圆锥曲线常考五大题型

合集下载

圆锥曲线题型总结

圆锥曲线题型总结

圆锥曲线题型总结圆锥曲线题型总结圆锥曲线是二维平面上的一类曲线,由圆锥与平面相交而得。

圆锥曲线的重要性在于它们广泛应用于数学、物理、工程等领域,在解决实际问题时具有重要的作用。

在学习圆锥曲线时,我们通常会遇到一些不同类型的题目,下面我将对常见的圆锥曲线题型进行总结并提供解题方法。

一、椭圆的题型1. 求椭圆的焦点和准线:椭圆的焦点可以通过求解直角三角形或利用椭圆方程的性质来得出,准线可以通过将椭圆的方程化为标准方程来得到。

2. 椭圆的离心率问题:椭圆的离心率是一个重要的特征,可以通过利用椭圆的定义和性质来求解。

3. 椭圆的对称性问题:椭圆具有关于x轴和y轴的对称性,通过利用这一性质可以得到一些关于椭圆对称性的结论。

4. 椭圆与直线的交点问题:通过直线方程与椭圆方程联立解方程组,可以求得椭圆与直线的交点。

二、双曲线的题型1. 求双曲线的焦点和准线:双曲线的焦点和准线可以通过双曲线方程的性质来求解,特别是焦点的坐标可以通过解方程组得出。

2. 双曲线的渐近线问题:双曲线具有两条渐近线,可以通过设定x或y趋于无穷大时双曲线方程的极限来求解渐近线的方程。

3. 双曲线与直线的交点问题:通过直线方程与双曲线方程联立解方程组,可以求得双曲线与直线的交点。

三、抛物线的题型1. 求抛物线的焦点和准线:抛物线的焦点和准线可以通过抛物线方程的性质来求解,特别是焦点的坐标可以通过解方程组得出。

2. 抛物线的对称性问题:抛物线具有关于其焦点或顶点的对称性,可以通过利用这一性质来求解抛物线的一些问题。

3. 抛物线与直线的交点问题:通过直线方程与抛物线方程联立解方程组,可以求得抛物线与直线的交点。

四、圆的题型1. 求圆的方程:圆的方程可以通过给定圆的半径和圆心坐标来得到,也可以通过给定圆上一点的坐标或两点的坐标来得到。

2. 圆与直线的位置关系问题:可以通过将直线方程代入圆的方程,求解方程组来判断圆与直线的位置关系。

3. 圆与圆的位置关系问题:可以通过将两个圆方程联合解方程组来判断圆与圆的位置关系。

高考数学圆锥曲线大题所有题型解法

高考数学圆锥曲线大题所有题型解法

高考数学圆锥曲线大题所有题型解法
高考数学圆锥曲线大题的题型多种多样,以下是常见的几种题型和解法:
1.求圆锥曲线的方程:通过给定的条件,根据圆锥曲线的定义和性质,可以求出圆锥曲线的方程。

例如,已知圆锥曲线的焦点、准线或者过定点的直线方程,可以根据定义和性质求出圆锥曲线的方程。

2.求圆锥曲线的性质:通过已知的条件,可以利用圆锥曲线的性质来求解问题。

例如,已知圆锥曲线的焦点和准线,可以求出其焦距、离心率等性质。

3.求直线与圆锥曲线的交点:通过已知的直线方程和圆锥曲线的方程,可以求出它们的交点。

可以将直线方程代入圆锥曲线方程,解方程得到交点的坐标。

4.求切线和法线:通过已知的条件,可以求出圆锥曲线上某点的切线和法线方程。

例如,已知圆锥曲线上一点的坐标,可以求出该点处的切线和法线方程。

5.求曲线的参数方程:对于给定的圆锥曲线方程,可以通过变量替换的方法,将其转化为参数方程。

例如,对于抛物线,可以令y=xt^2,将方程转化为参数方程。

这些只是一些常见的题型和解法,实际上高考数学圆锥曲线大
题的题型和解法还有很多,需要根据具体的题目来进行分析和解决。

掌握圆锥曲线的基本定义、性质和常见的解题方法,能够更好地应对这类题目。

圆锥曲线常见综合题型(整理)

圆锥曲线常见综合题型(整理)

学生姓名年级授课时间教师姓名课时 2h课 题 圆锥曲线综合复习教学目标1.求轨迹方程 2.直线与椭圆的位置关系 3.弦长问题 4.中点弦问题 5.焦点三角形(定义和余弦定理或勾股定理) 6.最值问题【知识点梳理】一、直线与圆锥曲线的位置关系注意:直线与椭圆、抛物线联立后得到的方程一定是一元二次方程(二次项系数a 不为0),但直线与双曲线联立后得到的不一定是一元二次方程,因此需分类讨论。

即:1. 一次方程,只有一个解,说明直线与双曲线相交,只有一个交点,此时直线与渐进性平行;2. 二次方程,⎪⎩⎪⎨⎧>∆=∆<∆,有两个交点(相交),有一个交点(相切)无解,没有交点00,0因此在做题过程中,若直线与双曲线①没有交点:00<∆≠且a ②有一个交点:000=∆≠=且或者a a ③有两个交点:00>∆≠且a此外,在设直线方程时,要注意直线斜率不存在的情况。

二、直线与圆锥曲线相交的弦长公式设直线l :y=kx+n ,圆锥曲线:F(x,y)=0,它们的交点为P 1 (x 1,y 1),P 2 (x 2,y 2),且由,消去y →ax 2+bx+c=0(a ≠0),Δ=b 2 -4ac >0。

⎩⎨⎧+==nkx y y x F 0),(则弦长公式为:。

4)(1||1||212212122x x x x k x x k AB ⋅-+⋅+=-⋅+=三、用点差法处理弦中点问题设直线与圆锥曲线的交点(弦的端点)坐标为、,将这两点代入圆锥曲线的),(11y x A ),(22y x B 方程并对所得两式作差,得到一个与弦的中点和斜率有关的式子,可以大大减少运算量。

我们AB 称这种代点作差的方法为“点差法”。

【典型例题】题型一 直线与圆锥曲线的交点问题例1 k 为何值时,直线2y kx =+和曲线22236x y +=有两个公共点?有一个公共点?没有公共点?例2. 已知直线y=kx+2与双曲线的右支交于不同的两点,求k 的取值范围。

圆锥曲线题型总结归纳

圆锥曲线题型总结归纳

直线和圆锥曲线常考题型运用的知识: 1、中点坐标公式:1212,y 22x x y yx ++==,其中,x y 是点1122(,)(,)A x y B x y ,的中点坐标。

2、弦长公式:若点1122(,)(,)A x y B x y ,在直线(0)y kx b k =+≠上,则1122y kx b y kx b =+=+,,这是同点纵横坐标变换,是两大坐标变换技巧之一,=342,则x 题型五:共线向量问题 题型六:面积问题题型七:弦或弦长为定值问题 题型八:角度问题 问题九:四点共线问题问题十:范围问题(本质是函数问题)问题十一、存在性问题:(存在点,存在直线y=kx+m ,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆) 题型一:数形结合确定直线和圆锥曲线的位置关系例题1、已知直线:1l y kx =+与椭圆22:14x y C m +=始终有交点,求m 的取值范围解:根据直线:1l y kx =+的方程可知,直线恒过定点(0,1),椭圆22:14x y C m +=过动点0±(,,则1例题2一点 设直线由2y y =⎧⎨=⎩即20k <由韦达定理,得:212221,k x x k -+=-121x x =。

则线段AB 的中点为22211(,22k k k--。

线段的垂直平分线方程为:221112()22k y x k k k --=--令y=0,得021122x k =-,则211(,0)22E k -ABE ∆为正三角形,∴211(,0)22E k -到直线AB 的距离d AB 。

AB=221kk=+d=21k+=k=±满足②式此时053x=。

题型三:动弦过定点的问题例题3、已知椭圆C:22221(0)x ya ba b+=>>且在x(I(II)异于点解:(I224xy+(II2)x+,由2yx=⎧⎨⎩根,12x∴-=的坐标为2128(k-同理,设直线A2N的斜率为k2,则得点N的坐标为222222(,1414k k++12(2),(2)p py k t y k t=+=-12122k kk k t-∴=-+,直线MN的方程为:121121y y y yx x x x--=--,∴令y=0,得211212x y x yxy y-=-,将点M、N的坐标代入,化简后得:4xt=又2t>,∴402t<<椭圆的焦点为0)4t∴=3t=故当t =时,MN 过椭圆的焦点。

圆锥曲线大题综合:五个方程型(学生版)

圆锥曲线大题综合:五个方程型(学生版)

圆锥曲线大题综合归类:五个方程型目录重难点题型归纳 1【题型一】基础型 1【题型二】直线设为:x=ty+m型 4【题型三】直线无斜率不过定点设法:双变量型 7【题型四】面积最值 10【题型五】最值与范围型 13【题型六】定点:直线定点 15【题型七】定点:圆过定点 18【题型八】定值 21【题型九】定直线 23【题型十】斜率型:斜率和定 26【题型十一】斜率型:斜率和 29【题型十二】斜率型:斜率比 31【题型十三】斜率型:三斜率 34【题型十四】定比分点型:a=tb 36【题型十五】切线型 38【题型十六】复杂的“第六个方程” 41好题演练 45重难点题型归纳重难点题型归纳题型一基础型【典例分析】1已知椭圆x2a21+y2b21=1a1>b1>0与双曲线x2a22-y2b22=1a2>0,b2>0有共同的焦点,双曲线的左顶点为A-1,0,过A斜率为3的直线和双曲线仅有一个公共点A,双曲线的离心率是椭圆离心率的3倍.(1)求双曲线和椭圆的标准方程;(2)椭圆上存在一点P x P,y P-1<x P<0,y P>0,过AP的直线l与双曲线的左支相交于与A不重合的另一点B,若以BP为直径的圆经过双曲线的右顶点E,求直线l的方程.1已知F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的一个焦点,过点P t ,b 的直线l 交C 于不同两点A ,B .当t =a ,且l 经过原点时,AB =6,AF +BF =22.(1)求C 的方程;(2)D 为C 的上顶点,当t =4,且直线AD ,BD 的斜率分别为k 1,k 2时,求1k 1+1k 2的值.题型二直线设为:x =ty +m 型【典例分析】1已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,右顶点为P ,点Q 0,b ,PF 2=1,∠F 1PQ =60°.(1)求双曲线C 的方程;(2)直线l 经过点F 2,且与双曲线C 相交于A ,B 两点,若△F 1AB 的面积为610,求直线l 的方程.1已知椭圆C:x2a2+y2b2=1a>b>0的左焦点为F,右顶点为A,离心率为22,B为椭圆C上一动点,△FAB面积的最大值为2+1 2.(1)求椭圆C的方程;(2)经过F且不垂直于坐标轴的直线l与C交于M,N两点,x轴上点P满足PM=PN,若MN=λFP,求λ的值.题型三直线无斜率不过定点设法:双变量型【典例分析】1已知抛物线:y 2=2px p >0 ,过其焦点F 的直线与抛物线交于A 、B 两点,与椭圆x 2a 2+y 2=1a >1 交于C 、D 两点,其中OA ⋅OB =-3.(1)求抛物线方程;(2)是否存在直线AB ,使得CD 是FA 与FB 的等比中项,若存在,请求出AB 的方程及a ;若不存在,请说明理由.1已知双曲线E 的顶点为A -1,0 ,B 1,0 ,过右焦点F 作其中一条渐近线的平行线,与另一条渐近线交于点G ,且S △OFG =324.点P 为x 轴正半轴上异于点B 的任意点,过点P 的直线l 交双曲线于C ,D 两点,直线AC 与直线BD 交于点H .(1)求双曲线E 的标准方程;(2)求证:OP ⋅OH 为定值.题型四面积最值【典例分析】1已知椭圆x 23+y 22=1的左、右焦点分别为F 1,F 2.过F 1的直线交椭圆于B ,D 两点,过F 2的直线交椭圆于A ,C 两点,且AC ⊥BD ,垂足为P .(1)设P 点的坐标为(x 0,y 0),证明:x 203+y 202<1;(2)求四边形ABCD 的面积的最小值.1已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.2020年新高考全国卷Ⅱ数学试题(海南卷)题型五最值与范围型【典例分析】1设F 1、F 2分别是椭圆x 24+y 2=1的左、右焦点.(1)若P 是该椭圆上的一个动点,求PF 1 ⋅PF 2 =-54,求点P 的坐标;(2)设过定点M (0,2)的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.1已知椭圆E:x2a2+y2b2=1(a>b>0)一个顶点A(0,-2),以椭圆E的四个顶点为顶点的四边形面积为45.(1)求椭圆E的方程;(2)过点P(0,-3)的直线l斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与直线交y=-3交于点M,N,当|PM|+|PN|≤15时,求k的取值范围.2021年北京市高考数学试题题型六定点:直线定点【典例分析】1已知F为抛物线C:y2=2px(p>0)的焦点,O为坐标原点,M为C的准线l上的一点,直线MF的斜率为-1,△OFM的面积为1.(1)求C的方程;(2)过点F作一条直线l ,交C于A,B两点,试问在l上是否存在定点N,使得直线NA与NB的斜率之和等于直线NF斜率的平方?若存在,求出点N的坐标;若不存在,请说明理由.1已知椭圆C :x 2a 2+y 2b2=1(a >b >0),四点P 12,2 ,P 20,2 ,P 3-2,2 ,P 42,2 中恰有三点在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 不经过P 2点且与椭圆C 相交于A ,B 两点,线段AB 的中点为M ,若∠AMP 2=2∠ABP 2,试问直线l 是否经过定点?若经过定点,请求出定点坐标;若不过定点,请说明理由.题型七定点:圆过定点【典例分析】1如图,等边三角形OAB的边长为83,且其三个顶点均在抛物线E:x2=2py(p>0)上.(1) 求抛物线E的方程;(2) 设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q.证明以PQ为直径的圆恒过y轴上某定点【变式演练】1已知动点P到点F1,0的距离与到直线l:x=4的距离之比为12,记点P的轨迹为曲线E.(1)求曲线E的方程;(2)曲线E与x轴正半轴交于点M,过F的直线交曲线E于A,B两点(异于点M),连接AM,BM并延长分别交l于D,C,试问:以CD为直径的圆是否恒过定点,若是,求出定点,若不是,说明理由.【典例分析】1如图,已知抛物线C :x 2=4y ,过点M (0,2)任作一直线与C 相交于A ,B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).(1)证明:动点D 在定直线上;(2)作C 的任意一条切线l (不含x 轴)与直线y =2相交于点N 1,与(1)中的定直线相交于点N 2,证明:|MN 2|2-|MN 1|2为定值,并求此定值.【变式演练】1已知抛物线C :y 2=2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N .(Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM =λQO ,QN =μQO ,求证:1λ+1μ为定值..【典例分析】1已知直线l:x=my-1,圆C:x2+y2+4x=0.(1)证明:直线l与圆C相交;(2)设直线l与C的两个交点分别为A、B,弦AB的中点为M,求点M的轨迹方程;(3)在(2)的条件下,设圆C在点A处的切线为l1,在点B处的切线为l2,l1与l2的交点为Q.证明:Q,A,B,C四点共圆,并探究当m变化时,点Q是否恒在一条定直线上?若是,请求出这条直线的方程;若不是,说明理由.【变式演练】1已知双曲线E:x2a2-y2b2=1a>0,b>0的左、右焦点分别为F1、F2,F1F2=23且双曲线E经过点A3,2.(1)求双曲线E的方程;(2)过点P2,1作动直线l,与双曲线的左、右支分别交于点M、N,在线段MN上取异于点M、N的点H,满足PMPN=MHHN,求证:点H恒在一条定直线上.【典例分析】1已知点F是椭圆E:x2a2+y2b2=1(a>b>0)的右焦点,P是椭圆E的上顶点,O为坐标原点且tan∠PFO=33.(1)求椭圆的离心率e;(2)已知M1,0,N4,3,过点M作任意直线l与椭圆E交于A,B两点.设直线AN,BN的斜率分别为k1,k2,若k1+k2=2,求椭圆E的方程.【变式演练】1在平面直角坐标系中,己知圆心为点Q的动圆恒过点F(1,0),且与直线x=-1相切,设动圆的圆心Q的轨迹为曲线Γ.(Ⅰ)求曲线Γ的方程;(Ⅱ)过点F的两条直线l1、l2与曲线Γ相交于A、B、C、D四点,且M、N分别为AB、CD的中点.设l1与l2的斜率依次为k1、k2,若k1+k2=-1,求证:直线MN恒过定点.【典例分析】1设椭圆方程为x2a2+y2b2=1a>b>0,A-2,0,B2,0分别是椭圆的左、右顶点,动直线l过点C6,0,当直线l经过点D-2,2时,直线l与椭圆相切.(1)求椭圆的方程;(2)若直线l与椭圆交于P,Q(异于A,B)两点,且直线AP与BQ的斜率之和为-12,求直线l的方程.【变式演练】1已知点M1,3 2在椭圆x2a2+y2b2=1a>b>0上,A,B分别是椭圆的左、右顶点,直线MA和MB的斜率之和满足:k MA+k MB=-1.(1)求椭圆的标准方程;(2)斜率为1的直线交椭圆于P,Q两点,椭圆上是否存在定点T,使直线PT和QT的斜率之和满足k PT+k QT=0(P,Q与T均不重合)?若存在,求出T点坐标;若不存在,说明理由.【典例分析】1已知圆F 1:x 2+y 2+2x -15=0和定点F 2(1,0),P 是圆F 1上任意一点,线段PF 2的垂直平分线交PF 1于点M ,设动点M 的轨迹为曲线E .(1)求曲线E 的方程;(2)设A (-2,0),B (2,0),过F 2的直线l 交曲线E 于M ,N 两点(点M 在x 轴上方),设直线AM 与BN 的斜率分别为k 1,k 2,求证:k 1k 2为定值.【变式演练】1已知椭圆E :x 2a 2+y 2b2=1(a >0,b >0),离心率e =55,P 为椭圆上一点,F 1,F 2分别为椭圆的左、右焦点,若△PF 1F 2的周长为2+25.(1)求椭圆E 的方程;(2)已知四边形ABCD (端点不与椭圆顶点重合)为椭圆的内接四边形,且AF 2 =λF 2C ,BF 2 =μF 2D ,若直线CD 斜率是直线AB 斜率的52倍,试问直线AB 是否过定点,若是,求出定点坐标,若不是,说明理由.江西省重点中学协作体2023届高三下学期第一次联考数学(理)试题题型十三斜率型:三斜率【典例分析】1已知F是椭圆C:x2a2+y2b2=1(a>b>0)的右焦点,且P1,32在椭圆C上,PF垂直于x轴.(1)求椭圆C的方程.(2)过点F的直线l交椭圆C于A,B(异于点P)两点,D为直线l上一点.设直线PA,PD,PB的斜率分别为k1,k2,k3,若k1+k3=2k2,证明:点D的横坐标为定值.【变式演练】1在平面内动点P与两定点A1(-3,0),A2(3,0)连线斜率之积为-23.(1)求动点P的轨迹E的方程;(2)已知点F1(-1,0),F2(1,0),过点P作轨迹E的切线其斜率记为k(k≠0),当直线PF1,PF2斜率存在时分别记为k1,k2.探索1k⋅1k1+1k2是否为定值.若是,求出该定值;若不是,请说明理由.题型十四定比分点型:a =tb【典例分析】1已知椭圆C :x 2a 2+y 2b2=1(a >b >0),倾斜角为30°的直线过椭圆的左焦点F 1和上顶点B ,且S △ABF 1=1+32(其中A 为右顶点).(1)求椭圆C 的标准方程;(2)若过点M (0,m )的直线l 与椭圆C 交于不同的两点P ,Q ,且PM =2MQ ,求实数m 的取值范围.【变式演练】1已知点M ,N 分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的右顶点与上顶点,原点O 到直线MN 的距离为32,且椭圆的离心率为63.(1)求椭圆C 的方程;(2)斜率不为0的直线经过椭圆右焦点F 2,并且与椭圆交于A ,B 两点,若AF 2 =12F 2B ,求直线AB 的方程.题型十五切线型【典例分析】1法国数学家加斯帕尔·蒙日被誉为画法几何之父.他在研究椭圆切线问题时发现了一个有趣的重要结论:一椭圆的任两条互相垂直的切线交点的轨迹是一个圆,尊称为蒙日圆,且蒙日圆的圆心是该椭圆的中心,半径为该椭圆的长半轴与短半轴平方和的算术平方根.已知在椭圆C :x 2a 2+y 2b 2=1(a >b >0)中,离心率e =12,左、右焦点分别是F 1、F 2,上顶点为Q ,且QF 2 =2,O 为坐标原点.(1)求椭圆C 的方程,并请直接写出椭圆C 的蒙日圆的方程;(2)设P 是椭圆C 外一动点(不在坐标轴上),过P 作椭圆C 的两条切线,过P 作x 轴的垂线,垂足H ,若两切线斜率都存在且斜率之积为-12,求△POH 面积的最大值.【变式演练】1已知椭圆C:x2a2+y2b2=1a>b>0的上顶点为A,左、右焦点分别为F1、F2,三角形AF1F2的周长为6,面积为3.(1)求椭圆C的方程;(2)已知点M是椭圆C外一点,过点M所作椭圆的两条切线互相垂直,求三角形AF2M面积的最大值.题型十六复杂的“第六个方程”【典例分析】1如图,已知点B2,1,点N为直线OB上除O,B两点外的任意一点,BK,NH分别垂直y轴于点K,H,NA⊥BK于点A,直线OA,NH的交点为M.(1)求点M的轨迹方程;(2)若E3,0,C,G是点M的轨迹在第一象限的点(C在G的右侧),且直线EC,EG的斜率之和为0,若△CEG的面积为152,求tan∠CEG.【变式演练】1已知椭圆C的中心在原点O,焦点在x轴上,离心率为32,且椭圆C上的点到两个焦点的距离之和为4.(1)求椭圆C的方程;(2)设A为椭圆C的左顶点,过点A的直线l与椭圆交于点M,与y轴交于点N,过原点且与l平行的直线与椭圆交于点P.求SΔPAN⋅SΔPAM(SΔAOP)2的值.好题演练1(2023·贵州毕节·统考模拟预测)已知椭圆C的下顶点M,右焦点为F,N为线段MF的中点,O为坐标原点,ON=32,点F与椭圆C任意一点的距离的最小值为3-2.(1)求椭圆C的标准方程;(2)直线l:y=kx+m k≠0与椭圆C交于A,B两点,若存在过点M的直线l ,使得点A与点B关于直线l 对称,求△MAB的面积的取值范围.2(2023·天津南开·统考二模)已知椭圆x2a2+y2b2=1a>b>0的离心率为32,左、右顶点分别为A,B,上顶点为D,坐标原点O到直线AD的距离为255.(1)求椭圆的方程;(2)过A点作两条互相垂直的直线AP,AQ与椭圆交于P,Q两点,求△BPQ面积的最大值.3(2023·河北·统考模拟预测)已知直线l :x =12与点F 2,0 ,过直线l 上的一动点Q 作直线PQ ⊥l ,且点P 满足PF +2PQ ⋅PF -2PQ =0.(1)求点P 的轨迹C 的方程;(2)过点F 作直线与C 交于A ,B 两点,设M -1,0 ,直线AM 与直线l 相交于点N .试问:直线BN 是否经过x 轴上一定点?若过定点,求出该定点坐标;若不过定点,请说明理由.4(2023·北京东城·统考二模)已知焦点为F 的抛物线C :y 2=2px (p >0)经过点M (1,2).(1)设O 为坐标原点,求抛物线C 的准线方程及△OFM 的面积;(2)设斜率为k (k ≠0)的直线l 与抛物线C 交于不同的两点A ,B ,若以AB 为直径的圆与抛物线C 的准线相切,求证:直线l 过定点,并求出该定点的坐标.5(2023·四川自贡·统考三模)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的离心率e =22,设A 62,12 ,B -62,12,P 0,2 ,其中A ,B 两点在椭圆C 上.(1)求椭圆C 的方程;(2)过点P 的直线交椭圆C 于M ,N 两点(M 在线段AB 上方),在AN 上取一点H ,连接MH 交线段AB 于T ,若T 为MH 的中点,证明:直线MH 的斜率为定值.6(2023·江西赣州·统考二模)在平面直角坐标系xOy 中,F 1(-1,0),F 2(1,0),点P 为平面内的动点,且满足∠F 1PF 2=2θ,PF 1 ⋅PF 2 cos 2θ=2.(1)求PF 1 +PF 2 的值,并求出点P 的轨迹E 的方程;(2)过F 1作直线l 与E 交于A 、B 两点,B 关于原点O 的对称点为点C ,直线AF 2与直线CF 1的交点为T .当直线l 的斜率和直线OT 的斜率的倒数之和的绝对值取得值最小值时,求直线l 的方程.7(2023·四川乐山·统考三模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (2,0),短轴长等于焦距.(1)求C 的方程;(2)过F 的直线交C 于P ,Q ,交直线x =22于点N ,记OP ,OQ ,ON 的斜率分别为k 1,k 2,k 3,若(k 1+k 2)k 3=1,求|OP |2+|OQ |2的值.8(2023·贵州贵阳·统考模拟预测)已知椭圆C 1:x 2a 2+y 2b2=1a >b >0 与椭圆C 2:x 22+y 2=1的离心率相等,C 1的焦距是22.(1)求C 1的标准方程;(2)P 为直线l :x =4上任意一点,是否在x 轴上存在定点T ,使得直线PT 与曲线C 1的交点A ,B 满足PA PB =AT TB?若存在,求出点T 的坐标.若不存在,请说明理由.。

圆锥曲线 题型分类 知乎

圆锥曲线 题型分类 知乎

圆锥曲线题型分类
圆锥曲线是高中数学中的一个重要概念,涉及到许多类型的问题。

下面是圆锥曲线常见的题型分类:
1. 数形结合确定直线和圆锥曲线的位置关系
这个题型主要考察学生如何根据给定的条件判断直线和圆锥曲线的位置关系,例如直线与椭圆的位置关系、直线与双曲线的位置关系等。

2. 弦的垂直平分线问题
这个题型主要考察学生如何根据给定的条件判断一条弦的垂直平分线是否经过某个点,例如一条直线是否经过椭圆的两个焦点。

3. 动弦过定点的问题
这个题型主要考察学生如何根据给定的条件判断动弦是否经过某个定点,例如一条直线是否经过椭圆上的某个点。

4. 过已知曲线上定点的弦的问题
这个题型主要考察学生如何根据给定的条件判断是否存在一条直线经过已知曲线上的某个点,例如一条直线是否经过椭圆上的某个点。

5. 共线向量问题
这个题型主要考察学生如何根据给定的条件判断两条直线是否共线,例如两条直线是否平行或重合。

6. 面积问题
这个题型主要考察学生如何根据给定的条件计算圆锥曲线的面积,例如计算椭圆或双曲线的面积。

7. 弦或弦长为定值问题
这个题型主要考察学生如何根据给定的条件判断一条弦或弦长是否为定值,例如一条直线是否经过椭圆上的两点使得这条直线的长度为定值。

8. 角度问题
这个题型主要考察学生如何根据给定的条件判断两条直线或圆锥曲线之间的角度关系,例如两条直线是否垂直或两个圆锥曲线是否相交。

以上是圆锥曲线常见的题型分类,希望能对您有所帮助。

圆锥曲线经典题型总结(含答案)

圆锥曲线经典题型总结(含答案)

圆锥曲线整理1.圆锥曲线的定义:(1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|);(2)双曲线:||MF 1|-|MF 2||=2a (2a <|F 1F 2|); (3)抛物线:|MF |=d .圆锥曲线的定义是本部分的一个重点内容,在解题中有广泛的应用,在理解时要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。

若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。

若去掉定义中的绝对值则轨迹仅表示双曲线的一支。

2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时2222bx a y +=1(0a b >>)。

%(2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:2222b x a y -=1(0,0a b >>)。

(3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。

注意:1.圆锥曲线中求基本量,必须把圆锥曲线的方程化为标准方程。

2.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):椭圆:由x2,y 2分母的大小决定,焦点在分母大的坐标轴上。

圆锥曲线题型总结

圆锥曲线题型总结

直线和圆锥曲线常考题型运用的知识:1、中点坐标公式:,其中是点的中点坐标。

2、弦长公式:若点在直线上,则,这是同点纵横坐标变换,是两大坐标变换技巧之一,或者。

3、两条直线垂直:则两条直线垂直,则直线所在的向量4、韦达定理:若一元二次方程有两个不同的根,则。

常见的一些题型:题型一:数形结合确定直线和圆锥曲线的位置关系题型二:弦的垂直平分线问题题型三:动弦过定点的问题题型四:过已知曲线上定点的弦的问题题型五:共线向量问题题型六:面积问题题型七:弦或弦长为定值问题题型八:角度问题问题九:四点共线问题问题十:范围问题(本质是函数问题)问题十一、存在性问题:(存在点,存在直线y=kx+m,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)题型一:数形结合确定直线和圆锥曲线的位置关系例题1、已知直线与椭圆始终有交点,求的取值范围解:根据直线的方程可知,直线恒过定点(0,1),椭圆过动点,如果直线和椭圆始终有交点,则,即。

规律提示:通过直线的代数形式,可以看出直线的特点:题型二:弦的垂直平分线问题例题2、过点T(—1,0)作直线与曲线N :交于A、B两点,在x轴上是否存在一点E(,0),使得是等边三角形,若存在,求出;若不存在,请说明理由。

解:依题意知,直线的斜率存在,且不等于0。

设直线,,,。

由消y整理,得①由直线和抛物线交于两点,得即②由韦达定理,得:。

则线段AB的中点为。

线段的垂直平分线方程为:令y=0,得,则为正三角形,到直线AB的距离d为.解得满足②式此时。

题型三:动弦过定点的问题例题3、已知椭圆C:的离心率为,且在x轴上的顶点分别为A1(—2,0),A2(2,0).(I)求椭圆的方程;(II)若直线与x轴交于点T,点P为直线上异于点T的任一点,直线PA1,PA2分别与椭圆交于M、N点,试问直线MN 是否通过椭圆的焦点?并证明你的结论解:(I)由已知椭圆C的离心率,,则得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线常考五大题型
题型一 求圆锥曲线的参数值

例1 如果方程22124xymm表示双曲线,那么的m取值范围是
技巧与方法 有关圆锥曲线参数的值是常见题型之一,其解法多从曲线的性质入手,构造
方程解之。

变式训练 1、设椭圆2222100xymnmn、的右焦点与抛物线2y8x的焦点相
同,离心率为12,则此椭圆的方程为()
A、2211216xy B、2211612xy C、2214864xy D、2216448xy
2、 若椭圆2212xym的离心率22e,则m的值为
题型二 团锥曲线的离心率和弦长问题
例2
如图,椭圆与双曲线有公共焦点1F、2F,它们在第一象限

的交点为A,且12AFAF,1230AFF,则椭圆与双曲
线的离心率的倒数和为
A.23 B.3 C.2 D.1
方法与技巧
求圆锥曲线的离心率充分利用:

(l) 椭圆的离心率e=01ca,(e越大则椭圆越扁);

(2) 双曲线的离心e=1+ca, (e越大则双曲线开口越大);
(3) 椭圆、双曲线a、b、c之间的关系等,结合相关知识来解题。

变式训练 1、双曲线C:22221(0,0)xyabab的离心率为2,焦点到渐近线的距离为

3
,则C的焦距等于

2、在平面直角坐标系中,椭圆22221ab0abxy的焦距为2c,以o为圆心,a为半
径的圆M,过点2a0cP,作圆的两切线互相垂直,则离心率e=

x
y
例2 图
O
F1
F2

A
题型三 圆锥曲线的轨迹方程问题
求动点的轨迹方程的一般步骤
(1)建系——建立适当的坐标系;(2)设点——设轨迹上的任一点P(x,y);(3)列式——列出动
点P所满足的关系式;(4)代换——依条件式的特点,选用距离公式、斜率公式等将其转化
为x,y的方程式,并化简;(5)证明——证明所求方程即为符合条件的动点轨迹方程.

1、定义法求轨迹方程 已知平面内两定点(5,0),(5,AB,动点M满足
6MAMB
,则动点M的轨迹方程是

2、相关点法求轨迹方程 已知椭圆方程为22x+16yb(04b),抛物线方程为
2
4xby
.过抛物线的焦点作y轴的垂线,与抛物线在第一象限的交点为A,抛物线在点

A

的切线经过椭圆的右焦点F.
(1)求满足条件的椭圆方程和抛物线方程;
(2)设P为椭圆上的动点,由P向x轴作垂线PQ,垂足为Q,且直线PQ上一点M满
足||||MQPQ,求点M的轨迹方程,并说明轨迹是什么曲线.

3、直接法求轨迹方程 已知动圆过定点A(4,0),且在y轴上截得弦MN的长为8.
(1)求动圆圆心的轨迹C的方程;
(2)已知点B(-1,0),设不垂直于x轴的直线l与轨迹C交于不同的两点P,Q,若x轴是∠PBQ
的角平分线,证明:直线l过定点.
方法与技巧 求轨迹的常用方法
(1)直接法:如果动点满足的几何条件本身就是一些几何量(如距离与角)的等量关系,
或这些几何条件简单明了且易于表达,我们只需把这种关系转化为x、y的等式就得到曲线
的轨迹方程.
(2)待定系数法:已知所求曲线的类型,求曲线方程——先根据条件设出所求曲线的方
程,再由条件确定其待定系数.
(3)定义法:其动点的轨迹符合某一基本轨迹(如直线或圆锥曲线)的定义,则可根据定
义采用设方程,求方程系数得到动点的轨迹方程.
(4)代入法(相关点法):“相关点法”的基本步骤:
(1) 设点:设被动点坐标为(x,y),主动点坐标为(x1,y1);

(2) 求关系式:求出两个动点坐标之间的关系式11x,,fxyyfxy
(3) 代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程.
变式训练 1、设直线x-y=4a与抛物线y2=4ax交于两点A,B(a为定值),C为抛物线
上任意一点,求△ABC的重心的轨迹方程.
2、如图所示,过点P(2,4)作互相垂直的直线l1,l2,若l1交x轴于A,
l2交y轴于B,求线段AB中点M的轨迹方程.

题型四 圆锥曲线的最值及对称性问题
例3 已知抛物线y2=4x的焦点是F,点P是抛物线上的动点,又有点A(5,4),求|PA|+|PF|
的最小值,并求出取最小值时点P的坐标.
例4 已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与点P到该抛物线
准线的距离之和的最小值为

例5 已知椭圆2222:1(0)xyCabab过点(0,1),且离心率为32.
(1)求椭圆C的方程;
(2)已知点)0,1(A,点P是椭圆C上的一个动点,求PA的最小值及此时P点的坐标.
方法与技巧 圆锥曲线的最值问题的解法一般两种,一是几何法, 特别是用圆锥曲线的定
义和平面几何的有关结论来处理(数形结合); 二是代数法, 将圆锥曲线中的最值问题转化
为二次函数或三角函数的最值问题, 然后利用重要不等式、函数的单调性或三角函数的有界
性等来求解

例6 若抛物线2y=2x上两点12Ax,y、22Bx,y关于直线yxm对称,

且1212xx,则m的值为
方法技巧 圆锥曲线上对称性问题的通法是: ①若是关于点对称, 即用中点坐标;②若是
关于直线对称, 则转化为对称轴垂直的直线与圆锥有两交点. 且两交点的中点在对称轴上。
题型五 圆锥曲线的存在性问题

例7 已知椭圆C:)0(12222babyax的左、右两个焦点分别为)0 , 4(1F,
)0 , 4(2F
,上顶点为),0(bA,21FAF的周长为18.

(1)求椭圆C的标准方程及离心率;
(2)在椭圆C上是否存在点P,使12FPF为直角?若存在,请求出点P的坐标;若
不存在,请简要说明理由.

方法技巧 存在性问题, 其一般解法是先假设命题存在, 用待定系数法设出所求的曲线
方程或点的坐标, 再根据合理的推理, 若能推出题设中的系数, 则存在性成立, 否则, 不
成立

变式训练 已知抛物线2C:y=2x,直线y=2kx交C于A、B两点,M是线段AB的中
点,过M作x轴的垂线交C于点N。
(1) 证明:抛物线C在点N处的切线与AB平行;

(2) 是否存在实数k使0NANB,若存在,求k的值;若不存在,说明理由。

相关文档
最新文档