形全等的判定方法,小组交流,踊跃发言.【教学形式】用问题牵引,辨析、巩固已学知识,在师生互动交流过程中,激发求知欲. 二、实践操作,导入课题 【动手动脑】(投影显示)问题探究:先任意画一个△ABC ,再画出一个△A ′B ′C ′,使A ′B ′=AB ,∠A ′=∠A ,∠B ′=∠B (即使两角和它们的夹边对应相等),把画出的△A ′B ′C ′剪下,•放到△ABC 上,它们全等吗?【学生活动】动手操作,感知问题的规律,画图如下:画一个△A ′B ′C ′,使A ′B ′=AB ,∠A ′=∠A ,∠B ′=∠B : 1. 画A ′B ′=AB ;2. 在A ′B ′的同旁画∠DA ′B ′=∠A , ∠EBA ′=∠B ,A ′D ,B ′E 交于点C ′。
新疆克拉玛依市第十三中学八年级数学上册 第十三章 全等三角形复习教案 新人教版
十三章全等三角形复习教学目标:知识与技能:了解全等形及全等三角形的概念;理解全等三角形的性质,掌握它的判定及角平分线的应用。
过程与方法:通过学习全等三角形的性质和条件,培养学生综合应用能力,培养学生的几何直觉。
情感态度价值观:学生通过在综合运用全等三角形的性质、条件及平分线的过程中感受到数学与生活息息相关,从而激发学生学习数学的兴趣。
重点:全等三角形的性质和条件的综合应用。
难点:全等三角形的性质、条件和其他数学知识的综合应用。
课型:复习课教具:三角板、多媒体。
教学过程:一、复习1、全等三角形的定义?表示方法?全等变换有几种?2、全等三角形有何性质?有何作用?3、全等三角形的判定方法有几种?分别是什么?4、三角形全等的应用:尺规作图的依据、三角形的稳定性、实际应用。
5、角平分线的应用?二、错例辨析:1、如图,已知△ABC≌△EFD,∠C=∠D,AE=BF,指出其他的对应边和对应角。
2、如图,AB=CD,AC与BD相交于点O,若AC=BD,则∠B=∠C吗?为什么?3、如图,AE=AC,AB=AD,∠EAB=∠CAD,求证:∠B=∠D。
三、中考分析:(一)利用全等三角形的性质计算线段和角。
1、如图,△ABC≌△DEC, ∠ACB=900,且∠DC B=1260,求∠ACE的度数。
2、如图,OA=OB,OC=OD,∠O=600,∠C=250,则∠BED=_______。
(二)利用已知条件构造全等三角形。
1、如图,下面四个条件中,请你以其中两个为已知条件,第三个为结论,推出一个正确的命题。
①AE=AD,②AB=AC,③OB=OC,④∠B=∠C2、如图,A、D、F、B在同一直线上,AD=BF,AE=BC,且AE∥BC。
求证:(1)△AEF≌△BCD;(2)EF∥CD。
(三)综合应用1、如图,∠AOP=∠BOP=150,PC∥OA,PD⊥OA,若PC=4,求PD的长。
2、求证:三角形一边上的两个端点到这条边的中线的距离相等。
人教版八年级数学上册《全等三角形之手拉手模型》教学设计
全等三角形之手拉手模型一、内容和内容解析1.内容全等三角形之手拉手模型.2.内容解析本节课是在学生已经学习了全等三角形、等腰三角形等知识的基础上,进一步研究由顶角相等的两个等腰三角形共顶点所组成的数学模型——手拉手模型的特征.由这个基本模型探究出固定的结论,为后续解决以这个模型为基础的问题提供了方法.全等三角形之手拉手模型是数学中常见的模型,熟悉并掌握这个模型,有助于学生解决等边三角形共顶点和等腰直角三角形共顶点的问题;善于发现并应用这个基本模型,可以使解题由难到易,化繁为简.基于以上分析,确定本节课的教学重点:能识别手拉手模型,能证明两组结论.二、目标和目标解析1.目标(1)能识别全等三角形之手拉手模型,掌握相关的两组结论.(2)能应用模型中的基本结论,解决其他数学问题.2.目标解析达成目标(1)的标志是:学生能记住基本模型的特征,能证明两组结论.达成目标(2)的标志是:能运用基本结论来解决有关数学问题.三、教学问题诊断分析很多同学在解决几何问题的时候总是找不准方向,没有解题思路,看到几何题就蒙了,不知道从何入手.因此,对所学的几何知识模型化,有利于学生提高解题能力,使逻辑思维能力得到发展.本节课的教学难点:会用手拉手模型的基本结论解决数学问题.四、教学过程设计1.创设情境看到标题中的手拉手,同学们一定会想到这样的画面:两位同学手拉着手,面带笑容,一起在做着游戏.本节课,我们将跟大家介绍另一种类型的手拉手,拉手的对象由两个人变成了两个顶角相等的等腰三角形.设计意图:利用手拉手图片引入课题,激发学生的学习兴趣.2.感知模型演示手拉手过程(如图)探究1: △ABD和△ACE的关系?BD和CE的长度关系?探究2:∠BOC和∠BAC的关系?问题1:如果△ADE的位置发生变化,那么上面两组结论是否还成立呢?(如图)学生合作交流,教师指导归纳:只要两个等腰三角形的顶点重合,顶角相等,无论两个三角形的位置如何,这两组结论都是成立的.我们将这个图形和两个结论统称为手拉手模型.大家应像记公式一样记住这个模型.强调一下模型的特征:条件---两个顶角相等的等腰三角形共顶点.结论---①两只左手与顶点组成的三角形和两只右手与顶点组成的三角形全等;②相等的两条线段是左手拉左手,右手拉右手得到的两条线段;③相等的两个角,它们一个是等腰三角形的顶角,另一个是手拉手以后得到的两条直线的夹角.设计意图:介绍基本模型,为下面应用模型解决数学问题作铺垫.3.熟悉模型⑴学生练习根据下面等腰三角形共顶点的手拉手模型,请直接写出相应的两组结论:1、△ADB和△AEC均为等边三角形2、△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=9003、四边形ABCD和四边形DEFG均为正方形⑵教师评讲.设计意图:通过有趣的活动,让学生补全模型,写出基本结论,加深学生对基本模型的认识.4.应用模型教师:通过上面3道变式题E FPBA C的练习,相信大家已经对等腰三角形手拉手模型比较熟悉了.为了让大家对这个模型活学活用,我们来看一看由一个中考题改编的例题.例题:如图,△ABC是等边三角形,点P为射线AD任意一点(P与A不重合),连结CP,若CP=CQ, ∠PCQ=600,连结QB并延长交直线AD于点E.(1)请直接写出∠QEP的度数和AP与BQ的数量关系.(不用证明)(2)若∠APC=30°,∠ACP=15°①∠BFC=.②当BF=4时,求AP的长.问题2:你能找出图中隐藏的手拉手模型吗?问题3:你能说出模型中的2组结论吗?点学生回答:结论1:△CBQ≌△CAP;AP=BQ;结论2:∠E=∠PCQ=60º教师:解几何计算题,我们一般采用顺推的方式来分析,也就是由已知条件,逐步推出未知的结果.请大家分小组进行推理,看哪个组最先做出来?学生写出解答过程.教师巡查.设计意图:引导学生运用手拉手模型的基本结论解决数学问题,加深学生对模型化解题的认识.5.课堂小结1、本节课你学到了什么知识?2、手拉手模型中还有其它结论,大家以后可以深入研究.3、数学模型是解题经验的总结,你自己也可以把一些有用的图形和结论归纳为数学模型,为自己所用.设计意图:回顾所学内容,加深学生对手拉手模型的理解,揭示数学模型的实质.6.目标检测(每题10分)(1)如图,分别以△ABC的边AB,AC同时向外作等腰直角三角形,其中AB=AE,AC=AD,∠BAE=∠CAD=90°,点G为BC中点,点F为BE中点,点H为CD中点.GF与GH的数量关系为:,∠FGH=(2)如图,点A为线段BD上一点,△ABC和△ADE均是等边三角形,(1)CD=BE;(2)∠CFB=∠BAC;(3)连接AF,AF 平分∠BFD;(4)连接GH,△GAH为等边三角形;下面选项正确的是()A.(1)(2)(3)B.(1)(2)(4)C.(1)(3)(4)D.(1)(2)(3)(4)设计意图:检验本节课学习效果,便于课后查漏补缺.7.布置作业:在△ABC中,AB=AC,点D是射线CB上的一动点(不与点B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段CB上,且︒=BAC时,那么∠90∠=;DCE(2)设α=∠BAC,β=∠DCE.①如图2,当点D在线段CB上,︒BAC时,请你探究α≠∠90与β之间的数量关系,并证明你的结论;②如图3,当点D在线段CB的延长线上,︒BAC时,∠90≠请将图3补充完整,并直接写出此时α与β之间的数量关系.(3)结论:α与β之间的数量关系是.。
全等三角形优质课课件
全等三角形优质课课件第1篇:全等三角形优质课课件一、教材背景及学情分析:本节课的内容是人教版义务教育课程标准实验教科书《数学》八年级(上)12.1全等三角形第一课时,主要内容是全等三角形概念及利用全等三角形的*质,探索发现全等三角形的*质.新课标对本节课的要求是:“了解全等三角形的有关概念,探索并掌全等三角形的*质.”本节课是在学生学习三角形的概念及相关知识的基础上,进一步探究全等三角形的有关知识。
三角形的全等是初中几何部分一个十分重要的内容,是研究图形的重要工具,它既和前面所学知识练习紧密,又为学习三角形全等的判定做准备,同时也为今后研究学习其他图形奠定坚实的基础。
二、教学目标分析:1、知识技能了解全等形及全等三角形的概念,能理解全等三角形的*质,并能熟练找出两个全等三角形的对应角、对应边。
2、数学思考在图形的变换以及实际*作的过程中,发展学生的空间观念,培养学生的几何直观能力。
3、过程与方法在探索全等三角形*质的过程中,体会研究问题的方法,感受图形变化途径4、情感态度与价值观让学生在观察、发现生活中的全等形和实际*作中获得全等形和全等三角形的体验;在探究和运用全等三角形*质的过程中感受数学活动的乐趣。
5、教学重点⑴全等三角形以及相关概念。
⑵探索全等三角形的*质.6、教学难点寻找并掌握全等三角形对应角、对应边的方法。
三、教法分未完,继续阅读 >第2篇:全等三角形课件【教学目标】1.使学生理解边边边公理的内容,能运用边边边公理*三角形全等,为*线段相等或角相等创造条件;2.继续培养学生画图、实验,发现新知识的能力.【重点难点】1.难点:让学生掌握边边边公理的内容和运用公理的自觉*;2.重点:灵活运用sss判定两个三角形是否全等.【教学过程】一、创设问题情境,引入新课请问同学,老师在黑板上画得两个三角形,△abc与△全等吗?你是如何判定的.(同学们各抒己见,如:动手用纸剪下一个三角形,剪下叠到另一个三角形上,是否完全重合;测量两个三角形的所有边与角,观察是否有三条边对应相等,三个角对应相等.)上一节课我们已经探讨了两个三角形只满足一个或两个边、角对应相等条件时,两个三角形不一定全等.满足三个条件时,两个三角形是否全等呢?现在,我们就一起来探讨研究.二、实践探索,总结规律1、问题1:如果两个三角形的三条边分别相等,那么这两个三角形会全等吗?做一做:给你三条线段、、,分别为、、,你能画出这个三角形吗?先请几位同学说说画图思路后,教师指导,同学们动手画,教师演示并叙述书写出步骤.步骤:(1)画一线段ab使它的长度等于c(4.8cm).(2)以点a为圆心,以线段b(3cm)的长为半径画圆弧;以点b为圆心,以线段a(4cm)的长为半径画圆弧;两弧交于点未完,继续阅读 >第3篇:全等三角形说课课件一、说教材全等三角形是八年级上册人教版数学教材第十一章第一节的教学内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年八年级数学上册 全等三角形 教案 新人教版
一、教材分析
本节课的教学内容是人教版数学八年级上册第十一章 《全等三角形》的第一节.这是全章的
开篇,也是全等条件的基础.它是继线段、角、相交线与平行线及三角形有关知识之后出现的.通过
本节的学习,可以丰富和加深学生对已学图形的认识,同时为学习其他图形知识打好基础,具有承
上启下的作用.
教材根据初中学生的认知规律和特点,采用由浅入深、由易到难、抓联系、促迁移的方法.通
过生活中的实例创设情景,形成概念,再通过平移、翻折、旋转说明变换前后的两个三角形全等,
进而得出全等三角形的相关概念及其性质.
二、教学目标分析
知识与技能
1.了解全等三角形的概念,通过动手操作,体会平移、翻折、旋转是考察两三角形全等的主
要方法.
2.能准确确定全等三角形的对应元素.
3.掌握全等三角形的性质.
过程与方法
1.通过找出全等三角形的对应元素,培养学生的识图能力.
2.能利用全等三角形的概念、性质解决简单的数学问题.
情感、态度与价值观
通过构建和谐的课堂教学氛围,激发学生的学习兴趣,调动学生的学习积极性,使学生勇于提
出问题,乐于探索问题,同时注重培养学生善于合作交流的良好情感和积极向上的学习态度.
三、教学重点、难点
重点:全等三角形的概念、性质及对应元素的确定.
难点:全等三角形对应元素的确定.
四、学情分析
学生在七年级时已经学过线段、角、相交线与平行线及三角形的有关知识,并学习了一些简单
的说理,已初步具有对简单图形的分析和辨识能力,但八年级的学生仍处于以形象思维为主要思维
形式的时期.为了发展学生的空间观念,培养学生的抽象思维能力,本节课将充分利用动画演示,
来揭示图形的平移、翻折和旋转等变换过程,以便让学生在观察、分析中获得大量的感性认识,进
而达到对全等三角形的理性认识.
五、教法与学法
本节课坚持“教与学、知识与能力的辩证统一”和“人人都能获得必需的数学”的原则,博采
启发教学法、引探教学法、讲授教学法等诸多方法之长,借助多媒体手段引导学生观察、猜想和探
究,促进学生自主学习,努力做到教与学的最优组合.
六、教学过程设计
教学过程 设计意图说明
㈠创设情景,导入新课 1.师生各自展示课前收集到的形状、大小相同的实物图形及自制的三角形模型. 2.教师演示课件(动态展示下面四组图案),提出问题,学生观察思考、相互交流. ①图1中福娃欢欢的两张照片形状、大小相同吗?放在一起能完全重合吗? ②图2中福娃欢欢的两张照片形状相同吗?大小相同吗?放在一起能完全重合吗? ③图3中球门框上两个四边形形状、大小相同吗?放在一起能完全重合吗? ④图4中同种颜色的三角形形状、大小相同吗?放在一起能完全重合吗? 本环节意在说明现实生活中
存在着大量的形状、大小相同的图
形.考虑到八年级学生的认知特点,
在选材上注重从一般到特殊并运用
贴近学生生活的图案激发学生探究
的兴趣,由此说明数学来源于生活.
㈡自主探究,形成概念
1.由上面①②③形成全等形的概念并板书.
2.由④得出全等三角形的概念并板书.
让学生多思、多说来充分暴露
他们所遇到的矛盾.
教学过程 设计意图说明
㈢深入探究,巩固概念
1.让学生体会到平移、翻折、旋
活动1:利用全等变换,介绍对应元素.
(1).多媒体演示三种全等变换(平移、翻折、旋转)
并提出问题: 平移、翻折、旋转前后的两个三角形全等吗?
(2).再让学生用课前自制的模型(全等三角形)亲自动手尝
试图形全等变换的过程,进而得出图形变换的本质.
(3).介绍全等三角形的对应元素(对应顶点、对应边、对应角)
及全等三角形的表示方法.
活动2:探究全等三角形对应元素的寻找规律.
继续应用平移、翻折、旋转的三组图形并另加一组,然后提出
问题:
①教师引导学生在图1中找出对应元素并用图形语言(不同
对应元素画上不同标记)标示出来.
②图2至图4让学生自主完成(标记法)并口答相应的对
应元素.
③师生、生生合作交流,共同探究、归纳、总结出寻找对
应元素的方法和规律.
教学过程
转前后的两个三角形全等这个结论
是运用全等三角形的概念得出的,从
而起到巩固新概念的作用,同时对学
生在某些情况下确定全等三角形的
对应元素有帮助.
2.通过动画演示全等变换的过程
及学生动手实践, 让学生形成直观
感觉,从而分析总结出图形变换的本
质,进一步加深对图形变换的理解,
培养学生动态研究几何图形的意识.
并由该组图形引出全等三角形对应
元素及全等三角形的表示方法.
3.在操作实践的过程中建立对应
的概念.
环环相扣,层层深入,一图多用,
避免学生因多样的图形而眼花缭乱,
偏离了主题.
①讲练结合,及时巩固所学新知(对
应元素),同时培养学生把文字语言
转化为图形语言的能力.
②复习巩固对应边、对应角的概念.
③培养学生的观察能力、概括能力和
初步辨析图形的能力.
设计意图说明
活动3:例题教学,强化应用 【例1】如图所示,已知△ABC≌△DCB, AB和DC,AC和DB是对应边,请找出其他对应边及对应角. 例题教学是使学生掌握知识,形成
技能,发展智力的重要手段,上述
例题设计做到了有层次、有梯度、难
易适当,从而使不同层次的学生都能
B
CADF
E
【例2】如图所示,已知△ABC≌△CDA,AB和CD是对应边,请找出其他对应边及对应角. 活动4:合作交流,归纳发现 1. 动画演示平移变换(或让学生将两个全等三角形模型重合在一起),让学生观察全等三角形对应边和对应角的关系.进而得出 全等三角形的性质:全等三角形的对应边相等 全等三角形的对应角相等 2.让学生把全等三角形的性质由文字语言转化为符号语言. 主动参与并提出各自解决问题的方法.
1.进一步巩固全等三角形及其对
应元素的概念,使学生在动脑、动手
实践的过程中理解全等三角形的性
质.
2.复习巩固旧知识(简单说理)为
后面学习全等三角形说理做好铺垫.
教学过程 设计意图说明
㈣练习巩固,深化理解 如图:已知△ABC≌△DEF,A和D,B和E是对应顶点. ①若AB=8,EF=5,则DE= ; ②若∠A=70°,∠B=30°,则∠DEF= ,∠F= . ③请结合题目和所学知识自已设 计一道题. 运用全等三角形的性质对较复
杂图形进行探究,初步培养学生综合
运用知识的能力
这是一个既具有弹性又能发展
学生思维的题,可让不同层次的学生
学有所获并使他们的能力得到提升.
㈤归纳小结,巩固新知 归纳小结是巩固新知不可缺少
1.让学生交流本堂课的收获. 2.教师归纳要点,整合提升. 的环节之一,此环节对培养学生的归
纳能力、自我获取知识的能力和语言
表达能力都十分重要.本节课我采用
让学生谈学习收获的方式对所学知
识进行归纳,重点是让学生用自己的
语言谈对全等三角形概念、性质的理
解.
㈥作业布置,提高升华 1.必做题:教科书习题11.1 复习巩固第1、2题 综合运用第3题 2.选做题:教科书习题11.1 拓广探索第4题 课外作业根据学生的差异设置
了必做题和选做题,设置必做题的目
的是巩固本节课应知应会的内容,面
向全体学生,人人必须完成.设置选
做题的目的是为了提升能力,发展智
力,要求学生根据自身的实际情况尽
力完成,对学有余力的学生要求完
成.
七.板书设计
八.教学反思与评价
1.本节课充分应用多媒体进行教学,促使学生从感性认识上升为理性认识.
2.课堂上重视学生的主体参与,学生是学习的主体,教师是学生学习的组织者、引导者和合作
者,因此本节课从概念的形成、发展、应用等每个环节,都力求通过学生的动手实践、动脑思考,
自主参与,合作探究来完成.
3.注重信息反馈,坚持师生间的多向交流,学生学习过程是通过提出问题,解决问题的反复过
程才得以完成. 根据教学信息反馈的理论,当学生接触新知——全等三角形的概念时,要通过引导
§11.1 全等三角形
1.观察与思考 例1
图1~图4 例2
2.全等三角形的概念 练习
3.全等三角形的对应元素 小结
4.全等三角形的性质 布置作业
学生多思、多说、多练,来充分暴露他们所遇到的矛盾,并在师生、生生之间多向交流中,不断地
解决新矛盾,使认识得到深化.
4.本节课教学环节环环相扣,层层深入,能够较好地落实课标理念,实现教学目标,从而达到
发展学生思维,提升学习能力的根本目的.