高一数学必修1 函数解析式的求法1 ppt

合集下载

三角函数的应用(一)课件-高一上学期数学人教A版(2019)必修第一册

三角函数的应用(一)课件-高一上学期数学人教A版(2019)必修第一册

根据已知数据作出散点图,如下图所示.
y
由数据表和散点图可 22
知,振子振动时位移的最 20
18
大值为20mm,因此A=20;16
14
振子振动的周期为0.6s,


即 = 0.6 解得ω= ;


再由初始状态(t=0)振子
的位移为-20,可得sinφ

=-1,因此φ =- .

所以振子位移关于时间
的函数解析式为

y=20sin( t

-

),

12
10
8
6
4
2
–2 O
–4
–6
–8
–10
–12
–14
–16
–18
–20
–22
t∈[0,+∞).
x
现实生活中存在大量类似弹簧振子的运动,如钟摆
的摆动,水中浮标的上下浮动,琴弦的振动,等等.这
些都是物体在某一中心位置附近循环往复的运动.
在物理学中,把物体受到的力(总是指向平衡位置)正
然后进行函数拟合获得具体的函数模型,最
后利用这个函数模型来解决相应的实际问
题.
实际问题通常涉及复杂的数据,因此往
往需要使用信息技术.
课堂
小结
1.知识清单:
(1)简谐运动.
(2)函数的“拟合”.
(3)三角函数在物理中的应用.
2.方法归纳:数学建模、数形结合.
3.常见误区:选择三角函数模型时,最后结果忘记回归
6
7
8
9
10
11

5.00 6.21 7.12 7.49 7.24 6.42 5.25 4.01 3.02 2.52 2.65 3.37

【课件】第一课时 函数y=Asin(ωx+φ)的图象课件高一上学期数学人教A版(2019)必修第一册

【课件】第一课时 函数y=Asin(ωx+φ)的图象课件高一上学期数学人教A版(2019)必修第一册
3、函数 y=sin(x+φ)的图象能否通过左右平移而得到正弦曲线呢? 函数 y=sin(x+φ)的图象与正弦曲线 y=sinx,都可以左右相互平移而 得到,平移单位长度都是|φ|,只是平移方向相反
巩固与练习 例 1 为了得到函数 y=sinx-π5的图象,只需要将正弦曲线上的所
有点( )
(A)向左平行移动π5个单位长度 (B)向右平行移动π5个单位长度 (C)向左平行移动15个单位长度 (D)向右平行移动15个单位长度 分析 由 sinx1=sinx2-π5=0 x1=x2-π5 x2=x1+π5=π5 故选答案 B
数 新教材人教版·高中必修第一册 学
第五章 三角函数 5.6 函数y=Asin(ωx+φ)
第一课时 函数y=Asin(ωx+φ)的图象
要求
掌握y=sin x与y=sin(x+φ)图象间的变换 关系,并能正确地指出其变换步骤.
通过整体代换和图象的变换提升学生的直观 想象、逻辑推理和数学抽象素养.
复习引入
5.6 函数y=Asin(ωx +φ)
我们知道,单位圆上的点,以(1,0) 为起点,以单位速度按逆时针方向运 动,其运动规律可用三角函数加以刻 画,对于一个一般的匀速圆周运动可 以用怎样的数学模型刻画呢?下面先 看一个实际问题.
情景引入
问题 筒车是我国古代发明的一种水利灌溉 工具,因其经济又环保,至今还在农业生产 中得到使用(图5.6-1).明朝科学家徐光启 在《农政全书》中用图画描绘了简车的工作 原理(图5.6-2. )
一般地,当动点 M 的起点位置 Q 所对应的角为 φ 时,对应的函数是 y=sin(x+φ)(φ≠0),把正弦曲线上的所有点向左(当 ω>0 时)或向右 (当 φ<0 时)平移|φ|个单位长度,就得到函数 y=sin(x+φ)的图象.

高中数学必修一第五讲 函数的表示方法

高中数学必修一第五讲 函数的表示方法

第五讲 函数的表示方法1、 能根据不同需要选择恰当的方法(如图像法、列表法、解析法)表示函数;2、 了解简单的分段函数,并能简单应用;一、函数的常用表示方法简介: 1、解析法如果函数()()y f x x A =∈中,()f x 是用代数式(或解析式)来表达的,则这种表达函数的方法叫做解析法(公式法)。

例如,s =602t ,A =π2r ,2S rl π=,2)y x =≥等等都是用解析式表示函数关系的。

特别提醒: 解析法的优点:(1)简明、全面地概括了变量间的关系;(2)可以通过解析式求出任意一个自变量的值所对应的函数值;(3)便于利用解析式研究函数的性质。

中学阶段研究的函数主要是用解析法表示的函数。

解析法的缺点:(1)并不是所有的函数都能用解析法表示;(2)不能直观地观察到函数的变化规律。

2、列表法:通过列出自变量与对应函数值的表格来表示函数关系的方法叫做列表法。

例如:初中学习过的平方表、平方根表、三角函数表。

我们生活中也经常遇到列表法,如银行里的利息表,列车时刻表,公共汽车上的票价表等等都是用列表法来表示函数关系的.特别提醒:列表法的优点:不需要计算就可以直接看出与自变量的值相对应的函数值。

这种表格常常应用到实际生产和生活中。

列表法的缺点:对于自变量的有些取值,从表格中得不到相应的函数值。

3、图象法:用函数图象表示两个变量之间的函数关系的方法,叫做图像法。

例如:气象台应用自动记录器描绘温度随时间变化的曲线,工厂的生产图象,股市走向图等都是用图象法表示函数关系的。

特别提醒:图像法的优点:能直观形象地表示出自变量的变化,相应的函数值变化的趋势,这样使得我们可以通过图象来研究函数的某些性质。

图像法的缺点:不能够精确地求出某一自变量的相应函数值。

二、函数图像:1、判断一个图像是不是函数图像的方法:要检验一个图形是否是函数的图像,其方法为:任作一条与x 轴垂直的直线,当该直线保持与x 轴垂直并左右任意移动时,若与要检验的图像相交,并且交点始终唯一的,那么这个图像就是函数图像。

人教版新高一数学必修一求函数的解析式换元法

人教版新高一数学必修一求函数的解析式换元法

人教版新高一数学必修一求函数的解析式换元法
人教版新高一数学必修一求函数的解析式换元法是求函数的重
要方法之一,它能帮助学生掌握函数的求解方法,是数学学习的重要组成部分。

本文将介绍如何使用换元法来求函数的解析式,以便学生能够更有效地学习和理解求函数的概念。

首先,要想用换元法求得函数的解析式,我们需要了解其中的基本概念,即换元法的概念与其定义。

它是一种将原函数形式中的变量进行替换的方法,使其变为另外一种函数,从而可以解决函数的求解。

下面我们来看一个例子,用换元法求函数解析式。

假设有函数y=5x+3,我们将其中的x替换成y,可以得到
y-3=5(x-3),两边同时除以5,可以得到x=y-3/5.以看出,用换元法之后得到的函数解析式为:x=y-3/5。

这样,我们就可以得到函数解析式,从而更有效地求函数解析式。

另外,换元法在求函数解析式过程中也有一些注意事项:
1、在换元之前,首先识别函数的形式,确定变量的范围;
2、其次,要注意换元时的相互变换是否正确;
3、最后,要根据指定的变量,实际算出求解结果函数;
4、最后,要正确核对最终结果,以免出现错误。

以上就是换元法求函数解析式的基本方法,通过这种方法,可以有效地求得函数的解析式。

换元法是求函数解析式的有效方法,其不仅可以使学习者更容易理解函数的性质,而且可以提高学习者的函数求解能力,是一种有效的数学学习方法。

总之,换元法在求函数解析式过程中非常有用,它可以帮助学生更好地掌握和理解函数求解方法,增进学生学习数学的兴趣,提高学生数学学习的能力。

高中数学 第2章 函数2.1.1函数的概念和图象(一)配套课件 苏教版必修1

高中数学 第2章 函数2.1.1函数的概念和图象(一)配套课件 苏教版必修1
第一页,共24页。
2.1.1 函数的概念和图象(一)
【学习要求】 1.理解函数的概念,明确决定函数的三个要素; 2.学会求某些函数的定义域; 3.掌握判定两个函数是否相同的方法; 4.理解静与动的辩证关系. 【学法指导】 通过实例,进一步体会函数是描述变量之间的依赖关系的重要 数学模型,在此基础上学习用集合与对应的语言来刻画函数, 体会对应法则在刻画函数概念中的作用,感受学习函数的必要 性与重要性.
第二十一页,共24页。
练一练•当堂检测(jiǎn cè)、目标达成 落实处 2.下列关于函数与区间的说法正确的是___④_____.(填序号)
①函数定义域必不是空集,但值域可以是空集; ②函数定义域和值域确定后,其对应法则也就确定了; ③数集都能用区间表示; ④函数中一个函数值可以有多个自变量值与之对应. 解析 函数的值域不可能为空集,故①错; 当两函数的定义域和值域分别相同时,但两函数的对应法则可 以不同,故②错; 由于整数集没法用区间表示,故③错. 只有④正确.
(3) 若 f(x) 是 偶 次 根 式 , 那 么 函 数 的 定 义 域 是 ____根__号__(ɡ_ē_n__h_à_o_)_内__的_式__子__不__小__于__零___的实数的集合; (4)若 f(x)是由几个部分的数学式子构成的,那么函数的定义域是 ____使__各__部__分__式__子_都__有__意__义___________的实数的集合(即使每个部 分有意义的实数的集合的交集); (5)若 f(x)是由实际问题列出的,那么函数的定义域是使解析式本 身有意义且符合____实__际__意__义______的实数的集合.
第三页,共24页。
填一填·知识要点(yàodiǎn)、记下 疑难点 2.求函数的定义域实质上是求使函数表达式有意义的自变量的取

3.3 幂函数 课件(共48张PPT)高一数学必修第一册(人教A版2019)

3.3 幂函数 课件(共48张PPT)高一数学必修第一册(人教A版2019)
1
(3) 在区间(0, )上,函数y x, y x2 , y x3 , y x 2单调递增, 函数y x1单调递减;
(4) 在第一象限内, 函数y x1的图象向上与y轴无限接近,向右与x轴 无限接近.
学习新知 例 证明函数f ( x) x是增函数.
证明:函数的定义域是[0, ). x1, x2 [0, ), 且x1 x2 ,
[0,+∞)递增
(-∞,0)和(0,+∞) 递减
图象
公共点
(1,1) ( R) (0,0) ( 0时)
①为偶数, y x是偶函 数. ②为—奇—数, y x是奇函 数.
3.3 幂函数
02 幂函数的图象 与性质
应用新知 1 幂函数的概念
一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数.
本节我们利用这些知识研究一类新的函数.
学习新知
先看几个实例: (1)如果卢老师以1元/kg的价格购买了某种蔬菜t千克,那么他需要支付
的钱数P=t元,这里P是t的函数;
(2)如果正方形的边长为a,那么正方形的面积S=a2,这里S是a的函数;
(3)如果立方体的棱长为b,那么立方体的体积V=b3,这里V是b的函数;

m=0.

m=2
时,f(x)=
x
1 2
,图象过点(4,2);

m=0
时,f(x)=
x
3 2
,图象不过点(4,2),舍去.
综上,f(x)=
x
1 2
.
能力提升 题型三:利用幂函数的单调性比较大小
【练习
3】已知幂函数
f(x)=m2
2m
1
m 3
x2
的图象过点(4,2).

人教版高中数学必修1《分段函数》PPT课件

人教版高中数学必修1《分段函数》PPT课件

()
解析:∵f(x)=|x-1|=x1- -1x, ,xx≥ <11, , 当 x=1 时,f(1)=0,可排除 A、C. 又 x=-1 时,f(-1)=2,排除 D. 答案:B
3.函数 y=x-2,2,x>x<0,0 的定义域为__________,值域为____________. 答案:(-∞,0)∪(0,+∞) {-2}∪(02],- 3∈(-2,2),-52∈(-∞,-2], 知 f(-5)=-5+1=-4,
f(- 3)=(- 3)2+2×(- 3)=3-2 3. ∵f-52=-52+1=-32,且-2<-32<2, ∴ff-52=f-32=-322+2×-32=94-3=-34. (2)当 a≤-2 时,a+1=3,即 a=2>-2,不合题意,舍去; 当-2<a<2 时,a2+2a=3,即 a2+2a-3=0. ∴(a-1)(a+3)=0,得 a=1 或 a=-3. ∵1∈(-2,2),-3∉(-2,2),∴a=1 符合题意;
答案:(-3,1)∪(3,+∞)
题型二 分段函数的图象 【学透用活】
[典例 2] (1)已知 f(x)的图象如图所示,求 f(x)的解析式. (2)已知函数 f(x)=1+|x|-2 x(-2<x≤2). ①用分段函数的形式表示函数 f(x); ②画出函数 f(x)的图象; ③写出函数 f(x)的值域.
x+2,x<0. 根据函数解析式作出函数图象,如图所示. 由图象可以看出,函数的值域为{y|y≤2}. 答案:{y|y≤2}
3.作出函数 f(x)=- x2-x-x-1,2,x≤--1<1,x≤2, x-2,x>2
的图象.
解:画出一次函数 y=-x-1 的图象,取(-∞,-1]上的一段;画出二次 函数 y=x2-x-2 的图象,取(-1,2]上的一段;画出一次函数 y=x-2 的图 象,取(2,+∞)上的一段,如图所示.

北师大版高一数学必修第一册函数的概念及其表示课件

北师大版高一数学必修第一册函数的概念及其表示课件
函数的概念及其表示
第一课时
整体概览
问题1 请同学们阅读课本第60页,回答下列问题:
(1)本章将要研究哪类问题? 本章将要研究函数的概念、性质及其应用.
(2)本章要研究的对象在高中的地位是怎样的? 函数是高中数学的核心内容,也是学习其他学科的重要基础.
(3)本章研究的起点是什么?目标是什么? 起点是函数的概念,目标是通过研究函数的性质把握客观世 界中各种各样的运动变化规律.
新知探究
追问 值域和集合B相等吗?它们的关系是什么?
值域与集合B不一定相等, 值域是集合B的子集, 具体例子见问题6.
新知探究
问题8 你能用新的定义描述一次函数y=ax+b(a≠0)、二次 函数y=ax2+bx+c(a≠0)和反比例函数y= k(k≠0)吗?从哪
x 几个角度描述?
函数 对应关系
一次函数 y ax b(a 0)
其中,d的变化范围是数集A ={1,2,3,4,5,6}, 集合A,B与对应关系f如图所示:
2 例1 函数的解析式是舍弃问题的实际背景而抽象出来的,它所反映的两个量之间的对应关系,可以广泛地用于刻画一类事物中的变量关系和规律.例如,正比例函数y=kx(k≠0)
可以用来刻画匀速运动中路程与时间的关系、一定密度的物体的质量与体积的关系、圆的周长与半径的关系等.
新知探究
问题4 阅读材料,回答问题: 某电器维修公司要求工人每周工作至少1天,至多不超过6天.如 果公司确定的工资标准是每人每天350元,而且每周付一次工资. (1)你认为该怎样确定一个工人每周的工资?一个工人的工资w(单 位:元)是他工作天数d的函数吗? 解答:(1)w=350d,w是工作天数d的函数.
新知探究
表1 我国某居民恩格尔系数变化情况
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修1中,函数解析式的求法是重要内容。主要方法有直接法,包括整体代换法与换元法,待定系数法和构造方程法。特殊情况下还可采用特殊值法。整体代换与换元法通过把自变量看成一个整体,将函数式右边整理成关于这个整体的多项式形式变量的关系,代入原式求解。待定系数法适用于已知函数类型的情况,如一次函数,可设出函数形式,通过比较对应项系数求解。这些方法在解题中需灵活运用,注意变量的取值范围变化。通过多个例题的详细解析,可以加深对函数解析式求法的理解和掌握。
相关文档
最新文档