第21章 一次函数 冀教版初中数学九年级下册达标检测卷(含答案)
2022年最新冀教版八年级数学下册第二十一章一次函数章节测试试题(含详细解析)

八年级数学下册第二十一章一次函数章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一次函数y ax b =-+,0ab <,且y 随x 的增大而减小,则其图象可能是( )A .B .C .D .2、在平面直角坐标系中,正比例函数y =kx (k <0)的图象的大致位置只可能是( )A .B .C .D .3、关于一次函数31y x =-+,下列结论不正确的是( )A .图象与直线3y x =-平行B .图象与y 轴的交点坐标是(0,1)C .y 随自变量x 的增大而减小D .图象经过第二、三、四象限4、在平面直角坐标系中,若函数2y x b =+的图象经过第一、二、三象限,则b 的取值( )A .小于0B .等于0C .大于0D .非负数 5、直线23y x =-不经过点( )A .(0,0)B .(﹣2,3)C .(3,﹣2)D .(﹣3,2)6、已知一次函数4y kx =+,其中y 的值随x 值的增大而减小,若点A 在该函数图象上,则点A 的坐标可能是( )A .(1,6)B .(3,4)C .(1,2)--D .(2,5)-7、已知一次函数y =k 1x +b 1和一次函数y 1=k 2x +b 2的自变量x 与因变量y 1,y 2的部分对应数值如表所示,则关于x 、y 的二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩的解为( )A .52x y =-⎧⎨=-⎩B .45x y =⎧⎨=⎩C .23x y =⎧⎨=⎩D .13x y =-⎧⎨=-⎩ 8、已知点()11,A m y -和点()21,B m y +在一次函数()21y k x =++的图象上,且12y y >,下列四个选项中k 的值可能是( )A .-3B .-1C .1D .39、若点(-3,y 1)、(2,y 2)都在函数y =-4x +b 的图像上,则y 1与y 2的大小关系( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .无法确定10、下列函数中,一次函数是( )A .12y x =+B .-2y x =C .22y x =+D .y mx n =+(m 、n 是常数)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、解决含有多个变量的问题时,可以分析这些变量之间的关系,从中选取一个取值能影响其他变量的值的变量作为_______,然后根据问题的条件寻求可以反映实际问题的函数,以此作为解决问题的数学模型.2、点(1,)A m ,(2,)B n 是直线y x =-上的两点,则m __n .(填<,>或)=3、下列函数:①y kx =;②23y x =;③2(1)y x x x =--;④21y x =+;⑤22y x =-.其中一定是一次函数的有____________.(只是填写序号)4、如图,直线1l 的解析式为y =,直线2l 的解析式为y =,1B 为2l 上的一点,且1B 点的坐标为,作直线11B A x ∥轴,交直线1l 于点1A ,再作211B A l ⊥于点1A ,交直线2l 于点2B ,作22B A x ∥轴,交直线于1l 点2A ,再作321B A l ⊥,交直线2l 于点3B ,作33B A x ∥轴,交直线1l 于点3A 按此作法继续作下去,则1A 的坐标为________,2022A 的坐标为________.5、将直线2y x 向上平移1个单位后的直线的表达式为______.三、解答题(5小题,每小题10分,共计50分)1、【数学阅读】如图1,在△ABC 中,AB =AC ,点P 为边BC 上的任意一点,过点P 作PD ⊥AB ,PE ⊥AC ,垂足分别为D ,E ,过点C 作CF ⊥AB ,垂足为F ,求证:PD +PE =CF .小明的证明思路是:如图2,连接AP ,由△ABP 与△ACP 面积之和等于△ABC 的面积可以证得:PD +PE =CF .【推广延伸】如图3,当点P 在BC 延长线上时,其余条件不变,请运用上述解答中所积累的经验和方法,猜想PD ,PE 与CF 的数量关系,并证明.【解决问题】如图4,在平面直角坐标系中,点C 在x 轴正半轴上,点B 在y 轴正半轴上,且AB =AC .点B 到x 轴的距离为3.(1)点B的坐标为_____________;(2)点P为射线..CB上一点,过点P作PE⊥AC于E,点P到AB的距离为d,直接写出PE与d的数量关系_______________________________;(3)在(2)的条件下,当d=1,A为(-4,0)时,求点P的坐标.2、某单位要制作一批宣传材料,甲公司提出:每份材料收费25元,另收2000元的设计费;乙公司提出:每份材料收费35元,不收设计费.(1)请用含x代数式分别表示甲乙两家公司制作宣传材料的费用;(2)试比较哪家公司更优惠?说明理由.3、国庆期间,小龚自驾游去了离家156千米的月亮湾,如图是小龚离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求小龚出发36分钟时,离家的距离;(2)求出AB段的图象的函数解析式;(3)若小龚离目的地还有72千米,求小龚行驶了多少小时.4、如图1,一个正立方体铁块放置在圆柱形水槽内,水槽的底面圆的面积记为1S,正立方体的底面正方形的面积记为S.现以一定的速度往水槽中注水,28秒时注满水槽.此时停止注水,并立刻将2立方体铁块用细线竖直匀速上拉直至全部拉出水面.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图2所示.(1)正立方体的棱长为______cm ,12:S S =______;(2)当圆柱形水槽内水面高度为12cm 时,求注水时间是几秒?(3)铁块完全拉出时,水面高度为______cm .5、如图,长方形AOBC 在直角坐标系中,点A 在y 轴上,点B 在x 轴上,已知点C 的坐标是(8,4).(1)求对角线AB 所在直线的函数关系式;(2)对角线AB 的垂直平分线MN 交x 轴于点M ,连接AM ,求线段AM 的长;(3)若点P 是直线AB 上的一个动点,当△PAM 的面积与长方形OACB 的面积相等时,求点P 的坐标.-参考答案-一、单选题1、B【解析】【分析】根据一次函数y ax b =-+的图象是y 随x 的增大而减小,可得0a >,再由0ab <,可得0b <,即可求解.【详解】 解:一次函数y ax b =-+的图象是y 随x 的增大而减小,∴0a -< ,0a ∴>;又0ab <,0b ∴<,∴一次函数y ax b =+的图象经过第二、三、四象限.故选:B【点睛】本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.2、A【解析】略3、D【解析】【分析】根据一次函数的性质对A 、C 、D 进行判断;根据一次函数图象上点的坐标特征对D 进行判断,0k >,y 随x 的增大而增大,函数从左到右上升;0k <,y 随x 的增大而减小,函数从左到右下降.由于y kx b =+与y 轴交于(0,)b ,当0b >时,(0,)b 在y 轴的正半轴上,直线与y 轴交于正半轴;当0b <时,(0,)b 在y 轴的负半轴,直线与y 轴交于负半轴.【详解】解:A 、函数31y x =-+的图象与直线3y x =-平行,故本选项说法正确;B 、把0x =代入311y x =-+=,所以它的图象与y 轴的交点坐标是(0,1),故本选项说法正确;C 、30k =-<,所以y 随自变量x 的增大而减小,故本选项说法正确;D 、30k =-<,10b =>,函数图象经过第一、二、四象限,故本选项说法不正确;【点睛】本题考查了一次函数的性质,以及k 对自变量和因变量间的关系的影响,熟练掌握k 的取值对函数的影响是解决本题的关键.4、C【解析】【分析】一次函数y kx b =+过第一、二、三象限,则0,0k b >>,根据图象结合性质可得答案.【详解】解:如图,函数2y x b =+的图象经过第一、二、三象限,则函数2y x b =+的图象与y 轴交于正半轴,0,b故选C【点睛】本题考查的是一次函数的图象与性质,掌握“一次函数y kx b =+过第一、二、三象限,则0,0k b >>”是解本题的关键.5、B【解析】将各点代入函数解析式即可得.【详解】解:A 、当0x =时,0y =,即经过点(0,0),此项不符题意;B 、当2x =-时,24(2)333y =-⨯-=≠,即不经过点(2,3)-,此项符合题意; C 、当3x =时,2323y =-⨯=-,即经过点(3,2)-,此项不符题意;D 、当3x =-时,2(3)23y =-⨯-=,即经过点(3,2)-,此项不符题意;故选:B .【点睛】本题考查了正比例函数,熟练掌握正比例函数的图象与性质是解题关键.6、D【解析】【分析】先判断0,k < 再利用待定系数法求解各选项对应的一次函数的解析式,即可得到答案.【详解】 解: 一次函数4y kx =+,其中y 的值随x 值的增大而减小,0,k ∴<当1,6x y ==时,则46,k 解得2k =,故A 不符合题意,当3,4x y ==时,则344,k 解得0,k = 故B 不符合题意;当1,2x y =-=-时,则42,k 解得6,k = 故C 不符合题意;当2,5x y =-=时,则245,k 解得1,2k =- 故D 符合题意;【点睛】本题考查的是一次函数的性质,利用待定系数法求解一次函数的解析式,掌握“利用待定系数法求解一次函数的解析式”是解本题的关键.7、C【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题.【详解】解:由表格可知,一次函数y 1=k 1x +b 1和一次函数y 2=k 2x +b 2的图象都经过点(2,3),∴一次函数y 1=k 1x 与y =k 2x +b 的图象的交点坐标为(2,3),∴关于x ,y 的二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩的解为23x y =⎧⎨=⎩. 故选:C .【点睛】本题考查了一次函数图像交点坐标与方程组解的关系:对于函数y 1=k 1x +b 1,y 2=k 2x +b 2,其图象的交点坐标(x ,y )中x ,y 的值是方程组1122y k x b y k x b +⎧⎨+⎩==的解. 8、A【解析】【分析】由m-1<m+1时,y 1>y 2,可知y 随x 增大而减小,则比例系数k +2<0,从而求出k 的取值范围.【详解】解:当m-1<m+1时,y1>y2,y随x的增大而减小,∴k+2<0,得k<﹣2.故选:A.【点睛】本题考查一次函数的图象性质:当k<0,y随x增大而减小,难度不大.9、A【解析】【分析】根据一次函数的性质得出y随x的增大而减小,进而求解.【详解】由一次函数y=-4x+b可知,k=-4<0,y随x的增大而减小,∵-3<2,∴y1>y2,故选:A.【点睛】本题考查一次函数的性质,熟知一次函数y=kx+b(k≠0),当k<0时,y随x的增大而减小是解题的关键.10、B【解析】【分析】根据一次函数的定义:形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数逐一判断即可.【详解】解:A.12yx=+右边不是整式,不是一次函数,不符合题意;B.y=-2x是一次函数,符合题意;C.y=x2+2中自变量的次数为2,不是一次函数,不符合题意;D.y=mx+n(m,n是常数)中m=0时,不是一次函数,不符合题意;故选:B.【点睛】本题考查一次函数的定义,解题的关键是掌握形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数.二、填空题1、自变量【解析】略2、>【解析】【分析】根据正比例函数的增减性进行判断即可直接得出.【详解】解:10k=-<,∴y随着x的增大而减小,12<,m n∴>.故答案为:>.【点睛】题目主要考查正比例函数的增减性质,理解题意,熟练掌握运用函数的增减性是解题关键.3、②③⑤【解析】【分析】根据一次函数的定义条件解答即可.【详解】解:①y =kx 当k =0时原式不是一次函数; ②23y x =是一次函数; ③由于2(1)y x x x =--=x ,则2(1)y x x x =--是一次函数;④y =x 2+1自变量次数不为1,故不是一次函数;⑤y =22−x 是一次函数.故答案为:②③⑤.【点睛】本题主要考查了一次函数的定义,一次函数y =kx +b 的定义条件是:k 、b 为常数,k ≠0,自变量次数为1.4、 20212021(322)⨯【解析】【分析】过点1A 作1A D x ⊥ 轴于点D ,点2A 作2A E x ⊥ 轴于点E ,可先求出点1A 的坐标为( ,从而得到1OA =1112A D OA = ,得到130DOA ∠=︒ ,同理160B OD ∠=︒ ,可得到111AOB AOD ∠=∠,2122OB A B = ,再由22B A x ∥轴,可得到2224B A OB == ,再根据等腰三角形的性质可得212OA OA ==,进而求出(2A ,同理得到点(3A ,由此发现规律,即可求解. 【详解】解:如图,过点1A 作1A D x ⊥ 轴于点D ,点2A 作2A E x ⊥ 轴于点E ,∵1B 点的坐标为,11B A x ∥轴,∴点1A ,∴当y = ,3x = ,∴点1A 的坐标为( ,∴OD =3,1A D = ,∴1OA , ∴1112A D OA = ,∴130DOA ∠=︒ ,∵11B A x ∥轴,∴11130B AO AOD ∠=∠=︒ , 同理160B OD ∠=︒ ,∴1130AOB ∠=︒ ,∴111AOB AOD ∠=∠,2122OB A B = ,∵1OA =∴24OB ,∵22B A x ∥轴,∴221B A O AOD ∠=∠, ∴2211B A O AOB ∠=∠,∴2224B A OB == ,∵211B A l ⊥,∴212OA OA ==,∵130DOA ∠=︒ ,∴2212A E OA ==, ∴6OE = ,∴点(2A ,同理点(3A ,由此得到()11322n n n A --⨯ ,∴2022A 的坐标为()20212021322⨯ .故答案为:( ,()20212021322⨯ 【点睛】本题主要考查了一次函数的性质,等腰三角形的性质,直角三角形的性质,根据题意得到规律是解题的关键.5、21y x =+【解析】【分析】直线向上平移1个单位,将表达式中x 保持不变,等号右面加1即可.【详解】解:由题意知平移后的表达式为:21y x =+故答案为21y x =+.【点睛】本题考查了一次函数的平移.解题的关键在于明确一次函数图象平移时左加右减,上加下减.三、解答题1、推广延伸:PD=PE+CF ,证明见解析;解决问题:(1)(0,3);(2)PE =3+d 或PE =3-d ;(3)1,43⎛⎫- ⎪⎝⎭或1,23⎛⎫ ⎪⎝⎭【解析】【分析】推广延伸:连接AP ,由△ABP 与△ACP 面积之差等于△ABC 的面积可以证得三线段间的关系; 解决问题:(1)由点B 到x 轴的距离及点B 在y 轴正半轴上即可得到点B 的坐标;(2)分两种情况:当点P 在CB 延长线上时,由推广延伸的结论即可得PE 与d 的关系;当点P 在线段CB 上时,由阅读材料中的结论可得PE 与d 的关系;(3)由点A 的坐标及AB =AC 可求得点C 的坐标,从而可求得直线CB 的解析式;分两种情况:点P 在CB 延长线上及当点P 在线段CB 上,由(2)中结论即可求得点P 的纵坐标,从而由点P 在直线CB 上即可求得点P 的横坐标,从而得到点P 的坐标.【详解】推广延伸:猜想:PD =PE +CF证明如下:连接AP ,如图3∵ABP ACP ABC SS S =- 即111222AB PD AB CF AC PE ⨯-⨯=⨯ ∴AB =AC∴PD -CF =PE∴PD =PE +CF解决问题:(1)∵点B在y轴正半轴上,点B到x轴的距离为3 ∴B(0,3)故答案为:(0,3)(2)当点P在CB延长线上时,如图由推广延伸的结论有:PE=OB+PF=3+d;当点P在线段CB上时,如图由阅读材料中的结论可得PE=OB-PF=3-d;故答案为:PE=3+d或PE=3-d(3)∵A(-4,0),B(0,3)∴OA=4,OB=3由勾股定理得:5AB==∴AC=AB=5∴OC=AC-OA=5-4=1∴C(1,0)设直线CB的解析式为y=kx+b(k≠0)把C、B的坐标分别代入得:3k bb+=⎧⎨=⎩解得:33 kb=-⎧⎨=⎩即直线CB的解析式为y=-3x+3由(2)的结论知:PE=3+1=4或PE=3-1=2∵点P在射线CB上∴点P的纵坐标为正,即点P的纵坐标为4或2当y=4时,-3x+3=4,解得:13x=-,即点P的坐标为1,43⎛⎫- ⎪⎝⎭;当y=2时,-3x+3=2,解得:13x=,即点P的坐标为1,23⎛⎫⎪⎝⎭综上:点P的坐标为1,43⎛⎫- ⎪⎝⎭或1,23⎛⎫⎪⎝⎭【点睛】本题是材料阅读题,考查了等腰三角形的性质及一次函数的图象与性质,读懂材料的内容并能灵活运用于新的情境中是本题的关键.2、 (1)y甲=25x+2 000;y乙=35x(2)当0<x<200时,选择乙公司更优惠;当x=200时,选择两公司费用一样多;当x>200时,选择甲公司更优惠.理由见解析【解析】【分析】(1)设甲公司制作宣传材料的费用为y甲(元),乙公司制作宣传材料的费用为y乙(元),份数乘以单价加上设计费可得甲公司的费用;份数乘以单价可得乙公司的费用;(2)分三种情况讨论,当y甲>y乙时,当y甲=y乙时,当y甲<y乙时,分别计算可得(1)解:设甲公司制作宣传材料的费用为y甲(元),乙公司制作宣传材料的费用为y乙(元),制作宣传材料的份数为x(份),依题意得y甲=25x+2 000;y乙=35x;(2)解:当y甲>y乙时,即25x+2 000>35x,解得:x<200;当y甲=y乙时,即25x+2 000=35x,解得:x=200;当y甲<y乙时,即25x+2 000<35x,解得:x>200.∴当0<x<200时,选择乙公司更优惠;当x=200时,选择两公司费用一样多;当x>200时,选择甲公司更优惠.【点睛】此题考查了一元一次方程的方案选择问题,一元一次不等式类的方案选择问题,列代数式,正确理解题意是解题的关键.3、 (1)36千米(2)y=90x-24 (0.8≤x≤2)(3)1.2小时【解析】【分析】(1)由OA段可求得此时小龚驾车的速度,从而可求得36分钟离家的距离;(2)用待定系数法.AB段过点A与B,把这两点的坐标代入所设函数解析式中即可求得函数解析式;(3)由题意可得小龚离家的距离,根据(2)中求得的函数解析式的函数值,解方程即可求得x的值,从而求得小龚行驶的时间.(1)在OA 段,小龚行驶的速度为:48÷0.8=60(千米/时),36分钟=0.6小时,则小龚出发36分钟时,离家的距离为60×0.6=36(千米);(2)由图象知:(0.8,48)A ,(2,156)B设AB 段的函数解析式为:(0)y kx b k =+≠把A 、B 两点的坐标分别代入上式得:0.8482156k b k b +=⎧⎨+=⎩ 解得:9024k b =⎧⎨=-⎩∴AB 段的函数解析式为9024y x -=(0.8≤x ≤2)(3)由图象知,当小龚离目的地还有72千米时,他已行驶了156−72=84(千米)所以在9024y x -=中,当y =84时,即902484x -=,得 1.2x =即小龚离目的地还有72千米,小龚行驶了1.2小时.【点睛】本题考查了一次函数(正比例函数)的图象与性质,待定系数法求函数解析式,已知函数值求自变量的值等知识,数形结合是本题的关键.4、 (1)10,4(2)15.2秒(3)17.5【解析】【分析】(1)由 12秒和20秒水槽内水面的高度可求正立方体的棱长;设注水的速度为xcm 3/s ,圆柱的底面积为scm 2,得到关于x 、s 的二元一次方程组,可得到水槽的底面面积,即可求解;(2)根据A (12、10)、B (28、20)求出线段AB 的解析式,把y =12代入解析式,即可求解;(3)根据水槽内水面的高度下降得体积为正立方体的体积,求出水槽内水面的高度下降,即可得答案.(1)解:由图2得:∵12秒时,水槽内水面的高度为10cm ,12秒后水槽内高度变化趋势改变,∴正立方体的棱长为10cm ;由图2可知,圆柱体一半注满水需要28-12=16 (秒),故如果将正方体铁块取出,又经过16-12=4 (秒)恰好将水槽注满,正方体的体积是103=1000cm 3,设注水的速度为xcm 3/s ,圆柱的底面积为scm 2,根据题意得:1210001028100020x s x s +=⎧⎨+=⎩, 解得:250400x s =⎧⎨=⎩∴水槽的底面面积为400cm 2,∵正立方体的棱长为10cm ,∴正立方体的底面正方形的面积=10×10=100 cm 2,∴S1:S2=400:100=4:1 (2)设线段AB的解析式为y=kx+b(k≠0),将A(12、10)、B(28、20)代入得:1210 2820k bk b+=⎧⎨+=⎩,解得:5852 kb⎧=⎪⎪⎨⎪=⎪⎩∴y=58x+52,当y=12时,58x+52b=12,解得:x=15.2,∴注水时间是15.2秒;(3)∵正立方体的铁块全部拉出水面,水槽内水面的高度下降,设正立方体的铁块全部拉出水面,水槽内水面的高度下降acm,根据题意得:400a=1000,a=2.5,所以铁块完全拉出时,水面高度为20-2.5=17.5cm.【点睛】本题考查了正立方体的体积、圆柱的体积、一次函数的应用,做题的关键是利用函数的图象获取正确信息是解题的关键.5、(1)142y x=-+;(2)5;(3)点P的坐标为(1285,-445)或(-1285,845)【解析】【分析】(1)由坐标系中点的意义结合图形可得出A、B点的坐标,设出对角线AB所在直线的函数关系式,由待定系数法即可求得结论;(2)由勾股定理求出AB的长,再结合线段垂直平分线的性质,可得AM=BM,OM=OB−BM,再次利用勾股定理得出AM的长;(3)(方法一)先求出直线AM的解析式,设出P点坐标,由点到直线的距离求出AM边上的高h,再结合三角形面积公式与长方形面积公式即可求出P点坐标;(方法二)由△PAM的面积与长方形OACB的面积相等可得出S△PAM的值,设点P的坐标为(x,−12x +4),分点P在AM的右侧及左侧两种情况,找出关于x的一元一次方程,解之即可得出点P的坐标,此题得解.【详解】解:(1)∵四边形AOBC为长方形,且点C的坐标是(8,4),∴AO=CB=4,OB=AC=8,∴A点坐标为(0,4),B点坐标为(8,0).设对角线AB所在直线的函数关系式为y=kx+b,则有408bk b=⎧⎨=+⎩,解得:124kb⎧=-⎪⎨⎪=⎩,∴对角线AB所在直线的函数关系式为y=-12x+4.(2)∵∠AOB=90°,∴勾股定理得:AB=∵MN垂直平分AB,∴BN=AN=12AB=∵MN为线段AB的垂直平分线,∴AM=BM设AM=a,则BM=a,OM=8-a,由勾股定理得,a2=42+(8-a)2,解得a=5,即AM=5.(3)(方法一)∵OM=3,∴点M坐标为(3,0).又∵点A坐标为(0,4),∴直线AM的解析式为y=-43x+4.∵点P在直线AB:y=-12x+4上,∴设P点坐标为(m,-12m+4),点P到直线AM:43x+y-4=0的距离h2m.△PAM的面积S△PAM=12AM•h=54|m|=SOABC=AO•OB=32,解得m=±1285,故点P的坐标为(1285,-445)或(-1285,845).(方法二)∵S长方形OACB=8×4=32,∴S△PAM=32.设点P的坐标为(x,-12x+4).当点P在AM右侧时,S△PAM=12MB•(yA-yP)=12×5×(4+12x-4)=32,解得:x=1285,∴点P的坐标为(1285,-445);当点P在AM左侧时,S△PAM=S△PMB-S△ABM=12MB•yP-10=12×5(-12x+4)-10=32,解得:x=-1285,∴点P的坐标为(-1285,845).综上所述,点P的坐标为(1285,-445)或(-1285,845).【点睛】本题考查了坐标系中点的意、勾股定理、点到直线的距离、三角形和长方形的面积公式,解题的关键:(1)根据坐标系中点的意义,找到A、B点的坐标;(2)由线段垂直平分线的性质和勾股定理找出BM的长度;(3)(方法一)结合点到直线的距离、三角形和长方形的面积公式找到关于m的一元一次方程;(方法二)利用分割图形求面积法找出关于x的一元一次方程.本题属于中等题,难度不大,运算量不小,这里尤其要注意点P有两个.。
2021-2022学年冀教版八年级数学下册第二十一章一次函数章节测评试题(含答案及详细解析)

八年级数学下册第二十一章一次函数章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一次函数y =2x ﹣5的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限2、一辆货车从甲地到乙地,一辆轿车从乙地到甲地,两车沿同一条笔直的公路分别从甲、乙两地同时出发,匀速行驶.两车离乙地的距离y (单位:km )和两车行驶时间x (单位:h )之间的关系如图所示.下列说法错误的是( ).A .两车出发2h 时相遇B .甲、乙两地之间的距离是360kmC .货车的速度是80km/hD .3h 时,两车之间的距离是160km3、在平面直角坐标系中,已知点()1,2A -,点()5,6B -,在x 轴上确定点C ,使得ABC 的周长最小,则点C 的坐标是( )A .()4,0-B .()3,0-C .()2,0-D .()2.5,0-4、已知正比例函数y kx =的图像经过点(2,-4)、(1,1y )、(-1,2y ),那么1y 与2y 的大小关系是( )A . 12y y <B . 12y y =C . 12y y >D .无法确定5、当2m >时,直线2y x m =+与直线4y x =-+的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限6、已知点()11,A m y -和点()21,B m y +在一次函数()21y k x =++的图象上,且12y y >,下列四个选项中k 的值可能是( )A .-3B .-1C .1D .37、若一次函数()11y m x =--的图像经过第一、三、四象限,则m 的值可能为( )A .-2B .-1C .0D .28、甲、乙两车从A 城出发前往B 城,在整个行驶过程中,汽车离开A 城的距离()km y 与行驶时间()h t 的函数图象如图所示,下列说法正确的有( )①甲车的速度为50km/h ;②乙车用了5h 到达B 城;③甲车出发4h 时,乙车追上甲车A .0个B .1个C .2个D .3个9、一次函数y ax b =-+,0ab <,且y 随x 的增大而减小,则其图象可能是( )A .B .C .D .10、已知点)Am ,3,2B n ⎛⎫ ⎪⎝⎭在一次函数21y x =-+的图像上,则m 与n 的大小关系是( ) A .m n > B .m n = C .m n < D .无法确定第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、函数y ax =和y kx b =+的图象相交于点()2,1A -,则方程ax kx b =+的解为______.2、将一次函数22y x =-的图像向上平移5个单位后,所得图像的函数表达式为______.3、在平面直角坐标系xOy 中,过点A (5,3)作y 轴的平行线,与x 轴交于点B ,直线y =kx +b (k ,b 为常数,k ≠0)经过点A 且与x 轴交于点C (9,0).我们称横、纵坐标都是整数的点为整点.(1)记线段AB,BC,CA围成的区域(不含边界)为W.请你结合函数图象,则区域W内的整点个数为______;(2)将直线y=kx+b向下平移n个单位(n≥0),若平移后的直线与线段AB,BC围成的区域(不含边界)存在整点,请结合图象写出n的取值范围______.4、用待定系数法确定一次函数表达式所需要的步骤是什么?①设——设函数表达式y=___,②代——将点的坐标代入y=kx+b中,列出关于___、___的方程③求——解方程,求k、b④写——把求出的k、b值代回到表达式中即可.5、已知点A(-2,a),B(3,b)在直线y=2x+3上,则a___b.(填“>”“<”或“=”号)三、解答题(5小题,每小题10分,共计50分)1、甲、乙两车从M地出发,沿同一路线驶向N地,甲车先出发匀速驶向N地,30分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了40km/h,结果两车同时到达N地,甲乙两车距N地的路程y(km)与乙车行驶时间x(h)(1)a = ,甲的速度是 km/h .(2)求线段AD 对应的函数表达式.(3)直接写出甲出发多长时间,甲乙两车相距10km .2、肥西县祥源花世界管理委员会要添置办公桌椅A ,B 两种型号,已知2套A 型桌椅和1套B 型桌椅共需2000元,1套A 型桌椅和3套B 型桌椅共需3000元.(1)直接写出A 型桌椅每套 元,B 型桌椅每套 元;(2)若管理委员会需购买两种型号桌椅共20套,若需要A 型桌椅不少于12套,B 型桌椅不少于6套,平均每套桌椅需要运费10元.设购买A 型桌椅x 套,总费用为y 元.①求y 与x 之间的函数关系,并直接写出x 的取值范围;②求出总费用最少的购置方案.3、已知一次函数24y x =-+,完成下列问题:(1)求此函数图像与x 轴、y 轴的交点坐标;(2)画出此函数的图像:观察图像,当04y ≤≤时,x 的取值范围是______.4、一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x (h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象进行以下探究:(1)甲、乙两地之间的距离为km;(2)两车经过h相遇;(3)求慢车和快车的速度;(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围.5、如图是某种蜡烛在燃烧过程中高度与时间之间关系的图象,由图象解答下列问题:(1)求蜡烛在燃烧过程中高度y与时间x之间的函数表达式(2)经过多少小时蜡烛燃烧完毕?-参考答案-一、单选题1、B【解析】【分析】由直线的解析式得到k>0,b<0,利用一次函数的性质即可确定直线经过的象限.【详解】解:∵y=2x-5,∴k>0,b<0,故直线经过第一、三、四象限.不经过第二象限.故选:B.【点睛】此题主要考查一次函数的图象和性质,它的图象经过的象限由k,b的符号来确定.【解析】【分析】根据函数图象分析,当2x =时,函数图象有交点,即可判断A 选项;根据最大距离为360即可判断B 选项,根据A 选项可得两车的速度进而判断C ,根据时间乘以速度求得两车的路程,进而求得两车的距离即可判断D 选项.【详解】解:根据函数图象可知,当2x =时,200y =,总路程为360km ,所以,轿车的速度为2002100km/h ÷=,货车的速度为:()360200280km/h -÷=故A,B,C 正确3h 时,轿车的路程为3100300⨯=km ,货车的路程为380240⨯=km ,则两车的距离为3602300240180⨯--=km故D 选项不正确故选D【点睛】本题考查了一次函数的应用,从图象上获取信息是解题的关键.3、C【解析】【分析】因为AB 的长度是确定的,故△CAB 的周长最小就是CA +CB 的值最小,作点A 关于x 轴的对称点A ′,连接A ′B 交x 轴于点C ,求出C 点坐标即可.【详解】解:如图,作点A 关于x 轴的对称点A ′,连接A ′B 交x 轴于点C ,此时,AC +BC =A′C +BC =AC ,长度∵A (-1,2),∴A ′(-1,﹣2),设直线A ′B 的解析式为y =kx +b (k ≠0),把A ′(-1,﹣2),()5,6B -代入得,∴562k b k b -+=⎧⎨-+=-⎩,解得24k b =-⎧⎨=-⎩, ∴直线A ′B 的解析式为y =-2x ﹣4,当y =0时,x =-2,∴C (-2,0).故选:C【点睛】本题考查了轴对称-最短路径问题,一次函数与坐标轴交点问题,解题关键是确定点C 的位置,利用一次函数解析式求坐标.4、A【解析】先求出正比例函数解析式2y x =-根据正比例函数2y x =-的图象性质,当k <0时,函数随x 的增大而减小,可得y 1与y 2的大小.【详解】解:∵正比例函数y kx =的图像经过点(2,-4)、代入解析式得42k -=解得2k =-∴正比例函数为2y x =-∵2k =-<0,∴y 随x 的增大而减小,由于-1<1,故y 1<y 2.故选:A .【点睛】本题考查了正比例函数图象上点的坐标特征,用到的知识点为:正比例函数y kx =的图象,当k <0时,y 随x 的增大而减小是解题关键.5、B【解析】【分析】根据一次函数解析式中k b 、的值,判断函数的图象所在象限,即可得出结论.【详解】 解:一次函数4y x =-+中,10k =-<,40b =>∴函数图象经过一二四象限∵在一次函数2y x m =+中,10k =>,24b m =>∴直线2y x m =+经过一二三象限函数图象如图∴直线2y x m =-+与4y x =-+的交点在第二象限故选:B .【点睛】本题考查的一次函数,解题的关键在于熟练掌握一次函数的图象与系数的关系.6、A【解析】【分析】由m-1<m+1时,y 1>y 2,可知y 随x 增大而减小,则比例系数k +2<0,从而求出k 的取值范围.【详解】解:当m-1<m+1时,y 1>y 2,y 随x 的增大而减小,∴k +2<0,得k <﹣2.故选:A .【点睛】本题考查一次函数的图象性质:当k <0,y 随x 增大而减小,难度不大.7、D【解析】【分析】利用一次函数图象与系数的关系可得出m-1>0,解之即可得出m的取值范围,再对照四个选项即可得出结论.【详解】解:∵一次函数y=(m-1)x-1的图象经过第一、三、四象限,∴m-1>0,∴m>1,∴m的值可能为2.故选:D.【点睛】本题考查了一次函数图象与系数的关系、解一元一次不等式,牢记“k>0,b<0⇔y=kx+b的图象经过一、三、四象限”是解题的关键.8、C【解析】【分析】求出正比函数的解析式,k值的绝对值表示车的速度;横轴上两个时间点的差表示乙走完全程所用时间,求出一次函数的解析式,确定它与正比例函数的交点坐标,横坐标即为二车相遇时间.【详解】设甲的解析式为y=kx,∴6k=300,解得k=50,∴y甲=50x,∴甲车的速度为50km/h ,∴①正确;∵乙晚出发2小时,∴乙车用了5-2=3(h )到达B 城,∴②错误;设y =mx b +乙,∴2m =05m 300b b +⎧⎨+=⎩, ∴m 100200b =⎧⎨=-⎩, ∴y =100x-200乙,∵=50100200y x y x ⎧⎨=-⎩, ∴x 4200y =⎧⎨=⎩, 即甲行驶4小时,乙追上甲,∴③正确;故选C .【点睛】本题考查了待定系数法确定函数的解析式,函数图像,交点坐标的确定,解二元一次方程组,熟练掌握待定系数法,准确求交点的坐标是解题的关键.9、B【解析】【分析】根据一次函数y ax b =-+的图象是y 随x 的增大而减小,可得0a >,再由0ab <,可得0b <,即可求解.【详解】 解:一次函数y ax b =-+的图象是y 随x 的增大而减小,∴0a -< ,0a ∴>;又0ab <,0b ∴<,∴一次函数y ax b =+的图象经过第二、三、四象限.故选:B【点睛】本题主要考查了一次函数的图象和性质,熟练掌握一次函数的图象和性质是解题的关键.10、A【解析】【分析】根据一次函数21y x =-+的性质,y 随x 增大而减小判断即可.【详解】解:知点)Am ,3,2B n ⎛⎫ ⎪⎝⎭在一次函数21y x =-+的图像上, ∵-2<0,∴y 随x 增大而减小,32<,∴m n>,故选:A.【点睛】本题考查了一次函数的增减性,解题关键是明确一次函数21y x=-+y随x增大而减小的性质.二、填空题1、2-【解析】【分析】由题意知,方程的解为其交点的横坐标,进而可得结果.【详解】解:由题意知ax kx b=+的解为两直线交点的横坐标故答案为:2-.【点睛】本题考查了一次函数图象的交点与一次方程解的关系.解题的关键在于理解一次函数图象的交点与一次方程解的关系.2、23y x=+【解析】【分析】直接利用一次函数平移规律“上加下减”进而得出即可.【详解】解:∵一次函数22y x=-的图像向上平移5个单位,∴所得图像的函数表达式为:22523y x x =-+=+故答案为:23y x =+【点睛】本题考查了一次函数平移,掌握平移规律是解题的关键.3、 3 14≤n <54 【解析】【分析】(1)根据题意和图象,可以得到区域W 内的整点个数;(2)根据直线y =kx +b 过点A 和点C ,从而可以得到直线的表达式是y =-34x +274,设平移后的直线解析式是y =-34x +m ,分别代入(6,2)、(6,1)求得m 的值,结合图象即可求得. 【详解】解:(1)由图象可得,区域W 内的整点的坐标分别为(6,1),(6,2),(7,1),即区域W 内的整点个数是3个,故答案为:3;(2)∵直线y=kx+b过点A(5,3),点C(9,0),∴53 90k bk b+=⎧⎨+=⎩,∴34274kb⎧=-⎪⎪⎨⎪=⎪⎩,即直线y=kx+b的表达式是y=﹣34x+274,设平移后的直线解析式是y=﹣34x+m,把(6,2)代入得,2=﹣92+m,解得m=132,则274﹣132=14,把(6,1)代入得,1=﹣92+m,解得m=112,则274﹣112=54,由图象可知,将直线y=kx+b向下平移n个单位(n≥0),若平移后的直线与线段AB,BC围成的区域(不含边界)存在整点,请结合图象写出n的取值范围14≤n<54.故答案为:14≤n<54.【点睛】本题考查了一次函数图象与几何变换、待定系数法求一次函数解析式,解答本题的关键是明确题意,利用数形结合的思想解答.4、kx+b k b【解析】略5、<【解析】【分析】根据一次函数的解析式可得到函数的增减性,则可比较a 、b 的大小.【详解】解:∵在y =2x +3中,k =2>0,∴y 随x 的增大而增大,∵点A (−2,a ),B (3,b )在直线y =2x +3上,且−2<3,∴a <b ,故答案为:<.【点睛】本题主要考查一次函数的性质,掌握一次函数的增减性是解题的关键,即在y =kx +b 中,当k >0时,y 随x 的增大而增大,当k <0时,y 随x 的增大而减小.三、解答题1、 (1)3.5小时,76;(2)线段AD 对应的函数表达式为7638y x . (3)甲出发538或27158或9258或1411小时,甲乙两车相距10km . 【解析】【分析】(1)根据乙车3小时到货站,在货站装货耗时半小时,得出13 3.52a小时,甲提前30分钟,可求甲车行驶的时间为:0.5+4.5=5小时,然后甲车速度=380765千米/时即可;(2)利用待定系数法AD 解析式为:y kx b =+,把AD 两点坐标代入解析式得{b =38380=4.5b +b解方程即可; (3)分两种情况,甲出发,乙未出发76t =10,乙出发后,设乙车的速度为x km/h ,利用行程列方程3x +(x -40)×1=380解方程求出x =105km/h ,再用待定系数法105y x =,列方程105-76-38=10x x ,CD 段乙车速度为105-40=65km/h ,求出CD 的解析式为y x 6587.5,列方程65+87.5-76-38=10x x ,结合甲先行30分根据有理数加法求出甲所用时间即可.(1)解:∵3小时到货站,在货站装货耗时半小时, ∴13 3.52a 小时, 甲车行驶的时间为:0.5+4.5=5小时,甲车速度=380765千米/时,故答案为:3.5小时,76;(2)点A 表示的路程为:76×0.5=38,设AD 解析式为:y kx b =+,把AD 两点坐标代入解析式得:{b =38380=4.5b +b, 解得:{b =38b =76, 线段AD 对应的函数表达式为7638y x .(3)甲出发乙未出发,∴76t =10,∴t =538, 乙出发后;设乙车的速度为v km/h ,3v +(v -40)×1=380解得v =105km/h ,∴点B (3,315)设OB 解析式为b =αx ,代入坐标得:α105,∴OB 解析式为105y x = ∴105-76-38=10x x ,化简为:2938=10x -或x 293810, 解得48=29x 或28=29x , ∵CD 段乙车速度为105-40=65km/h , 设CD 的解析式为yx n 65代入点D 坐标得, n 38065 4.5, 解得:87.5n =,∴CD 的解析式为y x 6587.5, ∴65+87.5-76-38=10x x , 解得:13=322x , ∵甲提前出发30分钟,281271 29258,4819229258,31311422211,甲出发538或27158或9258或1411小时,甲乙两车相距10km.【点睛】本题考查待定系数法求一次函数解析式,利用函数图像获取信息,绝对值方程,一元一次方程,二元一次方程组解法,分类讨论思想的应用使问题完整解决是解题关键.2、 (1)A型桌椅每套600元,B型桌椅每套800元;(2)购买A型桌椅14套、B型桌椅6套,总费用最少,最少总费用为13400元【解析】【分析】(1)设A型桌椅每套a元,B型桌椅每套b元,根据题意列二元一次方程组并解方程即可;(2)①根据总费用=A型桌椅的费用+B型桌椅的费用建立y与x之间的函数关系式子,再由A型桌椅不少于12套,B型桌椅不少于6套列出一元一次不等式组求解即可得出x的取值范围;②根据一次函数的性质求解即可.(1)解:设A型桌椅每套a元,B型桌椅每套b元,根据题意,得:2200033000a ba b+=⎧⎨+=⎩,解得:600800ab=⎧⎨=⎩,所以A型桌椅每套600元,B型桌椅每套800元;(2)解:①据题意,总费用y=600x+800(20-x)+20×10=-200x+16200,∵A 型桌椅不少于12套,B 型桌椅不少于6套,∴12206x x ≥⎧⎨-≥⎩,解得:12≤x ≤14, 所以y 与x 之间的函数关系为y =-200x +16200(12≤x ≤14,x 为整数);②由①知y =-200x +16200,且-200<0,∴y 随x 的增大而减小,∴当x =14时,总费用y 最少,最少费用为-200×14+16200=13400元,即购买A 型桌椅14套、B 型桌椅6套,总费用最少,最少总费用为13400元.【点睛】本题考查二元一次方程的应用、一次函数的应用、一元一次不等式组的应用,理解题意,正确列出方程或函数关系式是解答的关键.3、 (1)()2,0;()0,4(2)作图见解析;02x ≤≤【解析】【分析】(1)分别令,x y 0=,进而即可求得此函数图象与坐标轴的交点坐标;(2)根据(1)所求得的点的坐标,画出一次函数图象即可,根据图象写出当04y ≤≤时,自变量的取值范围即可.(1)令0x =,解得4y =,令0y =,解得2x =则此函数图像与x 轴的交点坐标为()2,0、与y 轴的交点坐标为()0,4(2)过点()2,0;()0,4作直线,如图,根据函数图象可得当04y ≤≤时,x 的取值范围是:02x ≤≤故答案为:02x ≤≤【点睛】本题考查了画一次函数图象,一次函数与坐标轴的交点,根据函数图象求自变量的范围,掌握一次函数的图象的性质是解题的关键.4、 (1)900(2)4(3)快车的速度为150km/h ,慢车的速度为75km/h(4)y =225x ﹣900,自变量x 的取值范围是4≤x ≤6【解析】【分析】(1)由函数图象可以直接求出甲乙两地之间的距离;(2)由函数图象的数据就即可得出;(3)由函数图象的数据,根据速度=路程÷时间就可以得出慢车的速度,由相遇问题求出速度和就可以求出快车的速度进而得出结论;(4)由快车的速度求出快车走完全程的时间就可以求出点C的横坐标,由两车的距离=速度和×时间就可以求出C点的纵坐标,由待定系数法就可以求出结论.(1)根据图象,得甲、乙两地之间的距为900km.故答案为:900;(2)由函数图象,当慢车行驶4h时,慢车和快车相遇.故答案为:4;(3)由题意,得快车与慢车的速度和为:900÷4=225(km/h),慢车的速度为:900÷12=75(km/h),快车的速度为:225﹣75=150 (km/h).答:快车的速度为150km/h,慢车的速度为75km/h;(4)由题意,得快车走完全程的时间按为:900÷150=6(h),6h时两车之间的距离为:225×(6﹣4)=450km.则C(6,450).设线段BC的解析式为y=kx+b,由题意,得406450k b k b +=⎧⎨+=⎩, 解得:{b =225b =900, 则y =225x ﹣900,自变量x 的取值范围是4≤x ≤6.【点睛】本题考查了一次函数的应用,根据函数图像获取信息是解题的关键.5、 (1)y =-8x +15(0≤x ≤158) (2)158小时 【解析】【分析】(1)由图象可知一次函数过(0,15),(1,7)两点,可根据待定系数法列方程,求函数关系式.(2)将y =0的值代入,求x 的解,即为蜡烛全部燃烧完所用的时间;(1)由图象可知过(0,15),(1,7)两点,设一次函数表达式为y =kx +b ,∴157b k b =⎧⎨+=⎩, 解得158b k =⎧⎨=-⎩, ∴此一次函数表达式为:y =-8x +15(0≤x ≤158). (2)令y=0∴-8x+15=0解得:x=158,答:经过158小时蜡烛燃烧完毕.【点睛】本题考查了用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力.。
八年级数学下册 第二十一章 一次函数检测卷 (新版)冀教版-(新版)冀教版初中八年级下册数学试题

第二十一章单元检测卷一.选择题1.要使函数y=(m﹣2)x n﹣1+n是一次函数,应满足()A.m≠2,n≠2B.m=2,n=2 C.m≠2,n=2 D.m=2,n=02.若函数y=(k﹣1)x+b+2是正比例函数,则()A.k≠﹣1,b=﹣2 B.k≠1,b=﹣2 C.k=1,b=﹣2 D.k≠1,b=2 3.下列函数图象不可能是一次函数y=ax﹣(a﹣2)图象的是()A.B.C.D.4.一次函数y=﹣x的图象平分()A.第一、三象限B.第一、二象限C.第二、三象限D.第二、四象限5.如图,点A,B分别在一次函数y=x,y=8x的图象上,其横坐标分别为a,b (a>0,b >0 ).若直线AB为一次函数y=kx+m的图象,则当是整数时,满足条件的整数k的值共有()(第5题图)A.1个B.2个C.3个D.4个6.已知正比例函数y=kx(k≠0),点(2,﹣3)在函数上,则y随x的增大而()A.增大B.减小C.不变D.不能确定7.已知函数y=(m﹣3)x+2,若函数值y随x的增大而减小,则m的取值X围是()A.m>3 B.m<3 C.m≥3D.m≤38.直线y=﹣2x+b与两坐标轴围成的三角形的面积为4,则b的值为()A.4 B.﹣4 C.±4D.±29.在平面直角坐标系中,把直线y=x向左平移一个单位长度后,其直线解析式为()A.y=x+1 B.y=x﹣1 C.y=x D.y=x﹣210.下表给出的是关于一次函数y=kx+b的自变量x及其对应的函数值y的若干信息:则根据表格中的相关数据可以计算得到m的值是()x …﹣1 0 1 …y …0 1 m ….A.0 B.1 C.2 D.3二.填空题11.如果函数y=(k﹣2)x|k﹣1|+3是一次函数,则k=.12.函数:①y=﹣x;②y=x﹣1;③y=;④y=x2+3x﹣1;⑤y=x+4;⑥y=3.6x,一次函数有;正比例函数有(填序号).13.若函数y=(m﹣2)x+4﹣m2是关于x的正比例函数,则常数m的值是.14.已知函数y=(m﹣1)x+m2﹣1是正比例函数,则m=.15.如图是y=kx+b的图象,则b=,与x轴的交点坐标为,y的值随x的增大而.(第15题图)三.解答题16.已知y+a与x+b(a、b为常数)成正比例.(1)y是x的一次函数吗?请说明理由;(2)在什么条件下y是x的正比例函数.17.已知正比例函数y=(m﹣1)的图象在第二、四象限,求m的值.18.作出函数y=2﹣x的图象,根据图象回答下列问题:(1)y的值随x的增大而;(2)图象与x轴的交点坐标是;与y轴的交点坐标是;(3)当x时,y≥0;(4)该函数的图象与坐标轴所围成的三角形的面积是多少?19.点P(x,y)在第一象限,且x+y=10,点A的坐标为(8,0),设原点为O,△OPA的面积为S.(1)求S与x的函数关系式,写出x的取值X围,画出这个函数图象;(2)当S=12时,求点P的坐标;(3)△OPA的面积能大于40吗?为什么?20.在同一坐标系中作出y=2x+2,y=﹣x+3的图象.(第20题图)参考答案一.1.C【解析】∵y=(m﹣2)x n﹣1+n是一次函数,∴m﹣2≠0,n﹣1=1,∴m≠2,n=2,故选C.2.B【解析】∵y=(k﹣1)x+b+2是正比例函数,∴k﹣1≠0,b+2=0.解得k≠1,b=﹣2.故选B.3.B【解析】根据图象知,A、a>0,﹣(a﹣2)>0.解得0<a<2,所以有可能;B、a<0,﹣(a﹣2)<0.解得两不等式没有公共部分,所以不可能;C、a<0,﹣(a﹣2)>0.解得a<0,所以有可能;D、a>0,﹣(a﹣2)<0.解得a>2,所以有可能.故选B.4.D【解析】∵k=﹣1<0,∴一次函数y=﹣x的图象经过二、四象限,∴一次函数y=﹣x 的图象平分二、四象限.故选D.5.B【解析】根据题意得A(a,a),B(b,8b),把A,B坐标代入函数y=kx+m,得,②﹣①得:k==8+.∵a>0,b>0,是整数,∴为整数时,k为整数;则﹣1=1或7,所以满足条件的整数k的值共有两个.故选B.6.B【解析】∵点(2,﹣3)在正比例函数y=kx(k≠0)上,∴函数图象经过二四象限,∴y随着x的增大而减小.故选B.7.B【解析】∵一次函数y=(m﹣3)x+2,y随x的增大而减小,∴一次函数为减函数,即m﹣3<0,解得m<3.则m的取值X围是m<3.故选B.8.C【解析】∵直线y=﹣2x+b与x轴的交点为(,0),与y轴的交点是(0,b),直线y=﹣2x+b与两坐标轴围成的三角形的面积是4,∴×|×b|=4,解得b=±4.故选C.9.A【解析】由“左加右减”的原则可知,在平面直角坐标系中,把直线y=x向左平移一个单位长度后,其直线解析式为y=x+1.故选A.10.C【解析】设一次函数解析式为:y=kx+b(k≠0).根据图示知,该一次函数经过点(﹣1,0)、(0,1),则,解得.∴该一次函数的解析式为y=x+1:又∵该一次函数经过点(1,m),∴m=1+1=2,即m=2.故选C.二.11.0【解析】∵函数y=(k﹣2)x|k﹣1|+3是一次函数,∴|k﹣1|=1且(k﹣2)≠0,解得k=0.12.①②⑤⑥,①⑥【解析】根据一次函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx+b(k≠0,b是常数)的函数是一次函数可知:①y=﹣x;②y=x ﹣1;⑤y=x+4;⑥y=3.6x是一次函数,根据正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数知,①y=﹣.13.﹣2【解析】∵函数y=(m﹣2)x+4﹣m2是关于x的正比例函数,∴4﹣m2,=0,m﹣2≠0,解得m=﹣2.14.﹣1【解析】由正比例函数的定义可得:m2﹣1=0,且m﹣1≠0,解得m=﹣1.15.﹣2,(,0),增大【解析】把(1,2),(0,﹣2)代入y=kx+b得,解得,所以一次函数的表达式为y=4x﹣2.令y=0,得4x﹣2=0,解得x=,所以x轴的交点坐标为(,0),y的值随x的增大而增大.三.16.解:(1)∵y+a与x+b成正比例,设比例系数为k,则y+a=k(x+b),整理,得y=kx+kb﹣a,∴y是x的一次函数;(2)∵y=kx+kb﹣a,∴要想y是x的正比例函数,kb﹣a=0即a=kb时y是x的正比例函数.17.解:∵正比例函数y=(m﹣1),函数图象经过第二、四象限,∴m﹣1<0,5﹣m2=1,解得:m=﹣2.18.解:令x=0,y=2;令y=0,x=2,得到(2,0),(0,2),描出并连接这两个点,如图,(1)由图象可得,y随x的增大而减小;(2)由图象可得图象与x轴的交点坐标是(2,0),与y轴交点的坐标是(0,2);(3)观察图象得,当x≤2时,y≥0,(4)图象与坐标轴围成的三角形的面积为×2×2=2;(第18题答图)19.解:(1)∵A和P点的坐标分别是(8,0)、(x,y),∴△OPA的面积=OA•|y P|,∴S=×8×|y|=4y.∵x+y=10,∴y=10﹣x.∴S=4(10﹣x)=40﹣4x;∵S=﹣4x+40>0,解得x<10;又∵点P在第一象限,∴x>0,即x的X围为0<x<10;∵S=﹣4x+40,S是x的一次函数,∴函数图象经过点(10,0),(0,40).所画图象如下:(第19题答图)(2)∵S=﹣4x+40,∴当S=12时,12=﹣4x+40,解得:x=7,y=3.即当点P的坐标为(7,3);(3)△OPA的面积不能大于40.理由如下:∵S=﹣4x+40,﹣4<0,∴S随x的增大而减小,又∵x=0时,S=40,∴当0<x<10,S<40.即△OPA的面积不能大于40.20.解:0 1y=2x+2 2 4y=﹣x+3 3 2(第20题答图)。
2022年最新精品解析冀教版八年级数学下册第二十一章一次函数达标测试练习题(精选含解析)

八年级数学下册第二十一章一次函数达标测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、我边防局接到情报,近海处有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B追赶(图1).图2中1l,2l分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系,下列说法错误的是().A.快艇的速度比可疑船只的速度快0.3海里/分B.5分钟时快艇和可疑船只的距离为3.5海里C.若可疑船只一直匀速行驶,则它从海岸出发0.5小时后,快艇才出发追赶D.当快艇出发503分钟后追上可疑船只,此时离海岸253海里2、甲、乙两地相距120千米,A 车从甲地到乙地,B 车从乙地到甲地,A 车的速度为60千米/小时,B 车的速度为90千米/小时,A ,B 两车同时出发.设A 车的行驶时间为x (小时),两车之间的路程为y (千米),则能大致表示y 与x 之间函数关系的图象是( )A .B .C .D .3、无论m 为何实数.直线2y x m =+与4y x =-+的交点不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限4、若点(-3,y 1)、(2,y 2)都在函数y =-4x +b 的图像上,则y 1与y 2的大小关系( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .无法确定5、甲、乙两地之间是一条直路,在全民健身活动中,王明跑步从甲地往乙地,陈启浩骑自行车从乙地往甲地,两人同时出发,陈启浩先到达目的地,两人之间的距离s (km )与运动时间t (h )的函数关系大致如图所示,下列说法中错误的是( )A .两人出发1小时后相遇B .王明跑步的速度为8km/hC .陈启浩到达目的地时两人相距10kmD .陈启浩比王明提前1.5h 到目的地6、如图,一次函数y =ax +b 的图象与y =cx +d 的图象如图所示且交点的横坐标为4,则下列说法正确的个数是( )①对于函数y =ax +b 来说,y 随x 的增大而减小;②函数y =ax +d 不经过第一象限;③方程ax +b =cx +d 的解是x =4;④ d-b =4(a-c ).A .1B .2C .3D .47、一次函数y =2x ﹣5的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限8、若实数a 、c 满足0a c +=且a c >,则关于x 的一次函数y cx a =-的图像可能是( )A .B .C .D .9、已知点)Am ,3,2B n ⎛⎫ ⎪⎝⎭在一次函数y =-2x -b 的图像上,则m 与n 的大小关系是( ) A .m >n B .m =n C .m <n D .无法确定10、已知一次函数y =mnx 与y =mx +n (m ,n 为常数,且mn ≠0),则它们在同一平面直角坐标系内的图象可能为( )A .B .C .D .第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在直角坐标系中,等腰直角三角形11A B O 、221A B B 、332A B B 、⋯、1n n n A B B -按如图所示的方式放置,其中点1A 、2A 、3A 、⋯、n A 均在一次函数y kx b =+的图象上,点1B 、2B 、3B 、⋯、n B 均在x 轴上.若点1B 的坐标为(1,0),点2B 的坐标为(3,0),则n A 点的坐标为___.2、如图,将正方形ABCD 置于平面直角坐标系中,其中(1,0)A ,(3,0)D -,AD 边在x 轴上,直线:L y kx =与正方形ABCD 的边有两个交点O 、E ,当35OE <<时,k 的取值范围是__.3、在平面直角坐标系中,一次函数y kx =和y x b =-+的图象如图所示,则不等式kx x b >-+的解集为______4、已知直线y =kx +b (k ≠0)的图像与直线y =-2x 平行,且经过点(2,3),则该直线的函数表达式为______________________.5、一次函数y=(k﹣1)x+3中,函数值y随x的增大而减小,则k的取值范围是_____.三、解答题(5小题,每小题10分,共计50分)1、已知A,B两地相距的路程为12km,甲骑自行车从A地出发前往B地,同时乙步行从B地出发前往A地,如图的折线OCD和线段EF,分别表示甲、乙两人与A地的路程y甲、y乙与他们所行时间x (h)之间的函数关系,且OC与EF相交于点P.(1)求y乙与x的函数关系式以及两人相遇地点P与A地的路程;(2)求线段OC对应的y甲与x的函数关系式;(3)求经过多少h,甲、乙两人相距的路程为6km.2、疫情期间,乐清市某医药公司计划购进N95型和一次性成人口罩两种款式.若购进N95型10箱和一次性成人口罩20箱,需要32500元;若购进N95型30箱和一次性成人口罩40箱,需要87500元.(1)N95型和一次性成人口罩每箱进价分别为多少元?(2)由于疫情严峻急需口罩,老板决定再次购进N95型和一次性成人口罩共80箱,口罩工厂对两种产品进行了价格调整,N95型的每箱进价比第一次购进时提高了10%,一次性成人口罩的每箱进价按第一次进价的八折;如果药店此次用于购进N95型和一次性成人口罩两种型号的总费用不超过115000元,则最多可购进N95型多少箱?(3)若销售一箱N95型,可获利500元;销售一箱一次性成人口罩,可获利100元,在(2)的条件下,如何进货可使再次购进的口罩获得最大的利润?最大的利润是多少?3、为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A型一体机的价格比今年上涨25%,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?4、已知直线y=﹣x+2与x轴、y轴分别交于点A和点B,点C是x轴上一定点,其坐标为C(1,0),一个动点P从原点出发沿O﹣B﹣A﹣C﹣O方向移动,连接PC.(1)当线段PC与线段AB平行时,求点P的坐标,并求此时△POC的面积与△AOB的面积的比值.(2)当△AOB被线段PC分成的两部分面积相等时,求线段PC所在直线的解析式;(3)若△AOB被线段PC分成的两部分面积比为1:5时,求线段PC所在直线的解析式.5、平面直角坐标系中,已知直线l1经过原点与点P(m,2m),直线l2:y=mx+2m﹣3(m≠0).(1)求证:点(﹣2,﹣3)在直线l2上;(2)当m=2时,请判断直线l1与l2是否相交?-参考答案-一、单选题1、C【解析】【分析】根据图象分别计算两船的速度判断A 正确;利用图象计算出发5分钟时的距离差判断B 正确;可疑船只出发5海里后快艇追赶,计算时间判断C 错误正确;设快艇出发t 分钟后追上可疑船只,列方程50.20.5t t +=,求解即可判断D 正确.【详解】 解:快艇的速度为50.510=,可疑船只的速度为750.210-=(海里/分), ∴快艇的速度比可疑船只的速度快0.5-0.2=0.3海里/分,故A 选项不符合题意;5分钟时快艇和可疑船只的距离为50.250.55 3.5+⨯-⨯=海里,故B 选项不符合题意;由图象可知:可疑船只出发5海里后快艇追赶,50.225÷=分钟=512小时,故选项C 符合题意; 设快艇出发t 分钟后追上可疑船只,50.20.5t t +=,解得t =503, 这时离海岸500.53⨯=253海里,故D 选项不符合题意; 故选:C .【点睛】此题考查了一次函数的图象,正确理解函数图象并得到相关信息进行计算是解题的关键.2、C【解析】【分析】分别求出两车相遇、B 车到达甲地、A 车到达乙地时间,分0≤x ≤45、45<x ≤43、43<x ≤2三段求出函数关系式,进而得到当x =43时,y =80,结合函数图象即可求解. 【详解】解:当两车相遇时,所用时间为120÷(60+90)=45小时,B车到达甲地时间为120÷90=43小时,A车到达乙地时间为120÷60=2小时,∴当0≤x≤45时,y=120-60x-90x=-150x+120;当45<x≤43时,y=60(x-45)+90(x-45)=150x-120;当43<x≤2是,y=60x;由函数解析式的当x=43时,y=150×43-120=80.故选:C【点睛】本题考查了一次函数的应用,理解题意,确定分段函数的解析式,并根据函数解析式确定函数图象是解题关键.3、C【解析】【分析】根据一次函数的图象与系数的关系即可得出结论.【详解】解:∵一次函数y=-x+4中,k=-1<0,b=4>0,∴函数图象经过一二四象限,∴无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在第三象限.故选:C.【点睛】本题考查的是两条直线相交或平行问题,熟知一次函数的图象与系数的关系是解答此题的关键.4、A【解析】【分析】根据一次函数的性质得出y随x的增大而减小,进而求解.【详解】由一次函数y=-4x+b可知,k=-4<0,y随x的增大而减小,∵-3<2,∴y1>y2,故选:A.【点睛】本题考查一次函数的性质,熟知一次函数y=kx+b(k≠0),当k<0时,y随x的增大而减小是解题的关键.5、C【解析】【分析】根据函数图象中的数据,可以分别计算出两人的速度,从而可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:由图象可知,两人出发1小时后相遇,故选项A正确;王明跑步的速度为24÷3=8(km/h),故选项B正确;陈启浩的速度为:24÷1-8=16(km/h),陈启浩从开始到到达目的地用的时间为:24÷16=1.5(h),故陈启浩到达目的地时两人相距8×1.5=12(km),故选项C错误;陈启浩比王提前3-1.5=1.5h到目的地,故选项D正确;故选:C.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.6、C【解析】【分析】仔细观察图象:①观察函数图象可以直接得到答案;②观察函数图象可以直接得到答案;③根据函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4可以得到答案;④根据函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4可以得到答案.【详解】解:由图象可得,对于函数y=ax+b来说,y随x的增大而减小故①正确;函数y=ax+d图象经过第一,三,四象限,即不经过第二象限,故②不正确,一次函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4,所以方程ax+b=cx+d的解是x=4;故③正确;∵一次函数y=ax+b的图象与y=cx+d的图象如图所示且交点的横坐标为4,∴4a+b=4c+d∴d-b=4(a-c),故④正确.综上所述,正确的结论有3个.【点睛】本题主要考查了一次函数的图象与性质,利用数形结合是解题的关键.7、B【解析】【分析】由直线的解析式得到k >0,b <0,利用一次函数的性质即可确定直线经过的象限.【详解】解:∵y =2x -5,∴k >0,b <0,故直线经过第一、三、四象限.不经过第二象限.故选:B .【点睛】此题主要考查一次函数的图象和性质,它的图象经过的象限由k ,b 的符号来确定.8、B【解析】【分析】根据实数a 、c 满足0a c +=可知,a 、c 互为相反数,再根据a c >,可确定a 、c 的符号,进而确定图象的大致位置.【详解】解:∴实数a 、c 满足0a c +=,∴a 、c 互为相反数,∴0a >,0c <,∴0a -<∴一次函数y cx a =-的图像经过二、三、四象限,故选:B .【点睛】本题考查了一次函数图象的性质,解题关键是根据已知条件,确定a 、c 的符号.9、A【解析】【分析】由k =−2<0,利用一次函数的性质可得出y 随x <32可得出m >n . 【详解】解:∵k =−2<0,∴y 随x 的增大而减小,又∵点A m ),B (32,n )在一次函数y =−2x +1<32, ∴m >n .故选:A .【点睛】本题考查了一次函数的性质,牢记“k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小”是解题的关键.10、D【解析】根据一次函数的图象与系数的关系,由一次函数y mx n =+图象分析可得m 、n 的符号,进而可得mn 的符号,从而判断y mnx =的图象是否正确,进而比较可得答案.【详解】A 、由一次函数y mx n =+图象可知0m >,0n <,即0mn <,与正比例函数y mnx =的图象可知0mn >,矛盾,故此选项错误;B 、由一次函数y mx n =+图象可知0m <,0n >,即0mn <,与正比例函数y mnx =的图象可知0mn >,矛盾,故此选项错误;C 、由一次函数y mx n =+图象可知0m >,0n >,即0mn >;正比例函数y mnx =的图象可知0mn <,矛盾,故此选项错误;D 、由一次函数y mx n =+图象可知0m <,0n >,即0mn <,与正比例函数y mnx =的图象可知0mn <,故此选项正确;故选:D .【点睛】此题主要考查了一次函数图象,注意:一次函数y =kx +b 的图象有四种情况:①当k >0,b >0,函数y =kx +b 的图象经过第一、二、三象限;②当k >0,b <0,函数y =kx +b 的图象经过第一、三、四象限;③当k <0,b >0时,函数y =kx +b 的图象经过第一、二、四象限;④当k <0,b <0时,函数y =kx +b 的图象经过第二、三、四象限.二、填空题1、()1121,2n n --- 【解析】【分析】首先,根据等腰直角三角形的性质求得点A 1、A 2的坐标;然后,将点A 1、A 2的坐标代入一次函数解析式,利用待定系数法求得该直线方程是y =x +1;最后,利用等腰直角三角形的性质推知点Bn -1的坐标,然后将其横坐标代入直线方程y =x +1求得相应的y 值,从而得到点An 的坐标.【详解】解:如图,点1B 的坐标为(1,0),点2B 的坐标为(3,0),11OB ∴=,23OB =,则122B B =.△11A B O 是等腰直角三角形,1190AOB ∠=︒,111OA OB ∴==.∴点1A 的坐标是(0,1).同理,在等腰直角△221A B B 中,21290A B B ∠=︒,21122A B B B ==,则2(1,2)A .点1A 、2A 均在一次函数y kx b =+的图象上,∴12b k b =⎧⎨=+⎩,解得,11k b =⎧⎨=⎩, ∴该直线方程是1y x =+.点3A ,2B 的横坐标相同,都是3,∴当3x =时,4y =,即3(3,4)A ,则324A B =,3(7,0)B ∴.同理,4(15,0)B ,⋯(21n n B -,0),∴当121n x -=-时,112112n n y --=-+=,即点n A 的坐标为1(21n --,12)n -.故答案为1(21n --,12)n -.【点睛】本题考查了一次函数图象上点的坐标特点,涉及到的知识点有待定系数法求一次函数解析式,一次函数图象上点的坐标特征以及等腰直角三角形的性质.解答该题的难点是找出点Bn 的坐标的规律.2、k >0k <且43k ≠-【解析】【分析】设BC 与y 轴交于点M ,根据题意可得E 点不在AD 边上,即0k ≠,分两种情况进行讨论:①如果0k >,那么点E 在AB 边或线段BM 上;②如果0k <,那么点E 在CD 边或线段CM 上;对两种情况的临界情况进行分析即可得出结果.【详解】解:如图,设BC 与y 轴交于点M ,13OA =<,3OD =,3OE >,∴E 点不在AD 边上,0k ∴≠;①如果0k >,那么点E 在AB 边或线段BM 上,当点E 在AB 边且3OE =时,由勾股定理得,222918AE OE OA =-=-=,AE ∴=(1E ∴,,当直线y kx =经过点(1,时,k =22216117OB AB OA =+=+=,5OB ∴=<,当点E 在线段BM 上时,5OE OB <=<,k ∴>②如果0k <,那么点E 在CD 边或线段CM 上,当点E 在CD 边且3OE =时,E 与D 重合;当5OE =时,由勾股定理得,22225916DE OE OD =-=-=,4DE ∴=,(3,4)E ∴-,此时E 与C 重合,当直线y kx =经过点()3,4-时,43k =-. 当点E 在线段CM 上时,5OE OC <=,0k ∴<且43k ≠-,符合题意;综上,当35OE <<时,k 的取值范围是k >0k <且43k ≠-,故答案为:k >0k <且43k ≠-.【点睛】题目主要考查正比例函数的综合问题,包括其性质及分类讨论思想,勾股定理解三角形等,理解题意,熟练掌握运用分类思想是解题关键.3、1x >【解析】【分析】根据函数图象写出一次函数y kx =在y x b =-+上方部分的x 的取值范围即可.【详解】解:一次函数y kx =和y x b =-+的图象交于点()1,2所以,不等式kx x b >-+的解集为1x >.故答案为:1x >【点睛】本题考查了一次函数的交点问题及不等式,数形结合是解决此题的关键.4、27y x =-+【解析】【分析】由两个一次函数的图象平行求解2,k =- 再把(2,3)代入函数的解析式求解b 即可.【详解】 解: 直线y =kx +b (k ≠0)的图像与直线y =-2x 平行,2,k ∴=-把点(2,3)代入2y x b =-+中,43,b解得:7,b所以一次函数的解析式为:27.y x 故答案为:27y x =-+【点睛】本题考查的是利用待定系数法求解二次函数的解析式,掌握“两直线平行,两个一次函数的比例系数k 相等,而b 不相等”是解本题的关键.5、k <1【解析】【分析】利用一次函数图象与系数的关系列出关于m 的不等式k -1<0,然后解不等式即可.【详解】解:∵一次函数y =(k -1)x +3中,y 随x 的增大而减小,∴k -1<0,解得k <1;故答案为:k <1.【点睛】本题主要考查一次函数图象与系数的关系.解答本题注意理解:k >0时,直线必经过一、三象限,y 随x 的增大而增大;k <0时,直线必经过二、四象限,y 随x 的增大而减小.三、解答题1、 (1)612y x 乙,9km(2)18y x 甲(3)经过14小时或1小时,甲、乙两人相距6km . 【解析】【分析】(1)根据题意和函数图象中的数据,可以得到y 乙与x 的函数关系式以及两人相遇地点与A 地的距离;(2)根据函数图象中的数据,可以计算出线段OP 对应的y 甲与x 的函数关系式;(3)根据(1)和(2)中的结果,分两种情况讨论,可以得到经过多少小时,甲、乙两人相距6km .(1)解:设y 乙与x 的函数关系式是y kx b =+乙,∵点E (0,12),F (2,0)在函数y 乙=kx +b 的图象上,∴2012k b b ,解得612k b ,即y 乙与x 的函数关系式是612y x 乙,当x =0.5时,60.512=9y 乙,即两人相遇地点P 与A 地的距离是9km ;(2)解:设线段OC 对应的y 甲与x 的函数关系式是y 甲=ax ,∵点(0.5,9)在函数y 甲=ax 的图象上,∴9=0.5a , 解得a =18,即线段OP 对应的y 甲与x 的函数关系式是y 甲=18x ; (3) 解:①令186126,xx 即24126,x24126x 或24126,x解得:34x =或1,4x = 甲从A 地到达B 地的时间为:122=183小时, 经检验:34x =不符合题意,舍去, ②当甲到达B 地时,乙离B 地6千米所走时间为:6=16(小时), 综上所述,经过14小时或1小时,甲、乙两人相距6km .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.其中第三问要注意进行分类讨论.2、(1)N 95型和一次性成人口罩每箱进价分别为2250元、500元;(2)最多可购进N 95型40箱;(3)采购N 95型40个,一次性成人口罩40个可获得最利润为24000元. 【解析】 【分析】(1)设N 95型每箱进价x 元,一次性成人口罩每箱进价y 元,依题意得10x +20y =32500,30x +40y =87500,联立求解即可;(2)设购进N 95型a 箱,依题意得:2250×(1+10%)a +500×80%×(80-a )≤115000,求出a 的范围,结合a 为正整数可得a 的最大值;(3)设购进的口罩获得最大的利润为w ,依题意得:w =500a +100(80-a ),然后对其进行化简,结合一次函数的性质进行解答. 【详解】(1)解:设N 95型每箱进价x 元,一次性成人口罩每箱进价y 元,依题意得:102032500{304087500x y x y +=+= ,解得: 2250{500x y == , 答:N 95型和一次性成人口罩每箱进价分别为2250元、500元.(2)解:设购进N 95型a 箱,则一次性成人口罩为(80﹣a )套,依题意得:2250110%50080%80115000a a ++⨯≤()(﹣) .解得:a ≤40.∵a 取正整数,0<a ≤40. ∴a 的最大值为40.答:最多可购进N 95型40箱.(3)解:设购进的口罩获得最大的利润为w , 则依题意得:w =500a +100(80﹣a )=400a +8000, 又∵0<a ≤40,∴w 随a 的增大而增大, ∴当a =40时,W =400×40+8000=24000元.即采购N 95型40个,一次性成人口罩40个可获得最利润为24000元. 答:最大利润为24000元. 【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)根据各数量之间的关系,找出w 关于a 的函数关系式.3、 (1)今年每套A 型一体机的价格为1.2万元,每套B 型一体机的价格为1.8万元 (2)1800万【解析】【分析】(1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,根据题意列出二元一次方程组,解方程组求解即可;(2)设该市明年购买A型一体机m套,则购买B型一体机(1100-m)套,列出一元一次不等式组求得m的范围,进而设明年需投入W万元,根据题意列出W关于m的关系式,根据一次函数的性质求得最小值即可求解.(1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,由题意得:0.6 500200960y xx y-=⎧⎨+=⎩,解得:1.21.8 xy=⎧⎨=⎩答:今年每套A型一体机的价格为1.2万元,每套B型一体机的价格为1.8万元;(2)设该市明年购买A型一体机m套,则购买B型一体机(1100-m)套,由题意可得:1.8(1100-m)≥1.2(1+25%)m,解得:m≤600,设明年需投入W万元,W=1.2×(1+25%)m+1.8(1100-m)=-0.3m+1980,∵-0.3<0,∴W随m的增大而减小,∵m≤600,∴当m=600时,W有最小值-0.3×600+1980=1800,故该市明年至少需投入1800万元才能完成采购计划.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,根据题意列出二元一次方程组、不等式以及一次函数关系式是解题的关键.4、 (1)P(0,1);△POC的面积与△AOB的面积的比值为14;(2)y=﹣2x+2;(3)线段PC所在直线的解析式为:y=4x﹣4或y=45-x+45【解析】【分析】(1)先求出A、B坐标,进而求出△ABC的面积,再利用待定系数法求得PC所在直线解析式,进而求得点P坐标和△POC的面积即可;(2)根据三角形一边上的中线将三角形面积平分可得点P与点B重合,此时P(0,2),利用待定系数法求得PC所在直线解析式即可;(3)分①当点P在线段AB上时和②当点P在线段OB上时两种情况,根据三角形面积公式求出点P 纵坐标,进而求得点P坐标,再利用待定系数法求PC所在直线的解析式即可.(1)解:∵直线y=﹣x+2与x轴、y轴分别交于点A和点B,∴A(2,0),B(0,2),∴OA=OB=2,∴∠OAB=∠OBA=45°,∴1122222AOBS OA OB∆=⋅⋅=⨯⨯=.当线段PC与线段AB平行时,可画出图形,设PC所在直线的解析式为y=﹣x+m,∵C(1,0),∴﹣1+m=0,解得,m=1,∴PC所在直线的解析式为:y=﹣x+1,∴P(0,1);此时,11111222 OPCS OP OC∆=⋅⋅=⨯⨯=,∴1::21:42OPC AOBS S∆∆==.即P(0,1);△POC的面积与△AOB的面积的比值为14;(2)解:由题意可知,点C是线段OA的中点,当△AOB被线段PC分成的两部分面积相等时,点P与点B 重合,此时P(0,2),设PC所在直线的解析式为:y=kx+b,∴2k bb+=⎧⎨=⎩,解得,22kb=-⎧⎨=⎩,∴线段PC所在直线的解析式为:y=﹣2x+2.(3)解:根据题意,需要分类讨论:①当点P 在线段AB 上时,如图所示,此时1255APC AOB S S ∆∆==,过点P 作PD ⊥x 轴于点D ,∴1225APC S AC PD ∆=⋅⋅=,解得:45PD =,∴AD =PD =45,∴OD =OA ﹣AD =2﹣45=65,∴P (45,65),设线段PC 所在直线的解析式:y =k 1x +b 1,∴111106455k b k b +=⎧⎪⎨+=⎪⎩,解得,1144k b =⎧⎨=-⎩, ∴线段PC 所在直线的解析式:y =4x ﹣4;②当点P 在线段OB 上时,如图所示,此时1255POC AOB S S ∆∆==,∴1225POC S OP OC ∆=⋅⋅=,解得,45OP =, ∴P (0,45),设线段PC 所在直线的解析式:y =k 2x +b 2,∴222045k b b +=⎧⎪⎨=⎪⎩,解得,224545k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴线段PC 所在直线的解析式:y =45-x +45;综上可知,线段PC 所在直线的解析式为:y =4x ﹣4或y =45-x +45. 【点睛】本题考查待定系数法求一次函数的解析式、一次函数图象与坐标轴交点问题、坐标与图形、三角形的面积公式、三角形的中线性质,熟练掌握待定系数法求一次函数的解析式,利用数形结合和分类讨论思想求解是解答的关键. 5、 (1)见解析 (2)直线l 1与l 2不相交 【解析】 【分析】(1)将所给点代入直线2l 中,看等式是否成立,再判断该点是否在直线上;(2)求出1l解析式与2l比较,发现系数相同,故不可能相交.【详解】(1)把x=﹣2代入y=mx+2m﹣3得,y=﹣2m+2m﹣3=﹣3,∴点(﹣2,﹣3)在直线l2上;(2)∵直线l1经过原点与点P(m,2m),∴直线l1为y=2x,当m=2时,则直线l2:y=2x+1,∵x的系数相同,∴直线l1与l2不相交.【点睛】本题考查平面直角坐标系中的直线解析式求法、点是否在直线上的判断、两直线是否相交,掌握这些是解题关键.。
九年级数学 第22章一元二次方程达标检测卷含试卷分析

第22章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.下列方程是一元二次方程的是()A.1x2-1x=0 B.xy+x2=9C.7x+6=x2D.(x-3)(x-5)=x2-4x2.一元二次方程3x2-4x-5=0的二次项系数、一次项系数、常数项分别是() A.3,-4,-5 B.3,-4,5C.3,4,5 D.3,4,-53.方程2(x+3)(x-4)=x2-10的一般形式为()A.x2-2x-14=0 B.x2+2x+14=0C.x2+2x-14=0 D.x2-2x+14=04.下列方程中,常数项为零的是()A.x2+x=1 B.2x2-x-12=12 C.2(x2-1)=3(x-1) D.2(x2+1)=x+25.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为300元的药品进行连续两次降价后为243元,设平均每次降价的百分率为x,则下面所列方程正确的是() A.300(1-x)2=243 B.243(1-x)2=300C.300(1-2x)=243 D.243(1-2x)=3006.下列方程,适合用因式分解法解的是()A.x2-42x+1=0 B.2x2=x-3C.(x-2)2=3x-6 D.x2-10x-9=07.(·烟台)关于x的方程x2-ax+2a=0的两根的平方和是5,则a的值是()A.-1或5 B.1 C.5 D.-18.三角形的一边长为10,另两边长是方程x2-14x+48=0的两个实数根,则这个三角形是()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形9.(·安顺)若一元二次方程x2-2+1)x+m-1的图象不经过第()象限.A.四B.三C.二D.一10.一个三角形的两边长分别为3和6,第三边的长是方程(x-2)(x-4)=0的根,则这个三角形的周长是()A.11 B.11或13 C.13 D.以上选项都不正确二、填空题(每题3分,共30分)11.当m________时,关于x的方程(m-2)x2+n+n2的值为________.13.若将方程=________.14.如果关于x的方程ax2+2x+1=0有两个不相等的实数根,那么实数a的取值范围是________.15.(·内江)已知关于x的方程x2-6x+k=0的两根分别是x1,x2,且满足1x1+1x2=3,则k的值是________.16.2月28日,前央视知名记者柴静推出了关于雾霾的纪录片——《穹顶之下》,引起了极大的反响.某市准备加大对雾霾的治理力度,第一季度投入资金100万元,第二季度和第三季度计划共投入资金260万元,求这两个季度计划投入资金的平均增长率.设这两个季度计划投入资金的平均增长率为x,根据题意可列方程为____________.17.(·毕节)关于x的两个方程x2-4x+3=0与1x-1=2x+a有一个解相同,则a=________.18.小明的妈妈周三在自选商场花10元钱买了几瓶酸奶,周六再去买时,正好遇上商场酬宾活动,同样的酸奶,每瓶比周三便宜0.5元,结果小明的妈妈只比上次多花了2元钱,却比上次多买了2瓶酸奶,她周三买了________瓶酸奶.19.现定义运算“★”:对于任意实数a,b,都有a★b=a2-3a+b,如:3★5=32-3×3+5.若x★2=6,则实数x的值是________.(第20题)20.(·贵阳)如图,在Rt△ABC中,∠BAC=90°,AB=AC=16 cm,AD为BC边上的高,动点P从点A出发,沿A→D方向以 2 cm/s的速度向点D运动.设△ABP的面积为S1,矩形PDFE的面积为S2,运动时间为t s(0<t<8),则t=________时,S1=2S2.三、解答题(21题8分,22、23题每题6分,24、25题每题9分,26题10分,27题12分,共60分)21.用适当的方法解下列方程.(1)x2-x-1=0; (2)x2-2x=2x+1;(3)x(x-2)-3x2=-1; (4)(x+3)2=(1-2x)2.22.关于-2)+3=0有两个不相等的实数根.(1)求m的取值范围;(2)当m取满足条件的最大整数时,求方程的根.23.晓东在解一元二次方程时,发现有这样一种解法:如:解方程x(x+4)=6.解:原方程可变形,得[(x+2)-2][(x+2)+2]=6.(x+2)2-22=6,(x+2)2=6+22,(x+2)2=10.直接开平方并整理,得x1=-2+10,x2=-2-10.我们称晓东这种解法为“平均数法”.(1)下面是晓东用“平均数法”解方程(x+2)(x+6)=5时写的解题过程.解:原方程可变形,得[(x+□)-○][(x+□)+○]=5.(x+□)2-○2=5,(x+□)2=5+○2.直接开平方并整理,得x1=☆,x2=¤.上述过程中的“□”,“○”,“☆”,“¤”表示的数分别为________,________,________,________.(2)请用“平均数法”解方程:(x-3)(x+1)=5.24.已知x1,x2是一元二次方程(a-6)x2+2ax+a=0的两个实数根.(1)是否存在实数a,使-x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请说明理由.(2)求使(x1+1)(x2+1)为负整数的实数a的整数值.25.(·随州)楚天汽车销售公司5月份销售某种型号汽车.当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30辆.(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求y与x的函数关系式;(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润为25万元,那么该月需售出多少辆汽车?(注:销售利润=销售价-进价)26.如图,A ,B ,C ,D 为矩形的四个顶点,AB =16 cm ,AD =6 cm ,动点P ,Q 分别从点A ,C 同时出发,点P 以3 cm /s 的速度向点B 移动,一直到达B 为止,点Q 以2 cm /s 的速度向D 移动.(1)P ,Q 两点从出发开始到几秒时,四边形PBCQ 的面积为33 cm 2? (2)P ,Q 两点从出发开始到几秒时,点P 和点Q 之间的距离是10 cm?(第26题)27.目前世界上最长的跨海大桥——杭州湾跨海大桥通车了.通车后,A 地到宁波港的路程比原来缩短了120 km .已知运输车速度不变时,行驶时间将从原来的103h 缩短到2 h .(1)求A 地经杭州湾跨海大桥到宁波港的路程.(2)若货物运输费用包括运输成本和时间成本,某车货物从A 地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A地经杭州湾跨海大桥到宁波港的运输费用是多少元?(3)A地准备开辟宁波方向的外运路线,即货物从A地经杭州湾跨海大桥到宁波港,再从宁波港运到B地.若有一批货物(不超过10车)从A地按外运路线运到B地的运费需8 320元,其中从A地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B地的海上运费对一批不超过10车的货物计费方式是:1车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?答案一、1.C点拨:因为1x2-1x=0中分母含有未知数,B中xy+x2=9含有两个未知数,所以A、B都不是一元二次方程,D中可变形为x2-8x+15=x2-4x.化简后不含x2,故不是一元二次方程,故选C .2.A 3.A 4.D5.A 点拨:第一次降价后的价格为300×(1-x)元,第二次降价后的价格为300×(1-x)×(1-x)元,则列出的方程是300(1-x)2=243.6.C 7.D8.C 点拨:由x 2-14x +48=0,得x 1=6,x 2=8.因为62+82=102,所以该三角形为直角三角形.9.D 10.C二、11.≠2 12.1 13.4 14.a <1且a ≠015.2 点拨:∵x 2-6x +k =0的两根分别为x 1,x 2, ∴x 1+x 2=6,x 1x 2=k. ∴1x 1+1x 2=x 1+x 2x 1x 2=6k=3. 解得k =2.经检验,k =2满足题意. 16.100(1+x)+100(1+x)2=260点拨:根据题意知:第二季度计划投入资金100(1+x)万元,第三季度计划投入资金100(1+x)2万元.∴100(1+x)+100(1+x)2=260.17.1 点拨:由方程x 2-4x +3=0,得 (x -1)(x -3)=0, ∴x -1=0,或x -3=0. 解得x 1=1,x 2=3;当x =1时,分式方程1x -1=2x +a 无意义;当x =3时,13-1=23+a ,解得a =1,经检验a =1是方程13-1=23+a的解.18.4 点拨:设她周三买了x 瓶酸奶,根据题意得(x +2)·⎝⎛⎭⎫10x -0.5=10+2,化简得x 2+6x -40=0,解得x 1=4,x 2=-10(舍去).19.-1或4 点拨:根据题中的新定义将x ★2=6变形得x 2-3x +2=6,即x 2-3x -4=0,解得x 1=4,x 2=-1,则实数x 的值是-1或4.20.6 点拨:∵在Rt △ABC 中,∠BAC =90°,AB =AC =16 cm ,AD 为BC 边上的高,∴AD =BD =CD =8 2 cm .又∵AP =2t cm ,∴S 1=12AP·BD =12×2t ×82=8t(cm 2),PD =(82-2t)cm .易知PE =AP =2t cm ,∴S 2=PD·PE =(82-2t)·2t cm 2.∵S 1=2S 2,∴8t =2(82-2t)·2t.解得t 1=0(舍去),t 2=6.三、21.解:(1)(公式法)a =1,b =-1,c =-1, 所以b 2-4ac =(-1)2-4×1×(-1)=5.所以x =-b±b 2-4ac 2a =1±52,即原方程的根为x 1=1+52,x 2=1-52.(2)(配方法)原方程可化为x 2-4x =1, 配方,得x 2-4x +4=1+4,(x -2)2=5. 两边开平方,得x -2=±5, 所以x 1=2+5,x 2=2- 5.(3)(公式法 )原方程可化为2x 2+2x -1=0,所以a =2,b =2,c =-1,b 2-4ac =22-4×2×(-1)=12. 所以x =-2±122×2=-1±32,即原方程的根为x 1=-1+32,x 2=-1-32.(4)(因式分解法)移项,得(x +3)2-(1-2x)2=0, 因式分解,得(3x +2)(-x +4)=0, 解得x 1=-23,x 2=4.22.解:(1)∵关于-2)+3=0有两个不相等的实数根, ∴m -2≠0且Δ=(2m)2-4(m -2)(m +3)=-4(m -6)>0. 解得m<6且m ≠2.(2)在m<6且m ≠2的范围内,最大整数为5. 此时,方程化为3x 2+10x +8=0. 解得x 1=-2,x 2=-43.23.解:(1)4;2;-1;-7(最后两空可交换顺序); (2)(x -3)(x +1)=5,原方程可变形,得[(x -1)-2][(x -1)+2]=5, (x -1)2=5+22,即(x -1)2=9, 直接开平方并整理,得x 1=4,x 2=-2.24.解:(1)Δ=4a 2-4a(a -6)=24a ,∵一元二次方程有两个实数根,∴Δ≥0,即a ≥0.又∵a -6≠0,∴a ≠6.∴a ≥0且a ≠6.由题可知x 1+x 2=2a 6-a ,x 1x 2=aa -6.∵-x 1+x 1x 2=4+x 2,即x 1x 2=4+x 1+x 2,∴a a -6=4+2a6-a.解得a =24,经检验,符合题意.∴存在实数a ,a 的值为24;(2)(x 1+1)(x 2+1)=x 1+x 2+x 1x 2+1=2a 6-a +aa -6+1=-6a -6.∵-6a -6为负整数,∴整数a 的值应取7,8,9,12.25.解:(1)当x ≤5时,y =30.当5<x ≤30时,y =30-(x -5)×0.1=-0.1x +30.5.∴y =⎩⎪⎨⎪⎧30,(x ≤5,且x 为正整数),-0.1x +30.5,(5<x ≤30,且x 为正整数).(2)当x ≤5时,(32-30)x =2x ≤10<25,不合题意. 当5<x ≤30时,(32+0.1x -30.5)x =25, ∴x 2+15x -250=0.解得x 1=-25(舍去),x 2=10. 答:该月需售出10辆汽车.(第26题)26.解:(1)设P ,Q 两点从出发开始到2,则AP =3,所以PB =(16-3x)cm .因为(PB +CQ)×BC ×12=33,所以(16-3x +2x)×6×12=33.解得x =5,所以P ,Q 两点从出发开始到5 s 时,四边形PBCQ 的面积为33 cm 2.(2)设P ,Q 两点从出发开始到a s 时,点P 和点Q 之间的距离是10 cm . 如图,过点Q 作QE ⊥AB 于E ,易得EB =QC ,EQ =BC =6 cm , 所以PE =|PB -BE|=|PB -QC|=|16-3a -2a|=|16-5a|(cm ).在直角三角形PEQ 中,PE 2+EQ 2=PQ 2,所以(16-5a)2+62=102,即25a 2-160a +192=0,解得a 1=85,a 2=245,所以P ,Q 两点从出发开始到85 s 或245 s 时,点P 和点Q 之间的距离是10 cm .27.解:(1)设A 地经杭州湾跨海大桥到宁波港的路程为x km , 由题意得x +120103=x2,解得.(2)1.8×180+28×2=380(元),∴该车货物从A 地经杭州湾跨海大桥到宁波港的运输费用是380元.(3)设这批货物有y 车,由题意得y[800-20×(y -1)]+380y =8 320,整理得y 2-60y +416=0,解得y 1=8,y 2=52(不合题意,舍去),∴这批货物有8车.。
2024-2025学年天津市宝坻区第二中学数学九年级第一学期开学达标检测模拟试题【含答案】

2024-2025学年天津市宝坻区第二中学数学九年级第一学期开学达标检测模拟试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)在同一直角坐标系中,将一次函数y =x ﹣3(x >1)的图象,在直线x =2(横坐标为2的所有点构成该直线)的左侧部分沿直线x =2翻折,图象的其余部分保持不变,得到一个新图象.若关于x 的函数y =2x +b 的图象与此图象有两个公共点,则b 的取值范围是()A .8>b >5B .﹣8<b <﹣5C .﹣8≤b ≤﹣5D .﹣8<b ≤﹣52、(4分)如图,四边形ABCD 是菱形,AC =8,DB =6,DH ⊥AB 于H ,则DH 等于()A .245B .125C .5D .43、(4分)把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是()A .a=2,b=3B .a=-2,b=-3C .a=-2,b=3D .a=2,b=-34、(4分)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE ∥BC ,已知AE =6,37AD AB =,则EC 的长是()A .4.5B .8C .10.5D .145、(4分)在反比例函数y =2k x -图象的每个象限内,y 随x 的增大而减少,则k 值可以是()A .3B .2C .1D .﹣16、(4分)如图,一次函数y kx b =+的图象与x 轴的交点坐标为(2,0)-,则下列说法正确的有()①y 随x 的增大而减小;②0b <;③关于x 的方程0kx b +=的解为2x =-;④当2x >-时,0y >.A .1个B .2个C .3个D .4个7、(4分)甲乙两城市相距600千米,一辆货车和一辆客车均从甲城市出发匀速行驶至乙城市.已知货车出发1小时后客车再出发,先到终点的车辆原地休息.在汽车行驶过程中,设两车之间的距离为s (千米),客车出发的时间为t (小时),它们之间的关系如图所示,则下列结论错误的是()A .货车的速度是60千米/小时B .离开出发地后,两车第一次相遇时,距离出发地150千米C .货车从出发地到终点共用时7小时D .客车到达终点时,两车相距180千米8、(4分)当2x =时,函数41=-+y x 的值是()A .-3B .-5C .-7D .-9二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在平面直角坐标系中,菱形OABC 的边OA 在x 轴上,AC 与OB 交于点D (4,2),反比例函数k y x =的图象经过点D .若将菱形OABC 向左平移n 个单位,使点C 落在该反比例函数图象上,则n 的值为_____________.10、(4分)如图,在ABC ∆中,BD 和CD 分别平分ABC ∠和ACB ∠,过点D 作//EF BC ,分别交,AB AC 于点,E F ,若2,3BE CF ==,则线段EF 的长为_______.11、(4分)若五个整数由小到大排列后,中位数为4,唯一的众数为2,则这组数据之和的最小值是_____.12、(4分)如图,点P 在第二象限内,且点P 在反比例函数k y x =图象上,PA ⊥x 轴于点A ,若S △PAO 的面积为3,则k 的值为.13、(4分)点P (a ,a -3)在第四象限,则a 的取值范围是_____.三、解答题(本大题共5个小题,共48分)14、(12分)AF CD ∥,AB DE ∥,且120A ∠=︒,80B ∠=︒,求D ∠和C ∠的度数.15、(8分)如图1,在正方形ABCD 中,点E 、F 分别是边BC 、CD 上的点,且CE =CF ,连接AE ,AF ,取AE 的中点M ,EF 的中点N ,连接BM ,MN .(1)请判断线段BM 与MN 的数量关系和位置关系,并予以证明.(2)如图2,若点E 在CB 的延长线上,点F 在CD 的延长线上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.16、(8分)如图,点C ,D 在线段AB 上,△PCD 是等边三角形,△ACP ∽△PDB ,(1)请你说明CD 2=AC •BD ;(2)求∠APB 的度数.17、(10分)已知:如图,在□ABCD 中,点M 、N 分别是AB 、CD 的中点.求证:DM =BN .18、(10分)一个二次函数的图象经过()()()1,10,1,4,2,7-三点.求这个二次函数的解析式并写出图象的开口方向、对称轴和顶点.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)平面直角坐标系中,点A 在函数12y x =(x>0)的图象上,点B 在22y x =-(x<0)的图象上,设A 的横坐标为a ,B 的横坐标为b ,当|a|=|b|=5时,求△OAB 的面积为____;20、(4分)满足a 2+b 2=c 2的三个正整数,称为勾股数.写出你比较熟悉的两组勾股数:①_____;②_____.21、(4分)已知一组数据3、x 、4、8、6,若该组数据的平均数是5,则x 的值是______.22、(4分)如图,□OABC 的顶点O,A 的坐标分别为(0,0),(6,0),B(8,2),Q(5,3),在平面内有一条过点Q 的直线将平行四边形OABC 的面积分成相等的两部分,则该直线的解析式为___.23、(4分)已知在同一坐标系中,某正比例函数与某反比例函数的图像交于A ,B 两点,若点A 的坐标为(-1,4),则点B 的坐标为___.二、解答题(本大题共3个小题,共30分)24、(8分)某学校组织330学生集体外出活动,计划租用甲、乙两种大客车共8辆,已知甲种客车载客量为45人/辆,租金为400元/辆;乙种客车载客量为30人/辆,租金为280元/辆,设租用甲种客车x 辆.(1)用含x 的式子填写下表:车辆数(辆)载客量(人)租金(元)甲种客车x 45x 400x 乙种客车___________________________(2)给出最节省费用的租车方案,并求出最低费用.25、(10分)在平面直角坐标系中,一条直线经过A (﹣1,5),P (﹣2,a ),B (3,﹣3)三点.求a 的值.26、(12分)如图,在正方形ABCD 中,BC 10cm ,点E 是边AD 上的动点(含端点A ,D ),连结CE ,以CE 所在直线为对称轴作点D 的对称点P ,连结AP ,BP ,CP ,EP ,点F ,G ,H 分别是线段CP ,BP ,BC 的中点,连结FG ,GH .(1)求证:四边形CFGH 是菱形;(2)若四边形CFGH 的面积为220cm ,求DE 的长;(3)以ABP △其中两边为邻边构造平行四边形,当所构造的平行四边形恰好是菱形时,这时该菱形的面积是________.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B 【解析】根据直线y =2x +b 经过(2,﹣1),可得b =﹣1;根据直线y =2x +b 经过(3,﹣2),即可得到b =﹣8,依据关于x 的函数y =2x +b 的图象与此图象有两个公共点,即可得出b 的取值范围是﹣8<b <﹣1.【详解】解:在y =x ﹣3(x >1)中,令x =2,则y =﹣1,若直线y =2x +b 经过(2,﹣1),则﹣1=4+b ,解得b =﹣1;在y =x ﹣3(x >1)中,令x =1,则y =﹣2,点(1,﹣2)关于x =2对称的点为(3,﹣2),若直线y =2x +b 经过(3,﹣2),则﹣2=6+b ,解得b =﹣8,∵关于x 的函数y =2x +b 的图象与此图象有两个公共点,∴b 的取值范围是﹣8<b <﹣1,故选:B .本题主要考查了一次函数图象与几何变换,解决问题给的关键是掌握一次函数图象上点的坐标特征:直线上任意一点的坐标都满足函数关系式y =kx +b .2、A【解析】根据菱形性质求出AO =4,OB =3,∠AOB =90°,根据勾股定理求出AB ,再根据菱形的面积公式求出即可.【详解】解:∵四边形ABCD 是菱形,设AB,CD 交于O 点,∴AO =OC ,BO =OD ,AC ⊥BD ,∵AC =8,DB =6,∴AO =4,OB =3,∠AOB =90°,由勾股定理得:AB =5,∵S 菱形ABCD =12×AC×BD =AB×DH ,∴12×8×6=5×DH ,∴DH =245,故选A .本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S 菱形ABCD =12×AC×BD =AB×DH 是解此题的关键.3、B 【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b 即可.详解:(x+1)(x-3)=x 2-3x+x-3=x 2-2x-3所以a=2,b=-3,故选B .点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.4、B 【解析】利用相似三角形的判定与性质得出AD AE AB AC =,求出EC 即可.【详解】∵DE ∥BC ,∴△ADE ∽△ABC.∴AD AE AB AC =,即6367AE AC EC ==+解得:EC=1.故选B .5、A 【解析】根据反比例函数图象的性质可知当k-2>0时,在同一个象限内,y 随x 的增大而减小,则可得答案.【详解】根据反比例函数图象的性质可知当k-2>0时,在同一个象限内,y 随x 的增大而减小,所以k >2,结合选项选择A.本题考查反比例函数图象的性质,解题的关键是掌握反比例函数图象的性质.6、B 【解析】根据一次函数的性质,一次函数与一元一次方程的关系对各个小项分析判断即可得解.【详解】图象过第一、二、三象限,∴0k >,0b >,故①②错误;又∵图象与x 轴交于(2,0)-,∴0kx b +=的解为2x =-,③正确.当2x >-时,图象在x 轴上方,0y >,故④正确.综上可得③④正确故选:B .本题考查了一次函数与一元一次方程,利用一次函数的性质、一次函数与一元一次方程的关系是解题关键.7、C 【解析】通过函数图象可得,货车出发1小时走的路程为60千米,客车到达终点所用的时间为6小时,根据行程问题的数量关系可以求出货车和客车的速度,利用数形结合思想及一元一次方程即可解答.【详解】解:由函数图象,得:货车的速度为60÷1=60千米/小时,客车的速度为600÷6=100千米/小时,故A 错误;设客车离开起点x 小时后,甲、乙两人第一次相遇,根据题意得:100x=60+60x ,解得:x=1.5,∴离开起点后,两车第一次相遇时,距离起点为:1.5×100=150(千米),故B 错误;甲从起点到终点共用时为:600÷60=10(小时),故C 正确;∵客车到达终点时,所用时间为6小时,货车先出发1小时,∴此时货车行走的时间为7小时,∴货车走的路程为:7×60=420(千米),∴客车到达终点时,两车相距:600﹣420=180(千米),故D 错误;故选C .本题主要考查了函数图象的读图能力,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.8、C【解析】将2x 代入函数解析式即可求出.【详解】解:当2x =时,函数414217y x =-+=-⨯+=-,故选C.本题考查函数值的意义,将x 的值代入函数关系式按照关系式提供的运算计算出y 的值即为函数值.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】根据菱形的性质得出CD=AD ,BC ∥OA ,根据D (4,2)和反比例函数x k y =的图象经过点D 求出k=8,C 点的纵坐标是2×2=4,求出C 的坐标,即可得出答案.【详解】∵四边形ABCO 是菱形,∴CD =AD ,BC ∥OA ,∵D (4,2),反比例函数x k y =的图象经过点D ,∴k =8,C 点的纵坐标是2×2=4,∴8x y =,把y =4代入得:x =2,∴n =3−2=1,∴向左平移1个单位长度,反比例函数能过C 点,故答案为:1.本题主要考查了反比例函数图象上点的坐标特征,菱形的性质,坐标与图形变化-平移,数形结合思想是关键.10、5.【解析】由BD 为角平分线,利用角平分线的性质得到一对角相等,再由EF 与BC 平行,利用两直线平行内错角相等得到一对角相等,等量代换可得出∠EBD=∠EDB ,利用等角对等边得到EB=ED ,同理得到FC=FD ,再由EF=ED+DF ,等量代换可得证.【详解】证明:∵BD为∠ABC的平分线,∴∠EBD=∠CBD,又∵EF∥BC,∴∠EDB=∠CBD,∴∠EBD=∠EDB,∴EB=ED,同理FC=FD,又∵EF=ED+DF,∴EF=EB+FC=5.此题考查等腰三角形的判定与性质,平行线的性质,解题关键在于得出∠EBD=∠EDB 11、19【解析】根据“五个整数由小到大排列后,中位数为4,唯一的众数为2”,可知此组数据的第三个数是4,第一个和第二个数是2,据此可知当第四个数是5,第五个数是6时和最小.【详解】∵中位数为4∴中间的数为4,又∵众数是2∴前两个数是2,∵众数2是唯一的,∴第四个和第五个数不能相同,为5和6,∴当这5个整数分别是2,2,4,5,6时,和最小,最小是2+2+4+5+6=19,故答案为19.本题考查中位数和众数,能根据中位数和众数的意义进行逆向推理是解决本题的关键.在读题时需注意“唯一”的众数为2,所以除了两个2之外其它的数只能为1个.12、-6【解析】由△PAO的面积为3可得12k=3,再结合图象经过的是第二象限,从而可以确定k值;【详解】解:∵S△PAO=3,∴11=22x y k g =3,∴|k|=6,∵图象经过第二象限,∴k<0,∴k=−6;故答案为:−6.本题主要考查了反比例函数系数k 的几何意义,反比例函数图象上点的坐标特征,掌握反比例函数系数k 的几何意义,反比例函数图象上点的坐标特征是解题的关键.13、0<a <3【解析】根据平面直角坐标系中各象限点的特征,判断其所在象限,四个象限的符号特征分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).【详解】∵点P (a ,a -3)在第四象限,∴a 0{a 30>-<,解得0<a <3.三、解答题(本大题共5个小题,共48分)14、CDE ∠,C ∠的度数分别为120︒,160︒.【解析】连接AD ,由条件AB ∥DE ⇒BAD EDA ∠=∠,AF ∥CD ⇒FAD ADC ∠=∠,进一步可得CDE ∠120BAF =∠=︒,再在四边形ABCD 中,用四边形内角和是360°求出C ∠即可.【详解】解:连接AD .∵AB ∥DE ,∴BAD EDA ∠=∠.∵AF ∥CD ,∴FAD ADC ∠=∠.∵120BAF ∠=︒,∴CDE EDA ADC BAD FAD ∠=∠+∠=∠+∠120BAF =∠=︒,120BAD ADC BAD FAD BAF ∠+∠=∠+∠=∠=︒.在四边形ABCD 中,()360B C BAD ADC ∠+∠=︒-∠+∠360120240=︒-︒=︒.∵80B ∠=︒,∴160C ∠=︒.∴CDE ∠,C ∠的度数分别为120︒,160︒.本题需要熟练运用平行线的性质和四边形内角和定理进行求解,解题的关键是连接AD ,先将CDE ∠转化为BAF ∠,再用四边形内角和是360°求解C ∠,需要注意的是在用四边形内角和求C ∠时用到了整体思想.15、(1)BM =MN ,BM ⊥MN ,证明见解析;(2)仍然成立,证明见解析【解析】(1)根据已知正方形ABCD 的边角相等关系,推出△ABE ≌△ADF (SAS),得出AE=AF ,利用MN 是△AEF 的中位线,BM 为Rt △ABE 的中线,可得BM=MN ,由外角性质,得出∠BME =∠1+∠3,再由MN ∥AF ,∠1+∠2+∠EAF =∠BAD =90°,等角代换可推出结论;(2)同(1)思路一样,证明△ABE ≌△ADF (SAS),利用外角性质和中位线平行关系,通过等角代换即得证明结论.【详解】(1)BM =MN ,BM ⊥MN .证明:在正方形ABCD 中,∠BAD =∠ABC =∠ADC =90°,AB =AD =BC =DC ,∵CE =CF ,∴BC -CE =DC -CF ,∴BE =DF ,∴△ABE ≌△ADF (SAS),∴∠1=∠2,AE =AF ,∵M 为AE 的中点,N 为EF 的中点,∴MN 是△AEF 的中位线,BM 为Rt △ABE 的中线.∴MN ∥AF ,MN =12AF ,BM =12AE =AM ,∴BM =MN ,∠EMN =∠EAF ,∵BM =AM ,∴∠1=∠3,∠2=∠3,∴∠BME =∠1+∠3=∠1+∠2,∴∠BMN =∠BME +∠EMN =∠1+∠2+∠EAF =∠BAD =90°,∴BM ⊥MN .故答案为:BM =MN ,BM ⊥MN .(2)(1)中结论仍然成立.证明:在正方形ABCD 中,∠BAD =∠ABC =∠ADC =90°,AB =AD =BC =DC ,∴∠ABE =∠ADF =90°,∵CE =CF ,∴CE -BC =CF -DC ,∴BE =DF ,∴△ABE ≌△ADF (SAS),∴∠1=∠2,AE =AF ,同理(1)得MN ∥AF ,MN =12AF ,BM =12AE =AM ,∴BM =MN ,同理(1)得∠BME =∠1+∠2,∠EMN =∠EAF ,∴∠BMN =∠EMN-∠BME =∠EAF-(∠1+∠2)=∠BAD =90°,∴BM ⊥MN ,故答案为:结论仍成立.考查了正方形的性质,全等三角形的判定和性质,外角的性质,直角三角形中中线的性质,16、(1)见解析;(2)∠APB=120°.【解析】(1)由△ACP∽△PDB,根据相似三角形的对应边成比例,可得AC:PD=PC:BD,又由△PCD是等边三角形,即可证得CD2=AC•BD;(2)由△ACP∽△PDB,根据相似三角形对应角相等,可得∠A=∠BPD,又由△PCD是等边三角形,即可求得∠APB的度数.【详解】(1)证明:∵△ACP∽△PDB,∴AC:PD=PC:BD,∴PD•PC=AC•BD,∵△PCD是等边三角形,∴PC=CD=PD,∴CD2=AC•BD;(2)解:∵△ACP∽△PDB,∴∠A=∠BPD,∵△PCD是等边三角形,∴∠PCD=∠CPD=60°,∴∠PCD=∠A+∠APC=60°,∴∠APC+∠BPD=60°,∴∠APB=∠APC+∠CPD+∠BPD=120°.此题考查了相似三角形的性质与等边三角形的性质.此题难度适中,注意掌握数形结合思想的应用.17、见解析【解析】根据平行四边形的性质得到AB =CD ,AD =BC ,∠A =∠C .,利用点M 、N 分别是AB 、CD 的中点证得,再证明△ADM ≌△CBN 即可得到结论.【详解】证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AD =BC ,∠A =∠C .又∵点M 、N 分别是AB 、CD 的中点,∴11,.22AM AB CN CD ==∴.AM CN =∴△ADM ≌△CBN (SAS )∴DM =BN .此题考查平行四边形的性质,全等三角形的判定与性质,线段中点的性质,根据题中的已知条件确定正确全等三角形的思路是解题的关键.18、2235y x x =-+,图象开口向上,对称轴直线34x =,顶点331,48⎛⎫ ⎪⎝⎭.【解析】首先根据待定系数法求解二次函数的解析式,再根据二次函数的系数确定抛物线的开口方向,对称轴,和公式法计算顶点坐标.【详解】设二次函数的解析式为2y ax bx c =++.由已知,函数的图象经过()()()1,10,1,4,2,7-三点,可得104427a b c a b c a b c -+=⎧⎪++=⎨⎪++=⎩解这个方程组,得2a =,3b =-,5c =.所求二次函数的解析式为22331235248y x x x ⎛⎫=-+=-+ ⎪⎝⎭,图象开口向上,对称轴直线34x =,顶点331,48⎛⎫ ⎪⎝⎭.本题主要考查二次函数抛物线解析式的计算、抛物线的性质,这是考试的必考点,必须熟练掌握.一、填空题(本大题共5个小题,每小题4分,共20分)19、2【解析】根据已知条件可以得到点A 、B 的横坐标,则由反比例函数图象上点的坐标特征易求点O 到直线AB 的距离,所以根据三角形的面积公式进行解答即可;【详解】)∵a>0,b<0,当|a|=|b|=5时,可得A(5,25),B(−5,25),∴S △OAB=12×10×25=2;此题考查反比例函数,解题关键在于得到点A 、B 的横坐标20、3,4,56,8,10【解析】根据勾股数的定义即可得出答案.【详解】∵3、4、5是三个正整数,且满足222345+=,∴3、4、5是一组勾股数;同理,6、8、10也是一组勾股数.故答案为:①3,4,5;②6,8,10.本题考查了勾股数.解题的关键在于要判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.21、1【解析】根据算术平均数的计算方法列方程求解即可.【详解】解:由题意得:348655x++++=⨯解得:4x=.故答案为1.此题考查算术平均数的意义和求法,掌握计算方法是解决问题的关键.22、y=2x﹣1.【解析】将▱OABC的面积分成相等的两部分,所以直线必过平行四边形的中心D,由B的坐标即可求出其中心坐标D,设过直线的解析式为y=kx+b,把D和Q的坐标代入即可求出直线解析式即可.【详解】解:∵B(8,2),将平行四边形OABC的面积分成相等的两部分的直线一定过平行四边形OABC 的对称中心,平行四边形OABC的对称中心D(4,1),设直线MD的解析式为y=kx+b,∴53 41 k b k b ⎧⎨⎩+=+=即27 kb==⎧⎨-⎩,∴该直线的函数表达式为y=2x﹣1,因此,本题正确答案是:y=2x﹣1.本题考察平行四边形与函数的综合运用,能够找出对称中心是解题关键.23、(1,−4)【解析】根据反比例函数图象上点的坐标特征,正比例函数与反比例函数的两交点坐标关于原点对称.【详解】∵反比例函数是中心对称图形,正比例函数与反比例函数的图象的两个交点关于原点对称,∴它的另一个交点的坐标是(1,−4),故答案为:(1,−4).本题考查反比例函数图象的对称性,解题的关键是掌握反比例函数图象的对称性.二、解答题(本大题共3个小题,共30分)24、(1)(1)8﹣x,30(8﹣x),280(8﹣x);(2)最节省费用的租车方案是甲种货车6辆,乙种货车2辆,最低费用为2960元【解析】(1)设租用甲种客车x辆,根据题意填表格即可.(2)设租车的总费用为y元,则可列出关于x的解析式即为y=120x+2240,又因为学校组织330学生集体外出活动,则有不等式45x+30(8﹣x)≥330,求得x的取值范围,即可解答最节省费用的租车方案.【详解】解:(1)车辆数(辆)载客量(人)租金(元)甲种客车x45x400x乙种客车8﹣x30(8﹣x)280(8﹣x)(2)当租用甲种客车x辆时,设租车的总费用为y元,则:y=400x+280(8﹣x)=120x+2240,又∵45x+30(8﹣x)≥330,解得x≥6,在函数y=120x+2240中,∵120>0,∴y随x的增大而增大,∴当x=6时,y取得最小值,最小值为2960.答:最节省费用的租车方案是甲种货车6辆,乙种货车2辆,最低费用为2960元.此题考查一元一次不等式的应用,一次函数的应用,解题关键在于利用不等式求取的范围解答即可.25、7【解析】运用待定系数法求出直线的解析式,然后把x=-2代入解析式求出a 的值。
第21章 一次函数 单元检测试题 2020-2021学年冀教版八年级数学下册

第21章一次函数单元检测试题(满分120分;时间:90分钟)一、选择题(本题共计9 小题,每题3 分,共计27分,)1. 下列a与b成正比例的式子是()A.a2=bB.a=bC.a=4b+5D.以上都不对2. 下列函数中是一次函数的是()A. B. C. D.3. 正比例函数y=(k−1)x k2−k−1的图象经过第二、四象限,那么k为()A.k=−1B.k=2C.k=−1或k=2D.不能确定4. 经过以下一组点可以画出函数y=2x图象的是()A.(0, 0)和(2, 1)B.(1, 2)和(−1, −2)C.(1, 2)和(2, 1)D.(−1, 2)和(1, 2)5. 若函数y=kx的图象在第一、三象限,则函数y=kx−3的图象经过()A.第二、三、四象限B.第一、二、三象眼C.第一、二、四象限D.第一、三、四象限6. 下列一次函数中,y随x值的增大而减小的是()A.y=2x+1B.y=3−4xC.y=√2x+2D.y=(√5−2)xx+12三个值中的最大值,则当x变化7. 对每个x,y是y1=2x,y2=x+2,y3=−32时,函数y的最小值为()A.4B.6C.8D.4878. 已知正比例函数y=kx(k<0)图象上的两点A(x1, y1),B(x2, y2),且x1<x2,则下列不等式中恒成立的是()A.y1+y2>0B.y1+y2<0C.y1−y2>0D.y1−y2<09. 一次函数y=kx+b,当k<0,b<0时,它的图象大致为()A. B. C. D.二、填空题(本题共计7 小题,每题3 分,共计21分,)10. 若正比例函数y=kx的图象经过点A(1, −5),则y随x的增大而________(填“增大”或“减小”).11. 已知直线y=2x+(3−a)与x轴的交点在A(1,0),B(3,0)之间(包括A,B两点),则a的取值范围是________.12. 如果关于x的一次函数y=mx+4m−2的图像经过第一、第三、第四象限,那么m 的取值范围是________.13. 一次函数的图象经过点(−2, 3)与(−1, 1),它的解析式为________.14. 将直线y=2x+1向下平移3个单位,得到的直线应为________,关于y轴对称的直线为________.15. 已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是−2≤y≤4,则kb的值为________.16. 将长为30cm,宽为10cm的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为3cm.设x张白纸粘合后的纸条总长度为ycm,则y与x的函数关系式为________.三、解答题(本题共计7 小题,共计72分,)17. 已知:y与2x−1成正比例,当x=2时,y=−3(1)求y与x之间的函数关系式;(2)当自变量x取何值时相应的函数值满足1≤y≤3?18. 水龙头关闭不严会造成滴水,容器内盛水时w(L)与滴水时间t(ℎ)的关系用可以显示水量的容器做如图1的试验,并根据试验数据绘制出如图2的函数图象,结合图象解答下列问题.(1)容器内原有水多少升?(2)求w与t之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?19. 已知一次函数y1=kx+2k−4的图象过一、三、四象限.(1)求k的取值范围;(2)对于一次函数y2=ax−a+1(a≠0),若对任意实数x,y1<y2都成立,求k的取值范围.20. 如图所示的是函数y1=kx+b与y2=mx+n的图象,(1)方程{y=kx+by=mx+n的解是________;(2)y1中变量y1随x的增大而________;(3)在平面直角坐标系中,将点P(3, 4)向下平移1个单位,恰好在正比例函数的图象上,求这个正比例函数的关系式.21. 已知:如图,在平面直角坐标系xOy中,一次函数y=−4x+8的图象分别与x、y轴交于点A、B,点P在x轴的负半轴上,△ABP的面积为12.若一次函数y=kx+b的图象经过点P和点B,求这个一次函数y=kx+b表达式.22. 如图,直线l上有一点P1(2, 1),将点P1先向右平移1个单位,再向上平移2个单位得到点P2,点P2恰好在直线l上.(1)写出点P2的坐标;(2)求直线l所表示的一次函数的表达式;(3)若将点P2先向右平移3个单位,再向上平移6个单位得到像点P3.请判断点P3是否在直线l上,并说明理由.23. 某商场销售产品A,第一批产品A上市40天内全部售完,该商场对第一批产品A上市后的销售情况进行了跟踪调查,调查结果如图所示:图①中的折线表示日销售量w与上市时间t的关系;图②中的折线表示每件产品A的销售利润y与上市时间t的关系.(1)观察图①,试写出第一批产品A的日销售量w与上市时间t的关系;(2)第一批产品A上市后,哪一天这家商店日销售利润Q最大?日销售利润Q最大是多少元?(日销售利润=每件产品A的销售利润×日销售量)。
2021-2022学年最新冀教版八年级数学下册第二十一章一次函数同步测评试题(含解析)

八年级数学下册第二十一章一次函数同步测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,表示一次函数y =mx +n 与正比例函数y =﹣mnx (m ,n 为常数,且mn ≠0)的图象不正确的是( )A .B .C .D .2、在同一平面直角坐标系中,函数2y x =的图象与函数3y kx =-的图象互相平行,则下列各点在函数3y kx =-的图象上的点是( )A .()2,1-B .()1,2-C .()3,3D .()5,133、如图,一次函数y =ax +b 的图象与y =cx +d 的图象如图所示且交点的横坐标为4,则下列说法正确的个数是( )①对于函数y =ax +b 来说,y 随x 的增大而减小;②函数y =ax +d 不经过第一象限;③方程ax +b =cx +d 的解是x =4;④ d-b =4(a-c ).A .1B .2C .3D .44、甲、乙两地相距120千米,A 车从甲地到乙地,B 车从乙地到甲地,A 车的速度为60千米/小时,B 车的速度为90千米/小时,A ,B 两车同时出发.设A 车的行驶时间为x (小时),两车之间的路程为y (千米),则能大致表示y 与x 之间函数关系的图象是( )A .B .C .D .5、下列各点中,不在一次函数2y x =-的图象上的是( )A .()2,0B .()1,1C .()2,4--D .31,22⎛⎫- ⎪⎝⎭ 6、若点(-3,y 1)、(2,y 2)都在函数y =-4x +b 的图像上,则y 1与y 2的大小关系( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .无法确定7、如图,函数y mx =和y kx b =+的图像相交于点P (1,m),则不等式b kx b mx -≤-≤的解集为( )A .01x ≤≤B .10x -≤≤C .11x -≤≤D .m x m -≤≤8、点A (﹣1,y 1)和点B (﹣4,y 2)都在直线y =﹣2x 上,则y 1与y 2的大小关系为( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .y 1≥y 29、如图1,在Rt ABC 中,90C ∠=︒,点D 是BC 的中点,动点P 从点C 出发沿CA AB -运动到点B ,设点P 的运动路程为x ,PCD 的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为( ).A .10B .12C .D .10、若点()11,y -,()22,y 都在一次函数21y x =+的图象上,则1y 与2y 的大小关系是( )A .12y y <B .12y y =C .12y y >D .12y y ≤第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将一次函数123=+y x 向上平移5个单位长度后得到直线AB ,则平移后直线AB 对应的函数表达式为______.2、若一次函数()0y ax b a =+≠的图象经过点()2,3A ,且不经过第四象限,则4a b +的取值范围为______.3、在直角坐标系中,等腰直角三角形11A B O 、221A B B 、332A B B 、⋯、1n n n A B B -按如图所示的方式放置,其中点1A 、2A 、3A 、⋯、n A 均在一次函数y kx b =+的图象上,点1B 、2B 、3B 、⋯、n B 均在x 轴上.若点1B 的坐标为(1,0),点2B 的坐标为(3,0),则n A 点的坐标为___.4、观察图象可知:当k >0时,直线y =kx +b 从左向右______;当k <0时,直线y =kx +b 从左向右______.由此可知,一次函数y =kx +b (k ,b 是常数,k ≠0) 具有如下性质:当k >0时,y 随x 的增大而______;当k <0时,y 随x 的增大而______.5、已知函数()325m y m x -=-+是关于x 的一次函数,则m =______.三、解答题(5小题,每小题10分,共计50分)1、一次函数y =kx +b ,当-3≤x ≤1时,对应的y 的取值为1≤y ≤9,求该函数的解析式.2、已知一次函数22y x =+的图象与x 轴交于点A ,与y 轴交于点B(1)求A 、B 两点的坐标;(2)画出函数22y x =+的图象3、甲、乙两车匀速从同一地点到距离出发地480千米处的景点,甲车出发半小时后,乙车以每小时80千米的速度沿同一路线行驶,两车分别到达目的地后停止,甲、乙两车之间的距离(千米)与甲车行驶的时间x (小时)之间的函数关系如图所示.(1)甲车行驶的速度是 千米/小时.(2)求乙车追上甲车后,y 与x 之间的函数关系式,并写出自变量x 的取值范围.(3)直接写出两车相距85千米时x的值.4、已知一次函数y=-x+2.(1)求这个函数的图像与两条坐标轴的交点坐标;(2)在平面直角坐标系中画出这个函数的图像;(3)结合函数图像回答问题:①当x>0 时,y 的取值范围是;②当y<0 时,x 的取值范围是.5、为巩固拓展脱贫攻坚成果,开启乡村振兴发展之门,某村村民组长组织村民加工板栗并进行销售.根据现有的原材料,预计加工规格相同的普通板栗、精品板栗共4000件.某天上午的销售件数和所卖金额统计如下表:(1)求普通板栗和精品板栗的单价分别是多少元.(2)根据(1)中求出的单价,若普通板栗和精品板栗每件的成本分别为40元、60元,且加工普通板栗a件(10003000≤≤),则4000件板栗的销售总利润为w元.问普通板栗和精品板栗各加工多少a件,所获总利润最多?最多总利润是多少?-参考答案-一、单选题1、B【解析】【分析】利用一次函数的性质逐项进行判断即可解答.【详解】解:A 、由一次函数的图象可知,0m <,0n >故0mn <;由正比例函数的图象可知0mn <,两结论一致,故本选项不符合题意;B 、由一次函数的图象可知,0m <,0n >故0mn <;由正比例函数的图象可知0mn >,两结论不一致,故本选项符合题意;C. 由一次函数的图象可知,0m >,0n >故0mn >;由正比例函数的图象可知0mn >,两结论一致,故本选项不符合题意;D. 由一次函数的图象可知,0m >,0n <故0mn <;由正比例函数的图象可知0mn <,两结论一致,故本选项不符合题意;故选B .【点睛】本题考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y kx b =+的图象有四种情况:当0k >,0b >函数y kx b =+的图象经过第一、二、三象限;当0k >,0b <函数y kx b =+的图象经过第一、三、四象限;当0k <,0b >函数y kx b =+的图象经过第一、二、四象限;当0k <,0b <函数y kx b =+的图象经过第二、三、四象限.2、C【解析】【分析】根据题意两个函数图象互相平行可得2k =,即可确定函数解析式,然后将选项各点代入检验即可确定哪个点在直线上.【详解】解:函数2y x =的图象与函数3y kx =-的图象互相平行,∴2k =,∴23y x =-,当2x =-时,437y =--=-,选项A 不在直线上;当1x =时,231y =-=-,选项B 不在直线上;当3x =时,y =6−3=3,选项C 在直线上;当5x =时,1037y =-=,选项D 不在直线上;故选:C .【点睛】题目主要考查确定一次函数的解析式及确定点是否在直线上,熟练掌握确定一次函数解析式的方法是解题关键.3、C【解析】【分析】仔细观察图象:①观察函数图象可以直接得到答案;②观察函数图象可以直接得到答案;③根据函数y =ax +b 的图象与y =cx +d 的图象如图所示且交点的横坐标为4可以得到答案; ④根据函数y =ax +b 的图象与y =cx +d 的图象如图所示且交点的横坐标为4可以得到答案.【详解】解:由图象可得,对于函数y =ax +b 来说,y 随x 的增大而减小故①正确;函数y =ax +d 图象经过第一,三,四象限,即不经过第二象限,故②不正确,一次函数y =ax +b 的图象与y =cx +d 的图象如图所示且交点的横坐标为4,所以方程ax +b =cx +d 的解是x =4;故③正确;∵一次函数y =ax +b 的图象与y =cx +d 的图象如图所示且交点的横坐标为4,∴4a +b =4c +d∴d-b =4(a-c ),故④正确.综上所述,正确的结论有3个.故选:C.【点睛】本题主要考查了一次函数的图象与性质,利用数形结合是解题的关键.4、C【解析】【分析】分别求出两车相遇、B车到达甲地、A车到达乙地时间,分0≤x≤45、45<x≤43、43<x≤2三段求出函数关系式,进而得到当x=43时,y=80,结合函数图象即可求解.【详解】解:当两车相遇时,所用时间为120÷(60+90)=45小时,B车到达甲地时间为120÷90=43小时,A车到达乙地时间为120÷60=2小时,∴当0≤x≤45时,y=120-60x-90x=-150x+120;当45<x≤43时,y=60(x-45)+90(x-45)=150x-120;当43<x≤2是,y=60x;由函数解析式的当x=43时,y=150×43-120=80.故选:C【点睛】本题考查了一次函数的应用,理解题意,确定分段函数的解析式,并根据函数解析式确定函数图象是解题关键.5、B【解析】【分析】根据一次函数解析变形可得2x y -=,进而判断即可.【详解】解:∵2y x =-∴2x y -=A. ()2,0,202-=,则()2,0在一次函数2y x =-的图象上 ,不符合题意;B. ()1,1,110-=,则()1,1不在一次函数2y x =-的图象上,符合题意;C. ()2,4--,()242---=,则()2,4--在一次函数2y x =-的图象上 ,不符合题意;D. 31,22⎛⎫- ⎪⎝⎭,31222⎛⎫--= ⎪⎝⎭,,则31,22⎛⎫- ⎪⎝⎭在一次函数2y x =-的图象上 ,不符合题意; 故选B【点睛】本题考查了一次函数的性质,满足一次函数解析式的点都在一次函数图象上,掌握一次函数的性质是解题的关键.6、A【解析】【分析】根据一次函数的性质得出y 随x 的增大而减小,进而求解.【详解】由一次函数y=-4x+b可知,k=-4<0,y随x的增大而减小,∵-3<2,∴y1>y2,故选:A.【点睛】本题考查一次函数的性质,熟知一次函数y=kx+b(k≠0),当k<0时,y随x的增大而减小是解题的关键.7、B【解析】【分析】由题意首先确定y=mx和y=kx-b的交点以及作出y=kx-b的大体图象,进而根据图象进行判断即可.【详解】解:∵y=kx+b的图象经过点P(1,m),∴k+b=m,当x=-1时,kx-b=-k-b=-(k+b)=-m,即(-1,-m)在函数y=kx-b的图象上.又∵(-1,-m)在y=mx的图象上.∴y=kx-b与y=mx相交于点(-1,-m).则函数图象如图.则不等式-b≤kx-b≤mx的解集为-1≤x≤0.故选:B.【点睛】本题考查一次函数与不等式的关系,运用数形结合思维分析并正确确定y=kx-b和y=mx的交点是解题的关键.8、B【解析】【分析】由直线y=-2x的解析式判断k=−2<0,y随x的增大而减小,再结合点的坐标特征解题即可.【详解】解:∵一次函数中一次项系数k=-2<0,∴y随x的增大而减小,∵-4<-1,∴y1<y2.故选B.【点睛】本题考查一次函数的增减性,是重要考点,难度较易,掌握相关知识是解题关键.9、D【解析】【分析】由图像可知, 当08x ≤≤时,y 与x 的函关系为:y =x ,当x =8时,y =8,即P 与A 重合时,PCD ∆的面积为8,据此求出CD ,BC ,再根据勾股定理求出AB 即可P .【详解】解:如图2,当08x ≤≤时,设y =kx ,将(3,3)代入得,k =1,()08y x x ∴=≤≤ ,当P 与A 重合时,即:PC =AC =8,由图像可知,把x =8代入y =x ,y =8,8PCD S ∆∴=,1882DC ∴⨯=,2DC ∴=, D 是BC 的中点,24BC CD ==在Rt ABC ∆中,AB故选:D .【点睛】本题考查了动点问题的函数图象,数形结合并熟练掌握三角形的面积计算公式与勾股定理是解题的关键.10、A【解析】【分析】根据k >0时,y 随x 的增大而增大,进行判断即可.【详解】解:∵点()11,y -,()22,y 都在一次函数21y x =+的图象上,20k =>∴y 随x 的增大而增大12-<∴12y y <故选A【点睛】本题考查了一次函数的性质以及一次函数图象上点的坐标特征,解题的关键是牢记“当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小”.二、填空题1、y =13x +7【解析】【分析】直接根据“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知,把直线y =13x +2向上平移5个单位长度后所得直线的解析式为:y =13x +2+5,即y =13x +7. ∴直线AB 对应的函数表达式为y =13x +7.故答案为:y =13x +7.【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键. 2、346a b <+≤【解析】【分析】把点()2,3A 代入()0y ax b a =+≠得32b a =-,根据一次函数不经过第四象限求得,a b 取值范围即可求得结论.【详解】解:∵一次函数()0y ax b a =+≠的图象经过点()2,3A ,∴23a b +=∴32b a =-∵一次函数()0y ax b a =+≠不经过第四象限∴00a b >⎧⎨≥⎩,即0320a a >⎧⎨-≥⎩解得,302<≤a又4=43223a b a a a ++-=+∴3236a <+≤即346a b <+≤故答案为:346a b <+≤【点睛】 本题主要考查了一次函数的图象与性质,求出302<≤a 是解答本题的关键. 3、()1121,2n n --- 【解析】【分析】首先,根据等腰直角三角形的性质求得点A 1、A 2的坐标;然后,将点A 1、A 2的坐标代入一次函数解析式,利用待定系数法求得该直线方程是y =x +1;最后,利用等腰直角三角形的性质推知点Bn -1的坐标,然后将其横坐标代入直线方程y =x +1求得相应的y 值,从而得到点An 的坐标.【详解】 解:如图,点1B 的坐标为(1,0),点2B 的坐标为(3,0),11OB ∴=,23OB =,则122B B =.△11A B O 是等腰直角三角形,1190AOB ∠=︒,111OA OB ∴==.∴点1A 的坐标是(0,1).同理,在等腰直角△221A B B 中,21290A B B ∠=︒,21122A B B B ==,则2(1,2)A .点1A 、2A 均在一次函数y kx b =+的图象上,∴12b k b =⎧⎨=+⎩,解得,11k b =⎧⎨=⎩, ∴该直线方程是1y x =+.点3A ,2B 的横坐标相同,都是3,∴当3x =时,4y =,即3(3,4)A ,则324A B =,3(7,0)B ∴.同理,4(15,0)B ,⋯(21n n B -,0),∴当121n x -=-时,112112n n y --=-+=,即点n A 的坐标为1(21n --,12)n -.故答案为1(21n --,12)n -.【点睛】本题考查了一次函数图象上点的坐标特点,涉及到的知识点有待定系数法求一次函数解析式,一次函数图象上点的坐标特征以及等腰直角三角形的性质.解答该题的难点是找出点Bn 的坐标的规律.4、 上升 下降 增大 减小【解析】略5、4【解析】【分析】由一次函数的定义可知x 的次数为1,即|3−y |=1,x 的系数不为0,即()20m -≠,然后对()3120m m -=-≠,计算求解即可.【详解】 解:由题意知()3120m m -=-≠,解得2m =(舍去),4m =故答案为:4.【点睛】本题考查了一次函数,绝对值方程,解不等式.解题的关键根据一次函数的定义求解参数.三、解答题1、函数的解析式为y =2x +7或y =-2x +3【解析】【分析】分类讨论:由于一次函数是递增或递减函数,所以当一次函数y =kx +b 为增函数时,则x =-3,y =1;x =1,y =9,当一次函数y =kx +b 为减函数时,则x =-3,y =9;x =1,y =1,然后把它们分别代入y =kx +b 中得到方程组,再解两个方程组即可.【详解】解:当x =-3,y =1;x =1,y =9,∴319k b k b -+=⎧⎨+=⎩, 解方程组得27k b =⎧⎨=⎩; 当x =-3,y =9;x =1,y =1,∴391k b k b -+=⎧⎨+=⎩, 解方程组得23k b =-⎧⎨=⎩, ∴函数的解析式为y =2x +7或y =-2x +3.【点睛】本题考查了待定系数法求一次函数解析式:先设一次函数的解析式为y =kx +b ,然后把一次函数图象上两点的坐标代入得到关于k 、b 的方程组,解方程组求出k 、b 的值,从而确定一次函数的解析式.也考查了分类讨论思想的运用.2、 (1)()1,0A -,()0,2B(2)见解析【解析】【分析】(1)分别令,0x y =,即可求得点,A B 的坐标;(2)根据,A B 两点,作出一次函数的图象即可(1)令0x =,则2y =,即()0,2B ,令0y =,则1x =-,即()1,0A -(2)过()1,0A -,()0,2B 作直线22y x =+的图象,如图所示,【点睛】本题考查了一次函数与坐标轴的交点问题,画一次函数图象,掌握一次函数的性质是解题的关键.3、 (1)60(2)y=20x-40(2 6.5x ≤≤); (3)254或7912【解析】【分析】(1)用甲车行驶0.5小时的路程30除以时间即可得到速度;(2)分别求出相应线段的两个端点的坐标,再利用待定系数法求函数解析式;(3)分两种情况讨论:将x =85代入AB 的解析式,求出一个值;另一种情况是乙停止运动,两车还相距85千米. (1)解:甲车行驶的速度是300.560÷=(千米/小时),故答案为:60;(2)解:设甲出发x 小时后被乙追上,根据题意:60x =80(x -0.5),解得x =2,∴甲出发2小时后被乙追上,∴点A 的坐标为(2,0),∵480800.5 6.5÷+=,∴B (6.5,90),设AB 的解析式为y=kx+b ,∴206.590k b k b ,解得2040k b ,∴AB 的解析式为y=20x-40(2 6.5x ≤≤);(3)解:根据题意得:20x-40=85或60x =480-85,解得x =254或7912.∴两车相距85千米时x为254或7912.【点睛】此题考查了一次函数的图象,一次函数的实际应用,利用待定系数法求函数解析式,并与行程问题的路程、时间、速度相结合,读出图形中的已知信息是关键,是一道综合性较强的函数题,有难度,同时也运用了数形结合的思想解决问题.4、 (1)这个函数的图像与坐标轴的交点为(0,2),(2,0);(2)见解析(3)①y<2;②x>2【解析】【分析】(1)令x=0,求函数与y轴的交点,令y=0,求函数与x轴的交点;(2)两点法画出函数图象;(3)通过观察函数图象求解即可.(1)解:令x=0,则y=2,令y=0,则x=2,∴这个函数的图像与坐标轴的交点为(0,2),(2,0);(2)解:这个函数的图像如图所示:,(3)解:①观察图像可知:当x >0时,y <2,故答案为:y <2;②观察图像可知:当y <0时,x >2,故答案为:x >2.【点睛】本题考查了一次函数的图象及性质,熟练掌握一次函数的图象及性质,数形结合解题是关键.5、 (1)普通板栗的单价为55元,精品板栗的单价为80元;(2)普通板栗加工1000件,精品板栗加工3000件,所获总利润最多,最多总利润是75000元.【解析】【分析】(1)设普通板栗的单价为x 元,精品板栗的单价为y 元,根据表格列出二元一次方程组,求解即可得;(2)加工普通板栗a ()10003000a ≤≤件,则加工精品板栗(4000−y )件,根据题意可得利润的函数关系式580000w a =-+,根据一次函数的性质及自变量的取值范围可得当1000a =时,所获总利润w 最多,代入求解即可得.(1)解:设普通板栗的单价为x 元,精品板栗的单价为y 元,由题意得:233504300x y x y +=⎧⎨+=⎩, 解得{y =55y =80, 答:普通板栗的单价为55元,精品板栗的单价为80元;(2)解:加工普通板栗a ()10003000a ≤≤件,则加工精品板栗(4000−y )件,由题意得:()()()554080604000580000w a a a =-+--=-+,∵50-<,1000≤y ≤3000,∴当1000a =时,所获总利润w 最多,y =−5×1000+80000=75000,∴40003000a -=,答:普通板栗加工1000件,精品板栗加工3000件,所获总利润最多,最多总利润是75000元.【点睛】题目主要考查二元一次方程组的应用及一次函数的最大利润问题,理解题意,列出方程及函数解析式是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 第二十一章达标检测卷 一、选择题(1~10题每题3分,11~16题每题2分,共42分) 1.下列函数中,正比例函数是( ) A.y=-8x B.y=8x C.y=8x2 D.y=8x-4 2.已知点(-5,y1),(3,y2)都在直线y=-8x+7上,则y1,y2的大小关系是( ) A.y1>y2 B.y1=y2 C.y13.一次函数的图像经过点(1,2)和(-3,-1),则它的表达式为( ) A.y=34x-54 B.y=43x-45 C.y=34x+45 D.y=34x+54 4.若实数a,b满足ab<0,且a<b,则函数y=ax+b的图像可能是( )
5.关于函数y=-2x+1,下列结论正确的是( ) A.图像必经过点(-2,1) B.图像经过第一、二、三象限 C.当x>12时,y<0 D.y随x的增大而增大 6.下列四组点中,可以在同一个正比例函数图像上的一组点是( ) A.(2,-3),(-4,6) B.(-2,3),(4,6) C.(-2,-3),(4,-6) D.(2,3),(-4,6) 2
7.已知一次函数y=x-2,当函数值y>0时,自变量x的取值范围在数轴上表示正确的是( )
8.一次函数y=kx+b(k,b为常数,且k≠0)的图像如图所示,根据图像信息可求得关于x的方程kx+b=0的解为( )
A.x=-1 B.x=2 C.x=0 D.x=3 9.已知一次函数y=kx-k,y随x的增大而减小,则该函数的图像不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 10.定义(p,q)为一次函数y=px+q的特征数.若特征数是(2,k-2)的一次函数为正比例函数,则k的值是( ) A.0 B.-2 C.2 D.任何数 3
11.已知A,B两地相距4 km,8:00甲从A地出发步行到B地,8:20乙从B地出发骑自行车到A地,甲、乙两人离A地的距离y(km)与甲所用的时间x(min)之间的关系如图所示,由图中的信息可知,乙到达A地的时间为( ) A.8:30 B.8:35 C.8:40 D.8:45
12.如图,直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b>kx-1的解集在数轴上表示正确的是( )
13.如图,在长方形ABCD中,AB=6,AD=4,P是CD上的动点,且不与点C,D重合,设DP=x,梯形ABCP的面积为y,则y与x之间的函数关系式和自变量的取值范围是( ) A.y=24-2x(0C.y=24-3x(04
14.某商店在节日期间开展优惠促销活动:购买原价超过200元的商品,超过200元的部分可以享受打折优惠.若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图像如图所示,则超过200元的部分可以享受的优惠是( ) A.打八折 B.打七折 C.打六折 D.打五折 15.把直线y=-x+3向上平移m个单位长度后,与直线y=2x+4的交点在第一象限,则m的取值范围是( ) A.1<m<7 B.3<m<4 C.m>1 D.m<4 16.小文、小亮从学校出发到少年宫参加书法比赛,小文步行一段时间后,小亮骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s(m)与小文出发时间t(min)之间的函数关系如图所示.下列说法:①小亮先到达少年宫;②小亮的速度是小文速度的2.5倍;③a=24;④b=480.其中正确的是( )
A.①②③ B.①②④ C.①③④ D.①②③④ 二、填空题(17,18题每题3分,19题4分,共10分) 17.一次函数y=2x-6的图像与x轴的交点坐标为________.
18.函数y=kx+b与y=mx+n的图像如图所示,则以方程组y=kx+b,y=mx+n的解为坐标的点关于原点对称的点的坐标是________. 5
19.有一辆汽车储油60升,从某地出发后,每行驶1千米耗油0.12升,如果设剩余油量为y(升),行驶的路程为x(千米),则y与x的关系式为________,x的取值范围是________. 三、解答题(20,21题每题8分,22~25题每题10分,26题12分,共68分) 20.已知函数y=(m+1)x2-|m|+n+4. (1)当m,n为何值时,此函数是一次函数? (2)当m,n为何值时,此函数是正比例函数?
21.如图,一次函数y=kx+3的图像经过点A(1,4). (1)求这个一次函数的表达式; (2)试判断点B(-1,5),C(0,3),D(2,1)是否在这个一次函数的图像上. 6
22.已知一次函数y=kx+b(k≠0)的图像经过点(3,-3),且与直线y=4x-3的交点在x轴上. (1)求这个一次函数的表达式. (2)此函数的图像经过哪几个象限? (3)求此函数的图像与坐标轴围成的三角形的面积. 7 23.某地出租车计费方法如图,x(km)表示行驶里程,y(元)表示车费,请根据图像解答下列问题: (1)该地出租车的起步价是________元; (2)当x>2时,求y与x之间的函数表达式; (3)若某乘客有一次乘出租车的里程为18 km,则这位乘客需付出租车车费多少元? 8 24.如图,在平面直角坐标系xOy中,过点A(-6,0)的直线l1与直线l2:y=2x相交于点B(m,4). (1)求直线l1的表达式; (2)过动点P(n,0)且垂直于x轴的直线与l1,l2的交点分别为C,D,当点C位于点D上方时,求出n的取值范围. 9 25.一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:
A种水果/(元/箱) B种水果/(元/箱) 甲店 11 17 乙店 9 13 (1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元; (2)在甲、乙两店各配货10箱(按整箱配货),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少. 10
26.高铁的开通,给衢州市民出行带来了极大的方便.五一期间,乐乐和颖颖相约到杭州市的某游乐园游玩,乐乐乘私家车从衢州出发1小时后,颖颖乘坐高铁从衢州出发,先到杭州火车东站,然后转乘出租车去游乐园(换车时间忽略不计),两人恰好同时到达游乐园,他们离开衢州的距离..y(千米)与乘车时
间t(时)的关系如图所示. 请结合图像解决下面的问题: (1)高铁的平均速度是多少千米/时? (2)当颖颖到达杭州火车东站时,乐乐距离游乐园还有多少千米? (3)若乐乐要提前18分钟到达游乐园,问私家车的速度必须达到多少千米/时? 11
答案 一、1.A 2.A 3.D 点拨:设该一次函数的表达式为y=kx+b(k≠0),将点(1,2)和(-3,-1)的坐标分别代入,
得k+b=2,-3k+b=-1,解得k=34,b=54, ∴该一次函数的表达式为y=34x+54.故选D. 4.A 点拨:∵ab<0,且a<b,∴a<0,b>0,∴函数y=ax+b的图像经过第一、二、四象限,故选A. 5.C 6.A 7.B 8.A 9.C 点拨:∵一次函数y=kx-k的y随x的增大而减小,∴k<0,∴该函数的图像经过第二、四象限,又-k>0,∴该函数的图像与y轴交于正半轴.∴该函数的图像经过第一、二、四象限,不经过第三象限. 10.C 11.C 点拨:易知甲行进的函数表达式为y=115x,令y=2,得x=30,设当x≥20时,乙行进的函数表达式为y=kx+b,将点(30,2)和(20,4)的坐标分别代入,求得y=-15x+8,令y=0,得x=40,即乙到达A地的时间为8:40. 12.A 13.A 点拨:∵DP=x,∴CP=6-x,∴y=12(AB+CP)·BC=12(6+6-x)×4=2(12-x)=24-2x.∵P是CD上的动点,且不与点C,D重合,∴014.B 15.C 点拨:把直线y=-x+3向上平移m个单位长度,得到直线y=-x+3
+m.解方程组y=-x+3+m,y=2x+4,
得x=m-13,y=10+2m3, 12
根据题意可知m-13>0,且10+2m3>0,解得m>1.故选C. 16.B 点拨:由图像得出小文步行720 m,需要9 min, 所以小文的速度为 720÷9=80(m/min), 当第15 min时, 小亮骑了15-9=6(min), 骑的路程为15×80=1 200(m), ∴小亮的速度为 1 200÷6=200(m/min), 200÷80=2.5,故②正确; 当第19 min以后两人之间距离越来越近,说明小亮已经到达终点,则小亮先到达少年宫,故①正确; 此时小亮骑了19-9=10(min), 骑的总路程为10×200=2 000(m), ∴小文的步行时间为 2 000÷80=25(min), 故a的值为25,故③错误; ∵小文19 min步行的路程为19×80=1 520(m), ∴b=2 000-1 520=480,故④正确. ∴正确的有①②④. 故选B. 二、17.(3,0) 18.(-3,-4) 19.y=60-0.12x;0≤x≤500 三、20.解:(1)根据一次函数的定义, 得2-|m|=1,且m+1≠0, 解得m=1. ∴当m=1,n为任意实数时,此函数是一次函数. (2)根据正比例函数的定义, 得2-|m|=1,n+4=0,且m+1≠0,