有理数应用题
有理数应用题

有理数综合应用型
例1 某检修小组从A地出发,在东西方向的马路上检修线路,如果规定向东行驶为正,向
(2)在第次纪录时距A地最远.
(3)若每千米耗油0.3升,每升汽油需7.2元,问检修小组工作一天需汽油费多少元?
例2 李强靠勤工俭学的收入维持上大学的费用.下面是他某一周的收支情况表(收入为
(2)照这样,李强一个月(按30天计算)能有多少节余?
(3)按以上的支出水平,李强一个月(按30天计算)至少有多少收入才能维持正常开支?例3 三溪中学的小卖部最近进了一批计算器,进价是每个8元,今天共卖出20个,实际
(1)这个小卖部的计算器今天卖出的平均价格是多少?
(2)这个小卖部今天卖计算器赚了多少元?
(2)若运进的粮食为购进的,购买价为2000元/吨,运出的粮食为卖出的,卖出价为2300元/吨,则这一周的利润为多少?
(3)若每周平均进出的粮食数量大致相同,问:再过几周粮库存粮食达到200吨?
例5 小王上周五在股市以收盘价每股25元买进某公司股票1000股,在接下来的一周交易日
⑴星期二收盘时,该股票每股多少元?
⑵本周内该股票收盘时的最高价,最低价分别是多少?
⑶已知买入股票与卖出股票均需要支付成交金额的千分之五的交易费,若小王在本
周五以收盘价将全部股票卖出,他的受益情况如何?
例6 下表列出国外几个城市与北京的时差(带符号的表示同一时刻比北京晚的小时数)。
城市纽约巴黎东京
时差(小时) -13 -7 +1
(1)如果现在北京时间是中午12:00,那么东京时间是多少?(2)如果小丽在北京14:00给远在纽约的舅舅打电话,你认为合适吗?(3)如果你在北京时间上午8:00从北京乘飞机去东京,飞机途中需飞2小时,问你到达东京的时间?。
(完整版)有理数加法应用题

有理数应用题一、有理数加减法1)温度问题1、如图是某地方春季一天的气温随时间的变化图象:请根据上图回答:(1)、何时气温最低?最低气温是多少?(2)、当天的最高气温是多少?这一天最大温差是多少?2、某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃。
若该地地面温度为21℃,高空某处温度为-39℃,求此处的高度是多少千米?3.一天,甲乙两人利用温差测量山峰的高度,甲在山顶测得温度是-1ºC,乙此时在山脚测得温度是5ºC,已知该地区每增加100米,气温大约降低0.6ºC,这个山峰的高度大约是多少米?4、已知水结成冰的温度是 0C,酒精冻结的温度是–117℃。
现有一杯酒精的温度为12℃,放在一个制冷装置里、每分钟温度可降低1.6℃,要使这杯酒精冻结,需要几分钟?(精确到0.1分钟)2)时差问题1.下表列出了国外几个大城市与北京的时差(带正号的数表示同一时刻比北京时间早的时数)(1)如果现在是北京时间上午8:00,那么东京时间是多少?(2)如果小强在北京时间下午15:00打电话给远在纽约的姑姑,你认为合适吗?试说明你的理由。
3)路程问题1.柳州出租车司机小李,一天下午以白沙客站为出发点,在南北走向的跃进路上营运,如果规定向北为正,向南为负,他这天下午行车里程(单位:千米)如下:+15,-2,+5,-13, +10,-7,-8,+12,+4,-5,+6(1)将最后一名乘客送到目的地时,小李距下午出车时的出发白沙客站多远? 在白沙客站的什么方向?(2)若每千米的价格为3.5元,这天下午小李的营业额是多少?2. 某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、-3、-5、+4、-8、+6、-3、-6、-4、+10。
(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?3.李老师在学校西面的南北路上从某点A出发来回检查学生的植树情况,设定向南的路程记为正数.向北的路程记为负数,那么李老师所行路程依次为(单位:百米):+12,-l0,+10,-8,-6,-5,-3.(1)求李老师最后是否回到出发点A?(2)李老师离开出发点A最远时有多少千米? (3)李老师共走了多少千米?4.在一条东西走向的马路旁,有青少年宫、党校、商场、医院四家公共场所.已知青少年宫在学校东300m处,商场在学校西200m处,医院在学校东500m处,若将马路近似地看作一条直线,以学校为原点,向东为正方向,用1个单位长度表示100m.(1)在数轴上表示四家公共场所的位置.(2)列式计算青少年宫与商场之间的距离.5.检修组乘汽车,沿公路检修线路,约定向东为正.向西为负,某天自A出发,到收工时,行走记录为(单位:千米):+8、-9、+4、+7、-2、-10、+18、-3、+7、+5 回答下列问题:(1)收工时在A地的哪边?距A地多少千米?(2)若每千米耗油0.3升,问从A地出发到收工时,共耗油多少升?6. 某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行-+-++--驶为负,一天中七次行驶纪录如下。
七年级有理数应用题

七年级有理数应用题
题目一
阿明的银行账户里有300元,他每周从账户中取出30元用来
购买午餐。
那么,经过几周后,阿明的账户将不再有钱?请你用有
理数解答这个问题。
解答
设经过x周后,阿明的账户将不再有钱。
此时,阿明每周从账
户中取出30元,所以总共取出的金额是30x元。
账户里剩下的钱等于初始金额减去总共取出的金额:300 - 30x。
当账户里不再有钱时,即剩下的金额为0,我们可以得到以下
方程:300 - 30x = 0。
解这个方程可以得到x的值,即经过几周后阿明的账户将不再
有钱。
答案
阿明的账户将不再有钱经过10周后。
题目二
一辆汽车沿着直线行驶,开始时汽车的初始位置是-50米,之后每秒向前行驶10米。
请问,经过多少秒后汽车会到达起始位置的正对面,即0米的位置?
解答
设经过t秒后汽车到达起始位置的正对面。
汽车从初始位置开始,每秒向前行驶10米,所以总共行驶的距离为10t米。
当汽车到达起始位置的正对面时,即行驶的距离为0,我们可以得到以下方程:-50 + 10t = 0。
解这个方程可以得到t的值,即经过多少秒后汽车会到达起始位置的正对面。
答案
汽车会在5秒后到达起始位置的正对面。
七年级数学有理数加减混合运算应用题

七年级数学有理数加减混合运算应用题
以下是一些七年级数学有理数加减混合运算应用题的例子:
1.小明从A地出发,向北走20米到达B地,然后向东走30米到达C地,最
后再向南走40米到达D地。
请问他最终离出发点A地有多远?
解答:小明从A地出发,先向北走20米到B地,再向东走30米到C地,最后向南走40米到D地。
因为北和南是相反的方向,所以20米和40米会相互抵消,只剩下向东的30米。
因此,他最终离A地30米。
2.一个书架上有10本图书,第一天借出了4本,第二天归还了2本。
请问两
天后书架上还剩多少本书?
解答:开始时有10本书,第一天借出了4本,所以剩下10 - 4 = 6本。
第二天归还了2本,所以6 + 2 = 8本。
因此,两天后书架上还剩8本书。
3.小华和小明一起从学校出发去图书馆。
小华先走了20分钟,然后小明开始
追赶他。
如果小明的速度是每小时6公里,而小华的速度是每小时4公里,请问小明需要多长时间才能追上小华?
解答:因为小华先走了20分钟,所以他已经走了4×20/60 = 1.33公里。
小明每小时比小华快6 - 4 = 2公里,所以他需要追赶1.33公里。
因此,所需时间为1.33/2 = 0.665小时,也就是40分钟。
人教版七年级上册数学第一章有理数应用题专项训练(word版含答案)

人教版七年级上册数学第一章有理数应用题专项训练1.某出租车沿某南北方向的公路上载客,约定前北为正,向南为负.某天自A地出发到收工时所走路线(单位:千米)为:+10,﹣3,+4,﹣8,+13,﹣2,+12,+8.(1)问收工时距A地多远?(2)若每千米路程耗油0.15升,问从A地出发到收工共耗油多少升?2.某自行车厂计划平均每天生产200辆,但是由于种种原因,实际每天生产量与计划量相比有出入.表是某周的生产情况(超产记为正,减产记为负):(1)根据记录的数据可知该厂星期三生产自行车多少辆?(2)产量最多的一天比产量最少的一天多生产自行车多少辆?3.出租车一天下午以家为出发地在东西方向营运,向东为正方向,向西为负方向,行车里程(单位:km)依先后载客次序记录如下:+8,﹣9,﹣7,+6,﹣3,﹣14,+5,+12(1)该出租车师傅将最后一名乘客送达到目的地,出租车离家有多远?(2)该出租车师傅下午离家最远有多少千米?(3)若汽车耗油量为0.2升/千米,这天下午接送乘客,出租车共耗油多少升?(4)若出租车起步价为10元,起步里程为3km(包括3km),超过部分每千米啊1.2元,问这天下午该出租车师傅的营业额是多少元?4.哈市出租车司机李师傅某天的营运全都是在一条东西方向的大街上运行的,若规定从出发点向东方向为正,向西方向为负,他这天走的里程如下:(单位:千米)-3,+4,-12,-5,+6,-8,-7,+9,-10,+11(1)李师傅第四次运营后的位置在出发点的哪个方向?多少千米处?(2)若每千米耗油0.04升,则这天营运耗油多少升?5.某服装厂一周计划生产2800套运动服,计划平均每天生产400套,超出计划产量的记为“+”,不足计划产量的记为“-”,下表记录的是该厂某一周的生产情况:表中星期六的记录情况被墨水涂污了.(1)根据记录可知,星期六工厂生产多少套运动服?(2)产量最多的一天比产量最少的一天多生产多少套运动服?(3)该服装厂工资结算方式如下:①每人每天基本工资200元.①以每天完成400套为标准,若当天超额完成任务,超额部分每套奖励10元;若当天未完成生产任务,则少生产一套扣掉15元.该服装厂采用流水作业方式生产,当天所得奖金总额按人均分配,若该工厂这一周每天都有20名工人生产,则这一周服装厂实际需要付给该工厂每名工人多少元?6.某市股民小张上星期五买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(单位:元):(1)本周三收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)若小张在本周四交易,问他的盈利情况如何?(交易时的手续费忽略不计)7.据新闻报道,渝万高铁于即将通车,为了保证安全,某动车检修小组沿铁路检修,约定前进为正,后退为负,某天自甲地出发到收工时所走路线(单位:km)为+10,-3,+4,-2,-9,+13,-2,+12,+8,+5;问:(1)检修小组第几次回到甲地?(2)收工时距甲地多远?(3)若每千米耗电25度,则从甲地出发到收工共耗电多少度.8.某水果店以每箱40元的价格从水果批发市场购进8箱苹果.若以每箱净重10千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下:-1,1,0,-2,-1,-1,-2,1.(1)这8箱苹果的总重量是多少千克?(2)如果把这些苹果全部以零售的形式卖掉,水果店将获利50%,那么苹果零售价应定为每千克多少元?(3)若第一天水果店以(2)中的单价售出了全部苹果的60%,第二天因害怕剩余的苹果腐烂变质,决定降价把剩余的苹果按原零售价的七五折销售完.请计算该水果店在销售这批苹果过程中盈利多少元?9.本市图书馆上周借书记录如下(超过100册记为正,不超过100册记为负):(1)上周星期三比星期四多借出多少册书?(2)上周平均每天借出多少册书?10.一辆出租车一天上午从某商场出发在东西大街上运行,若规定向东为正,向西为负,行车里程(单位:km)依次如下:+9,-8,-5,+6,-8,+9,-3,-7,-5,+10.(1)将最后一名乘客送到目的地,出租车离该商场有多远?(2)按出租车每行驶100km油耗为10L,1L汽油的售价为7.2元,计算出租车在该上午消耗汽油的金额是多少元?(3)如果不计其它成本,只计消耗的汽油费用,每千米收费3元,计算这名司机挣(或赔)了多少元?11.2020年新冠肺炎疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂每名工人计划每天生产300个医用口罩,一周生产2100个.由于种种原因,实际每天生产量与计划量相比有出入.下表是工人小王某周的生产情况(超产记为正,减产记为负).(1)根据记录的数据可知,小王星期五生产口罩______个;(2)根据表格记录的数据可知,小王本周实际生产口罩数量为______个;(3)若该厂实行每周计件工资制,每生产一个口罩可得0.8元,若超额完成周计划工作量,则超过部分每个另外奖励0.2元;若完不成每周的计划量,则少生产一个扣0.25元,小王这一周的工资总额是多少元?(4)若该厂实行每日计件工资制,每生产一个口罩可得0.8元.若超额完成每日计划工作量,则超过部分每个另外奖励0.2元;若完不成每天的计划量,则少生产一个扣0.25元,小王这一周的工资总额是多少元?12.有一批试剂,每瓶标准剂量为250毫升,现抽取8瓶样品进行检测,超过或不足标准剂量的部分分别用正、负数表示,记录结果如下(单位:毫升):+6,-2,+3,+10,-6,+5,-15,-8.(1)这8瓶样品试剂的总剂量是多少?(2)若增加或者减少每瓶试剂剂量的人工费为10元/毫升,求将这8瓶样品试剂再加工制作成标准剂量需要多少人工费?13.有6筐白菜,以每筐25千克为标准质量,超过的千克数记作正数,不足的千克数记作负数,称量后的记录如图.请回答下列问题:(1)这6筐白菜中最接近标准质量的这筐白菜为____________千克.(2)与标准质量相比,这6筐白菜总计超过或不足多少千克?14.某水果店以每箱200元的价格从水果批发市场购进20箱樱桃,若以每箱净重10千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重的记录如下表:(1)求n的值及这20箱樱桃的总重量;(2)若水果店打算以每千克25元销售这批樱桃,若全部售出可获利多少元;(3)实际上该水果店第一天以(2)中的价格只销售了这批樱桃的60%,第二天因为害怕剩余樱桃腐烂,决定降价把剩余的樱桃以原零售价的70%全部售出,水果店在销售这批樱桃过程中是盈利还是亏损,盈利或亏损多少元.15.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售.刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售________斤;(2)本周实际销售总量是否达到了计划数量?试说明理由;(3)若冬枣每斤按8元出售,每斤冬枣需要小明支付的平均运费是3元,那么小明本周销售冬枣实际共得多少元?16.出租车司机小李某天下午的运营是在南北走向的大街进行的,假定向南为正,向北为负,他那天下午行驶里程(单位:km)如下:+15,-3,+14,-11,+10,+4,-26(1)小李在送第几位乘客时行驶的路程最远?(2)小李送完最后一位乘客时所处的地点,在他最初出发地的什么方向?距离出发地多远?(3)若汽车耗油量为0.1L/km,这天下午汽车一共耗油多少升?17.新华文具用品店最近购进了一批钢笔,进价为每支6元,为了合理定价,在销售前五天试行机动价格,卖出时每支以10元为标准,超过10元的部分记为正,不足10元的部分记为负.文具店记录了这五天该钢笔的售价情况和售出情况,如表所示:(1)这五天中赚钱最多的是第_____天,这天赚钱_____元.(2)新华文具用品店这五天出售这种钢笔一共赚了多少钱?18.某股民上星期六买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况:(单位:元)(1)星期三收盘时每股是多少元?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知该股民买进股票时付了0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果他一直观望到星期六才将股票全部卖出,请算算他本周的收益如何?19.某城市治安巡逻队员乘车沿东西方向的一条主干线进行巡逻.某天早上从A地出发,晚上最后到达B地,约定向东为正方向,当天的行驶记录如下(单位:千米):+18,﹣9,+7,﹣12,﹣4,+12,﹣5,﹣6(1)B地在A地何方,相距多少千米?(2)问巡逻队员在距A地最远时的最远距离是多少千米?(3)每千米耗油0.6升,每升4.5元,这天共耗油费用为多少元?20.某冷库一天的冷冻食品进出记录如下表(运进用正数表示,运出用负数表示);(1)这天冷库的冷冻食品的质量相比原来是增加了还是减少了?请说明理由;(2)根据实际情况,现有两种方案:方案一:运进每吨冷冻食品费用200元,运出每吨冷冻食品费用400元;方案二:不管运进还是运出每吨冷冻食品费用都是300元.从节约运费的角度考虑,选择哪一种方案比较合算?参考答案:1.(1)34千米(2)9升2.(1)192辆(2)25辆3.(1)在家的西方,离家有2km(2)19千米(3)12.8升(4)128元4.(1)西方,16 千米(2)3升5.(1)星期六生产了448套运动服(2)多生产56套运动服(3)需付给每名工人1435元6.(1)34.5元(2)35.5元,26元(3)盈利5000元7.(1)第五次回到了甲地(2)距离甲地36km(3)从甲地出发到收工共耗电1700度8.(1)这8箱苹果的总重量是75千克(2)苹果的零售价应定为每千克6.4元(3)该水果店在销售这批苹果过程中盈利112元9.(1)上周星期三比星期四多借出39册书(2)上周平均每天借出105册书10.(1)出租车在商场西面,距商场2km处(2)消耗汽油的金额是50.4元(3)这名司机挣了159.6元11.(1)291(2)2111(3)1691元(4)1689.85元12.(1)1993毫升;(2)550元13.(1)24.5(2)总计超过3千克14.(1)5n ,203千克;(2)1075元;(3)是盈利的,盈利466元.15.(1)29(2)达到了计划数量(3)3585元16.(1)小李在送最后一位乘客时行车里程最远;(2)在他最初出发地的正南方向,距离出发地3km;(3)这天下午汽车共耗油8.3升17.(1)4,96(2)360元18.(1)34.5元(2)35.5元;26元(3)赚889.5元19.(1)B地在A地东方,相距1千米处(2)18千米(3)197.1元20.(1)减少了,理由见解析(2)从节约运费的角度考虑,选择方案二比较合算。
有理数应用题举例市公开课金奖市赛课一等奖课件

=54(米)
∴工作人员共修跑道54米
第6页
例3:下表列出了国外都市与北 都市 时差/
京时差。
时
(正号表示同一时刻比北京早 和时数)
纽约 —13
(1)假如现在时间是中午12:00, 巴黎 —7
那么东京 是多少?
东京 +1
(2)假如小芳给在纽约舅舅 打电话,她在北京时间下午14:00打电话,你认为
第4页
例2:麻桥中学定于11月举办运动会, 组委会在修整跑道 时,工作人员从 甲处动工,要求向南为正,向北为负, 从动工处甲处到收工处乙处所走路程 为:+10,—3,+4,—2,+ 13,—8,—7,—5,—2,(单位: 米)
(1)甲处与乙处相距多远?
(2)工作人员离开甲处最远是多少 米?
(3)工作人员共修跑道多少米?
有理数应用题举例
第1页
例1:每袋小麦原则重量为90公斤, 10袋小麦称重统计下列:
91 91 91.5 89 91.2 91.3 88.7 88.8 91.8 91.1
10袋小麦总计超出多少公斤或不 足多少公斤?10袋小麦总重是多 少公斤?
第2页
解:以90公斤为原则,超出重量记为正数,不足 重量记为负数。则10袋小麦相应数分别为:
第5页
解:(1)10-3+4-2+13-8-7-5-2
=10+4+13-3-2-8-7-5-2
=27-27
பைடு நூலகம் =0(米)
∴甲处与乙处相距0米,即在原处。
(2)工作人员离开甲处距离依次为:10,7, 11, 9, 22 , 14, 7 ,2, 0。(米)
∴工作人员离开甲处最远是22米。
(2)10+3+4+2+13+8+7+5+2
初一上册数学有理数应用题

初一上册数学有理数应用题1、题目:小明家离学校的距离是4公里,他骑自行车以每小时12公里的速度从家出发去学校。
如果他已经骑了15分钟,那么他还有多远的距离到达学校?解答:小明每小时骑行的距离是12公里,因此15分钟(即1/4小时)骑行的距离是:12/4=3 公里。
小明家到学校的总距离是4公里,所以他还有4−3=1 公里的距离到学校。
2、题目:一个温度计显示的室内温度是20°C。
夜间温度下降了12°C,那么夜间的室内温度是多少度?解答:室内温度原来是20°C,下降了12°C后,温度变为 20−12=8°C。
3、题目:在一次测验中,小华得到了80分,这次成绩比上一次提高了20%。
请问小华上一次测验的分数是多少?解答:将提高的20%表示为小华上次成绩的百分比,设上次成绩为 x 分,则 x×20%=x ×0.2 分是成绩提高的分数。
由于这次成绩是80分,所以 x+x×0.2=80,解这个方程得1.2x=80,所以 x= 80/1.2=66.67(约等于67分)。
4、题目:一条河流的水位在连续下雨后上升了1.5米,而随后两天的水位分别下降了0.4米和0.3米。
请问两天后河流的水位比之前上升了多少米?解答:水位总共上升的量是 1.5−0.4−0.3=0.8 米。
5、题目:一个储蓄罐里有50个硬币,其中1元硬币和5角硬币的数量之和是50,但1元硬币的数量是5角硬币数量的两倍。
请问储蓄罐里各有多少个1元和5角硬币?解答:设1元硬币的数量是 x,5角硬币的数量是 y。
根据题目条件,有两个方程:x+y=50 和 x=2y。
将第二个方程代入第一个方程,得到 2y+y=50,解得 y=50/3≈16.67(约等于17个),所以 x=2×17=34。
所以储蓄罐里有大约34个1元硬币和17个5角硬币。
有理数运算应用题

1.一辆货车从超市出发,向东走了2km,到达小刚家,继续向东走了3km到达小红家,又向西走了9km到达小英家,最后回到超市.(1)请以超市为原点,以向东方向为正方向,用1个单位长度表示1km,画出数轴.并在数轴上表示出小刚家、小红家、小英家的位置;(2)小英家距小刚家有多远?(3)货车一共行驶了多少千米?2.小明靠勤工俭学的收入维持上大学的基本费用,下面是小明一周收支情况表(收入为正,单位:元)(1)一周内小明有多少结余?(2)照这样,一个月(按30天计算)小明能有多少结余?(3)按以上支出,小明一个月(按30天计算),至少要赚多少钱,才能维持正常开支。
3.小花猫从某点O出发在一直线上来回跑动,假定向右跑的路程记为正数,向左跑的路程记为负数,跑动的各段路程依次为(单位:米):+4,-2,+10,-7,-6,+9,-10,+12.(1)问:小花猫最后在出发点的哪一边?离开出发点O相距多少米?(2)在跑动过程中,如果每跑过10米奖励一条小鱼,则小花猫一共得到多少条小鱼?3.某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,在某个时刻停留在A处,以岗亭为原点,向北方向正,这段时间行驶记录如下(单位,千米)+-+-+-+-10,9,1,15,6,14,4,2(1)A在岗亭的哪个方向,距离岗亭多元?(2)如果每10千米耗油0.5升,且巡警最后返回到岗亭,问共耗油多少升?4. “十一”黄金周期间,某风景区在7天中来旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数。
(1)若9月30日来旅游人数记为a,请用a的代数式表示10月2日来旅游的人数。
(2)请判断七天内游客人数最多的是日,最少的是日。
它们相差_________万人?(3)以9月30号游客人数为0点,用折线统计图表示这七天的游客人数变化情况。
5.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 有理数应用题 一、有理数加减法 1)温度问题 1、如图是某地方春季一天的气温随时间的变化图象:
请根据上图回答: (1)、何时气温最低?最低气温是多少? (2)、当天的最高气温是多少?这一天最大温差是多少?
2、某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃。若该地地面温度为21℃,高空某处温度为-39℃,求此处的高度是多少千米?
3.一天,甲乙两人利用温差测量山峰的高度,甲在山顶测得温度是-1ºC,乙此时在山脚测得温度是5ºC,已知该地区每增加100米,气温大约降低0.6ºC,这个山峰的高度大约是多少米?
4、已知水结成冰的温度是0C,酒精冻结的温度是–117℃。现有一杯酒精的温度为12℃,放在一个制冷装置里、每分钟温度可降低1.6℃,要使这杯酒精冻结,需要几分钟? (精确到0.1分钟) 2
2)时差问题 1.下表列出了国外几个大城市与北京的时差(带正号的数表示同一时刻比北京时间早的时数) 城市 纽约 巴黎 东京 与北京的时差 -13 -7 +1 (1) 如果现在是北京时间上午8:00,那么东京时间是多少?
(2) 如果小强在北京时间下午15:00打电话给远在纽约的姑姑,你认为合适吗?试说明你的理由。
3)路程问题 1.柳州出租车司机小李,一天下午以白沙客站为出发点,在南北走向的跃进路上营运,如果规定向北为正,向南为负,他这天下午行车里程(单位:千米)如下: +15,-2,+5,-13, +10,-7,-8,+12,+4,-5,+6 (1)将最后一名乘客送到目的地时,小李距下午出车时的出发白沙客站多远? 在白沙客站的什么方向? (2)若每千米的价格为3.5元,这天下午小李的营业额是多少?
2. 某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、 3、 5、 +4、 8、 +6、 3、6、 4、 +10。 (1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向? (2)若每千米的价格为2.4元,司机一个下午的营业额是多少?
3.李老师在学校西面的南北路上从某点A出发来回检查学生的植树情况,设定向南的路程记为正数.向北的路程记为负数,那么李老师所行路程依次为(单位:百米):+12,-l0,+10,-8,-6,-5,-3. (1)求李老师最后是否回到出发点A?(2)李老师离开出发点A最远时有多少千米? (3)李老师共走了多少千米? 3
4.在一条东西走向的马路旁,有青少年宫、党校、商场、医院四家公共场所.已知青少年宫在学校东300m处,商场在学校西200m处,医院在学校东500m处,若将马路近似地看作一条直线,以学校为原点,向东为正方向,用1个单位长度表示100m. (1)在数轴上表示四家公共场所的位置. (2)列式计算青少年宫与商场之间的距离.
5.检修组乘汽车,沿公路检修线路,约定向东为正.向西为负,某天自A出发,到收工时,行走记录为(单位:千米): +8、-9、+4、+7、-2、-10、+18、-3、+7、+5 回答下列问题: (1)收工时在A地的哪边?距A地多少千米? (2)若每千米耗油0.3升,问从A地出发到收工时,共耗油多少升?
6. 某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下。(单位:km)4,7,9,8,6,5,2 1) 求收工时距A地多远? 2) 在第 次纪录时距A地最远。 3) 若每千米耗油0.3升,问共耗油多少升? 4
7.某检修小组乘一辆汽车沿检修路约定向东走为正,某天从A地出发到收工是行走记录(单位:km):+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6,求:
(1) 问收工是检修小组在A地的哪一边,距A地多远? (2) 若每千米汽车耗油3升,开工是储存180升汽油,回到收工是中途是否需要加油,若加油最少加多少升?若不需要加油到收工时,还剩多少升汽油?
8.小虫从某点O出发在一直线上来回爬行,假定向右爬行的路程记整数为正数,向左爬行的路程记为负数,爬行的各段路程依次为(单位:cm):+5,-3,+10,-8,-6,+12,-10.
求:(1)小虫最后是否回到出发点O? (2)小虫离出发点O最远是多少厘米? (3) 在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫一共得到多少粒芝麻?
4) 身高、体重、成绩等问题 1.电视台的体育频道经常播放篮球比赛,张明同学在收看比赛时,当解说员介绍每个队员
的身高后,张明同学能用简便方法很快的把这个球队的队员平均身高计算出来.你行吗?请做出下题:某球队10名队员的身高如下(单位:cm):173,171,175,177,180,178,179,174,184,190.求这10名队员的平均身高. 5
2、下列是我校七年级5名学生的体重情况, (1)试完成下表: 姓名 小颖 小明 小刚 小京 小宁 体重(千克) 34 45 体重与平均体重的差 -7 +3 -4 0
(2)谁最重?谁最轻? (3)最重的与最轻的相差多少?
3.体育课上,某中学对七年级男生进行了引体向上测试,以能做7个为标准,超过的次数记为正数,不足的次数记为负数,其中8名男生的成绩为+2,-1,+3,0,-2,-3,+1,0
(1) 这8名男生的百分之几达到标准? (2) 他们共做了多少次引体向上?
4、七年级一班某次数学测验的平均成绩为80分,数学老师以平均成绩为基准,记作0,把小龙、小聪、小梅、小莉、小刚这五位同学的成绩简记为+10,–15,0,+20,–2.问这五位同学的实际成绩分别是多少分?
5.某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下+8,-3,+12,-7,-10,-3,-8,+1,0,+10. (1)这10名同学中最高分是多少?最低分是多少? (2)10名同学中,低于80分的所占的百分比是多少? (3)10名同学的平均成绩是多少? 6
5)销售问题 1、某商店营业员每月的基本工资为300元,奖金制度是:每月完成规定指标10000元营业额的,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%,该商店的一名营业员九月份完成营业额13200元,问他九月份的收入为多少元?
2、某商场老板对今年上半年每月的利润作了如下记录:1、2、5、6月盈利分别是13万元、12万元、12.5万元、10万元,3、4月亏损分别是0.7万元和0.8万元。试用正、负数表示各月的利润,并算出该商场上半年的总利润额。
3、小红和小明在游戏中规定:长方形表示加,圆形表示减,结果小者获。列式计算,小明和小红谁为胜者?
4、淮海商场经理对今年上半年每月的利润作了如下记录:1、2、5、6月盈利分别是33万元、32万元、52.5万元、28万元,3、4月亏损分别是17.7万元和17.8万元。试用正、负数表示各月的利润,并算出该商场上半年的总利润额。
6) 水位问题 1、在“十·一”黄金周期间,淮北市风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数): 日期 1日 2日 3日 4日 5日 6日 7日 人数变化单位:万人 1.6 0.8 0.4 -0.4 -0.8 0.2 -1.2
(1) 请判断七天内游客人数最多的是哪天?最少的是哪天?它们相差多少万人? (2) 若9月30日的游客人数为2万人,求这7天的游客总人数是多少万人?
小红:小明:4.5
-6-7-823.21.11.4 7
2、下表记录的是流花河今年某一周内的水位变化情况,上周末(星期六)的水位已达到警戒水位33米。(正号表示水位比前一天上升,负号表示水位比前一天下降)
⑴本周哪一天河流的水位最高?哪一天河流的水位最低?它们位于警戒水位之上还是之下? ⑵与上周末相比,本周末河流的水位是上升了还是下降了? ⑶以警戒水位作为零点,用折线统计图表示本周的水位情况。
水位变化(米) 解:
日 一 二 三 四 五 六 星期 3、某国某股民上星期六买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(单位:元)
(1)星期三收盘时,每股是多少元? (2)本周内最高价是每股多少元?最低价是每股多少元? (3)已知此股民买进股票时付了1.5‰的手续费,卖出时需付成交额1.5‰的手续费和1‰的交易税,如果吉姆在星期六收盘前将全部股票卖出,他的收益情况如何?
星期 日 一 二 三 四 五 六 水位变化(米) +0.2 +0.8 -0.4 +0.2 +0.3 -0.5 -0.2
星期 一 二 三 四 五 六 每股涨跌 +4 4.5 -1 -2.5 -6 +2
0 0.2 0.4 0.6 0.8 1 8
4.一个病人每天下午需要测量血压,下表为病人周一到周五收缩压的变化情况,该病人上周日的收缩压为160单位.
问:(1)本周哪一天血压最高?哪一天最低? (2)与上周日相比,病人周五的血压是上升了还是下降了?
5.某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数)
星期 一 二 三 四 五 六 日 增减 -5 +7 -3 +4 +10 -9 -25 (1) 本周三生产了多少辆摩托车?
(2) 本周总生产量与计划生产量相比,是增加还是减少? (3) 产量最多的一天比产量最少的一天多生产了多少辆?
有理数乘除法 1. 10袋小麦以每袋150千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:-6,-3,-1,-2,+7,+3,+4,-3,-2,+1与标准重量相比较,10袋小麦总计超过或不足多少千克?10袋小麦总重量是多少千克?
2. 火车在东西方向的直行道上运行,规定自车站向东为正,向西为负,进站以前的时间为负,进站以后的时间为正。如果v= 60 km/h, t= 3h,火车在何处?如果v =65 km/h, t = -3.4h,火车又在何处?
星期 一 二 三 四 五 收缩压的变化(与前一天相比较) +30 -20 +17 +18 -20