3 压力容器设计

合集下载

压力容器设计基础

压力容器设计基础

压力容器设计基础压力容器设计基础一、基本概念压力容器的设计,就是根据给定的性能要求、工艺参数和操作条件,确定容器的结构型式,选择合适的材料,计算容器主要受压元件的尺寸,最后给出容器及其零部件的图纸,并提出相应的技术条件。

正确完整的设计应达到保证完成工艺生产。

正确完整的设计应达到保证完成工艺生产,运行安全可靠,保证使用寿命、制造、检验、安装、操作及维修方便易行,经济合理等要求。

压力容器设计中的关键问题是力学问题,即强度、刚度及稳定性问题。

在本节中,主要讨论压力容器设计中的有关强度问题。

所谓强度,就是结构在外载荷作用下,会不会因应力过大而发生破裂或由于过度性变形而丧失其功用。

具体来讲,就是在外载荷作用下,容器结构内产生的应力不大于材料的许用应力值,即:ζ≤K〔ζ〕t (1)这个式子就是强度问题的基本表达式。

压力容器的设计计算就是围绕这一关系式而进行的。

公式(1)中的左端项是结构内的应力,它是人们最为关心的问题。

求解结构的应力状态,它们的大小,是一个十分复杂的问题,常用的方法有解法(如弹性力学法、弹型性分析法等)、试验法(如电阻应变计测量法、光弹法、云纹法等)及数值解法(如有限元法、边界元法等)。

应用这些方法可以精确或近似地求出结构的应力,然而,每一种结构的应力都有其特殊性,目前可求解的只是问题的绝大部分,仍有许多复杂结构的应力分析有等人们进一步探讨。

求出结构内任一点的应力后,所遇到的问题就是怎样处理这些应力。

一点的应力状态最多可含有6个应力分量,哪个应力起主要作用,这些应力对失效起什么作用,对它们如何控制才不致发生破坏,解决这一问题,就要选择相应的强度理论计算当量应力,以便与单向拉伸试验得到的许用应力相比较,将应力控制在许可的范围内。

公式(1)中的右端项是强度控制指标,即材料的许用应力。

它涉及到材料强度指标(如抗拉强度ζb、屈服强度ζs 等)的确定及安全系数的选用等问题。

当采用常规设计法,且只考虑静载问题时,系数K=1.0;如果考虑动载荷,或采用应力分析设计法,K≥1.0,此时设计计算将更加复杂。

压力容器的课程设计

压力容器的课程设计

压力容器的课程设计一、课程目标知识目标:1. 学生能够理解压力容器的定义、分类及基本结构,掌握其工作原理;2. 学生能够掌握压力容器设计的基本原则,了解相关的设计标准和规范;3. 学生能够了解压力容器在生产生活中的应用,认识其在工程领域的重要性。

技能目标:1. 学生能够运用所学知识,分析压力容器的结构特点,并进行简单的受力分析;2. 学生能够根据设计原则,运用计算方法进行压力容器的设计;3. 学生能够运用图纸和相关工具,制作压力容器的简易模型。

情感态度价值观目标:1. 培养学生对待工程技术的严谨态度,提高学生的安全意识和责任感;2. 激发学生对工程技术研究的兴趣,鼓励学生勇于创新,培养解决问题的能力;3. 增强学生的团队合作意识,提高沟通与协作能力。

分析课程性质、学生特点和教学要求:本课程为工程技术类课程,旨在让学生了解压力容器的基本知识,掌握设计原则和技巧。

学生处于高中年级,具备一定的物理和数学基础,但实践经验不足。

教学要求注重理论与实践相结合,注重培养学生的动手能力和实际操作技能。

课程目标分解为具体学习成果:1. 学生能够准确描述压力容器的定义、分类和工作原理;2. 学生能够运用设计原则和计算方法,完成压力容器的设计任务;3. 学生能够制作出符合要求的压力容器简易模型,并进行展示和交流。

二、教学内容1. 压力容器的基本概念- 定义、分类及工作原理- 压力容器在工程领域的应用2. 压力容器的结构及受力分析- 常见压力容器结构特点- 受力分析基本方法3. 压力容器设计原则与计算方法- 设计原则及其意义- 相关设计标准和规范- 压力容器壁厚、材料选择及强度计算4. 压力容器制作与模型展示- 制作简易压力容器模型的步骤与方法- 模型展示与评价教学大纲安排与进度:第一课时:压力容器基本概念及分类第二课时:压力容器工作原理及应用第三课时:压力容器结构特点及受力分析第四课时:压力容器设计原则与计算方法(上)第五课时:压力容器设计原则与计算方法(下)第六课时:压力容器制作与模型展示教材章节及内容列举:第一章:压力容器概述1.1 压力容器的定义与分类1.2 压力容器的工作原理1.3 压力容器在工程领域的应用第二章:压力容器的结构与受力分析2.1 压力容器的结构特点2.2 压力容器的受力分析第三章:压力容器设计3.1 设计原则及其意义3.2 设计标准和规范3.3 压力容器壁厚、材料选择及强度计算第四章:压力容器制作与模型展示4.1 简易压力容器模型的制作4.2 模型展示与评价方法三、教学方法为了提高教学质量,激发学生的学习兴趣和主动性,本课程将采用以下多样化的教学方法:1. 讲授法:- 用于讲解压力容器的基本概念、工作原理、设计原则等理论知识,为学生奠定扎实的理论基础。

压力容器设计常见问题

压力容器设计常见问题

5. 法兰使用材料问题 GB150-1998《钢制压力容器》9.1.4规定: 带颈法兰应采用热轧或锻件加工制成,加工后的法 兰轴线须与原坯件的轴线平行。必要时采用钢板制造带 颈法兰时,必须符合下列要求: a) 钢板应经超声检测,无分层缺陷; b) 应沿钢板轧制方向切割出板条,经弯制,对焊 成为圆环,并使钢板表面成为环的侧面; c) 圆环的对接接头应采用全焊透结构; d) 圆环对接接头应经焊后热处理及100%射线或超 声探测,合格标准按JB4700的规定。
5.使用石棉(石棉橡胶)垫的限制。
下列情况下不允许使用: ⑴ 介质为环氧乙烷时;
⑵ 靠真空泵维持的真空系统;
⑶ 不允许有微量纤维混入的介质,如航空汽油和航
空煤油;
⑷ 有卫生要求的法兰连接。
6.碳素钢和低合金钢的高温石墨化问题 碳素钢和16MnR低合金钢长期在高于425℃ 的温度下工作时,会因渗碳体分解而产生石墨化 倾向,使材料的强度、塑性和冲击值下降,钢材 明显变脆。因而设计时必须考虑有否有长期在高 于425℃温度下长期使用的问题,若需要在高于 425℃温度下长期使用,就不能选用这些材料。
1.关于管壳式换热器设计中的金属温度 标志在铭牌上的管、壳程设计温度,分别为管 程管箱的和壳程壳体的设计温度。对于同时受管、 壳程温度作用的元件可按金属温度确定设计温度, 也可按较高侧的设计温度。 金属温度可按附录F(提示的附录)求得,或 在已使用的同类换热器上测定,也可根据成熟的设 计经验确定。 低温换热器的设计温度按附录A(标准的附录) 确定。
谢谢各位
3.关于容器上检查孔的设置 3.检查孔的开设位置要求如下: 。 (1)检查孔的开设应合理、恰当,便于观察或清 理内部; 《 (2)手孔应开设在封头上或封头附近的筒体上。 4.球形储罐应在上、下极板上各开设一个人孔 (或制造工艺孔)。

如何确定压力容器的设计压力和计算压力

如何确定压力容器的设计压力和计算压力

如何确定压力容器的设计压力和计算压力压力容器的设计压力压力容器是一种负责储存和运输高压或低温气体或液体物质的容器。

由于受到高压力或低温的影响,压力容器设计必须十分严谨,才能够避免发生意外事故。

在压力容器的设计和制造过程中,确定设计压力是非常重要的一步。

设计压力指的是压力容器在使用过程中所能承受的最大压力,通常以内压为基础。

确定设计压力可以确保压力容器不会在使用过程中超负荷工作,保证其安全性能。

一般而言,压力容器的设计压力需要考虑以下因素:1.内容物的特性及储放状态;2.工作温度及压力温度范围;3.容器的材料及制造工艺;4.容器的设计参数。

其中容器的设计参数包括设计温度,容器材料,容器结构形式等。

这些参数都会影响到设计压力的大小。

因此,在确定设计压力时一定要考虑这些综合因素,并参考国家相关标准来进行设计计算。

压力容器的计算压力压力容器的计算压力也是非常重要的一部分,它是指储存于压力容器内液体或气体之间的压力。

确定计算压力可以帮助设计方确定容器的最大使用压力,从而更好地满足用户的需求。

对于确定压力容器的计算压力,一般采用双向压力法和单向压力法两种方法。

双向压力法在双向压力法中,设计人员需要综合考虑容器的外压力和内压力,以便计算出容器的可承受压力。

使用双向压力法时,设计人员需要将所有可能产生压力的因素纳入计算,通常有以下几个因素:1.内压力2.外压力3.风载荷4.地震力5.液位高度设计人员需要计算这些因素的总和,从而确定容器最大的承受压力。

单向压力法在单向压力法中,设计人员只考虑容器的内压力以及容器在稳定状态下的承受能力。

而忽略其他来源的压力,设计人员会按照以下步骤来进行计算:1.根据使用需求,确定容器的工作温度和工作压力;2.选择合适的材料,计算出容器的瞬时强度;3.通过成形过程的分析和测试,确定容器壁的厚度;4.确定容器的容积,计算出容器的有效长度;5.根据容器的有效长度,计算容器的允许使用最大工作压力。

压力容器分析设计

压力容器分析设计

(3) 部位C
内压在球壳与接管中产生的应力 (PL+Q); 球壳与接管总体不连续效应产生的应 力(PL+Q); 径向温差产生的温差应力(Q+F); 因小圆角(局部不连续)应力集中产生 的峰值应力(F)。 总计应为(PL+Q十F)。 由于部位C未涉及管端的外加弯矩, 未涉及管端的外加弯矩 管子横截面中的一次弯曲应力Pb便不
一次应力 薄膜应力 一次总体薄 膜应力 (Pm)
一次总体薄膜应力是在容器 总体范围内存在的薄膜应力, 在容器筒体或封头在整体范 围内发生屈服后,应力不重 新分配 一次总体薄膜应力 新分配。 次总体薄膜应力 的一个实例 为承受内压的圆 柱形筒体。
一次弯曲应力(Pb) 一次局部薄膜 应力 (PL)
由内压或其他机械载荷 在结构不连续区产生的 薄膜应力和结构不连续 效应产生的薄膜应力。 一次局部薄膜应力的例 次局部薄膜应力的例 子有:在容器的支座或 接管处由外部的力或力 矩引起的薄膜应力. 由内压或其他机械 载荷作用而产生的 沿壁厚线性分布的 法向应力。典型实 例是平封头中部在 压力作用下产生的 弯曲应力.
7.2
压力容器的分析设计
压力容器的设计
常规设计
分析设计
GB150《 钢 制 压 力 容器》
JB4732 《钢制压力容器 ——分析设计标准》
一、概述 常规设计的局限性: (1)载荷性质
载荷 静载荷 交变载荷 常规设计 √ × 分析设计 √ √
(2)应力计算
应力计算 计算方法 研究的对象 常规设计 简单的公式计算 壳体 分析设计 解析法,数值法, 实验法 设备上的所有点
(1) 弹性失效设计准则 (韧性材料) ——将容器总体部位的初始屈服视为失效。 (2) 塑性失效设计准则 ——整个危险面屈服,极限设计。 (3) 爆破失效设计准则

压力容器的分析设计

压力容器的分析设计

过渡区或 与筒体连 接处 平 盖 中 心 区




与 筒 体 连 接 处


局部薄膜应力一次应力 弯曲应力二次应力
PL Q
表4-15 压力容器典型部位的应力分类
接 管 接 管 壁 內 压 一次总体薄膜应力 局部薄膜应力一次应力 弯曲应力二次应力 峰值应力 薄膜应力二次应力 弯曲应力二次应力 峰值应力 Pm PL Q F Q Q F Q F
4.4.2.1 应力分类
一次应力P (3)一次局部薄膜应力PL 在结构不连续区由内压或其它机械载荷产生的薄膜应力和 结构不连续效应产生的薄膜应力统称为一次局部薄膜应力。 作用范围是局部区域 。 具有一些自限性,表现出二次应力的一些特征,从保守 角度考虑,仍将它划为一次应力。
实例:壳体和封头连接处的薄膜应力; 在容器的支座或接管处由外部的力或力矩引起的薄膜应力。
一次总体薄膜应力强度SⅠ;
一次局部薄膜应力强度SⅡ; 一次薄膜(总体或局部)加一次弯曲应力(PL+Pb)强度SⅢ; 一次加二次应力(PL+Pb+Q)强度SⅣ; 峰值应力强度SⅤ(由PL+Pb+Q+F算得)。
4.4.3 应力强度计算
应力强度计算步骤 除峰值应力强度外 ,其余四类应力强度计算步骤为: (1)在所考虑的点上,选取一正交坐标系, 如经向、环向与法向分别用下标x 、q 、z表示, 用x、q和z表示该坐标系中的正应力, txq、txz、tzq表示该坐标系中的剪应力。 (2)计算各种载荷作用下的各应力分量,并根据定义将各 组应力分量分别归入以下的类别:一次总体薄膜应力 Pm;一次局部薄膜应力PL;一次弯曲应力Pb;二次应 力Q;峰值应力F。
4.4.3 应力强度计算

压力容器设计常用标准介绍

压力容器设计常用标准介绍
(2)标准抗拉强度下限值大于540MPa的钢材,P≤0.025%,S≤0.015%; (3)用于设计温度低于-20℃并且标准抗拉强度下限值小于或者等于 540MPa的钢材,P≤0.025%、S≤0.012%; (4)用于设计温度低于-20℃并且标准抗拉强度下限值大于540MPa的钢材, P≤0.025%、S≤0.010%;
二、特种设备安全技术规范
3、许用用力
板、锻件、管的许用应力取室温下的抗拉强度Rm、设计温度下的屈服强度ReL (RtP0.2)、设计温度下持久强度极限平均值RtD、设计温度下蠕变极限平均值Rtn除 以相应安全系数后的最小值。
4、压力容器管法兰、垫片、紧固件的设计应参照HG/T 20592-20635-
二、特种设备安全技术规范
l 根据危险程度,本规程适用范围内的压力容器划分为I、 II、III类。
l 本规程划分的I、II、III类压力容器等同于特种设备目录 第一、二、三类压力容器(品种)
l 超压容器划分为第III类压力容器。 l 第1组介质无I类容器。
二、特种设备安全技术规范
五、材料要求
1.熔炼工艺要求:压力容器受压容器用钢应为氧气转炉或电炉冶炼的镇静 钢,以下材料还应采用炉外冶炼工艺: l 标准抗拉强度下限值大于等于540MPa的低合金钢板;
度及其含量综合考虑,由压力容器设计单位决定介质组别。 5.特殊情况分类
(1)坐标点位于图1或者图2的分类线上时,按较高的类别划分 其类别。 (2)简单压力容器统一划分为第Ⅰ类压力容器。
二、特种设备安全技术规范
6.多腔压力容器(换热器的管程和壳程、余热锅炉的汽包 和换热室、带夹套压力容器的内筒和夹套等) 类别划分: 对各自压力腔进行类别划定,设计压力取本压力腔的 设计压力,容积取本压力腔的几何容积; 按照类别高的压力腔作为该容器的类别并按该类别 进行使用管理; 按照每个压力腔各自的类别分别提出设计、制造技 术要求。

压力容器的课程设计

压力容器的课程设计

压力容器的课程设计一、课程目标知识目标:1. 学生能理解压力容器的定义、分类及在工业中的应用。

2. 学生掌握压力容器的基本结构、工作原理及主要参数。

3. 学生了解压力容器的设计原则、材料选择和安全评定标准。

技能目标:1. 学生能够运用所学知识,分析压力容器在实际工程中的应用案例。

2. 学生掌握压力容器的设计方法,能够进行简单压力容器的设计与计算。

3. 学生能够运用相关软件对压力容器进行仿真分析,提高实际操作能力。

情感态度价值观目标:1. 培养学生对压力容器相关领域的兴趣,激发学习热情,增强探究精神。

2. 培养学生严谨的科学态度,注重实践与理论相结合,提高分析问题和解决问题的能力。

3. 增强学生的安全意识,了解压力容器在使用过程中的安全风险,培养良好的安全习惯。

课程性质:本课程为应用物理与技术学科的课程,结合理论与实践,以提高学生的实际操作能力和创新能力为主要目标。

学生特点:学生处于高中年级,具有一定的物理知识和数学基础,思维活跃,对新技术和新知识充满好奇心。

教学要求:教师应注重理论与实践相结合,采用案例教学、讨论式教学等方法,引导学生主动参与,提高学生的实践操作能力和创新能力。

同时,关注学生的个体差异,因材施教,使学生在课程学习中取得良好的成果。

通过本课程的学习,为学生未来在相关领域的发展奠定基础。

二、教学内容1. 压力容器的基本概念- 压力容器的定义与分类- 压力容器在工业中的应用2. 压力容器的结构与工作原理- 压力容器的基本结构- 压力容器的工作原理及主要参数3. 压力容器的设计与计算- 设计原则与材料选择- 简单压力容器的设计与计算方法4. 压力容器安全评定- 安全评定标准与法规- 压力容器事故案例分析5. 压力容器仿真分析- 相关软件介绍与操作方法- 压力容器仿真分析的实践应用教学大纲安排:第一周:压力容器的基本概念第二周:压力容器的结构与工作原理第三周:压力容器的设计与计算第四周:压力容器安全评定第五周:压力容器仿真分析教材章节关联:第一章:引言第二章:压力容器的基本概念与分类第三章:压力容器的结构与工作原理第四章:压力容器的设计与计算第五章:压力容器的安全评定与仿真分析教学内容根据课程目标进行科学性和系统性组织,注重理论与实践相结合,以教材为依据,确保学生在学习过程中掌握压力容器相关知识,为后续学习和实践打下坚实基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3 压力容器设计主要内容1 基于失效模式的设计理念2 压力容器设计准则3 容器设计的基本概念4 常见结构的设计计算方法5 分析设计一应力分类法1 基于失效模式的设计理念1.1 容器的失效1.2 失效模式分类1.3 我国标准考虑的失效模式1.4 失效模式1.5 失效判据1 基于失效模式的设计理念压力容器的设计步骤针对失效模式的设计理念成为压力容器设计标准的发展方向。

压力容器的一般设计步骤为:·确定容器最有可能发生的失效模式;·选择适当的失效判据和设计准则;·确定适用的设计规范标准;·按规范标准要求进行设计和校核。

1.1 容器的失效1)定义:压力容器在规定的使用环境和时间内,因尺寸、形状或材料性能发生改变而完全失去或不能达到包括功能和设计寿命等的现象,称为压力容器失效。

2)表现形式:破裂、过度变形、泄漏3)引起原因:工艺条件、载荷、介质1.2 失效模式分类1)IS016528归为三大类、14种失效模式。

第一大类:短期失效模式:第二大类:长期失效模式:第三大类:循环失效模式:2)《承压设备损伤模式识别》(GB/T30579-2014)第1类:腐蚀减薄(25种)第2类:环境开裂(13种)第3类:材质劣化(15种)第4类:机械损伤(11种)第5类:其他损伤(9种)1.3 我国标准所考虑的失效模式1)GB 150 基于失效模式设计的考虑脆性断裂(Brittle fracture)韧性断裂(Ductile rupture)蠕变断裂(Creep rupture)接头泄露(Leakage at joints)弹性或塑性失稳(Elastic or plastic instability)2)JB/T4732基于失效模式设计的考虑脆性断裂(Brittle fracture)韧性断裂(Ductile rupture)螺变断裂(Creep rupture)疲劳(Patigue rupture)接头泄漏(Leakage at joints)弹性或塑性失稳(Elastic or plastic instability)1.4 失效模式1)过度变形容器的总体或局部发生过度变形,包括过量的弹性变形,过量的塑性变形,塑性失稳(增量垮坍),例如总体上大范围鼓胀,或局部鼓胀,应认为容器已失效,不能保障使用安全。

过度变形说明容器在总体上或局部区域发生了塑性失效,处于十分危险的状态。

例如法兰的设计稍薄,强度上尚可满足要求,但由于刚度不足产生永久变形,导致介质泄漏,这是由于塑性失效的过度变形而导致的失效。

2)韧性断裂容器发生了塑性大变形的破裂失效,相当于图中曲线BCD阶段情况下的破裂,这属于超载下的爆破,一种可能是超压,另一种可能是本身大面积的壁厚较薄。

这是一种经过塑性大变形的塑性失效之后再发展为爆破的失效,亦称为“塑性失稳”(Plastic collapse),爆破后易引起灾难性的后果。

3)脆性断裂这是一种没有经过充分塑性大变形的容器破裂失效。

材料的脆性和严重的超标缺陷均会导致这种破裂,或者两种原因兼有。

脆性爆破时容器可能裂成碎片飞出,也可能仅沿纵向裂开一条缝;材料愈脆,特别是总体上愈脆则愈易形成碎片。

如果仅是焊缝或热影响较脆,则易裂开一条缝。

形成碎片的脆性爆破特别容易引起灾难性后果。

4)疲劳失效交变载荷容易使容器的应力集中部位材料发生疲劳损伤,萌生疲劳裂纹并扩展导致疲劳失效。

疲劳失效包括材料的疲劳损伤(形成宏观裂纹)并疲劳扩展和结构的疲劳断裂等情况。

容器疲劳断裂的最终失效方式一种是发生泄漏,称为“未爆先漏”(LBB,Leak Before Break),另一种是爆破,可称为“未漏先爆”。

爆裂的方式取决于结构的厚度、材料的韧性,并与缺陷的大小有关。

疲劳裂纹的断口上一般会留下肉眼可见的贝壳状的疲劳条纹。

5)蠕变失效容器长期在高温下运行和受载,金属材料会随时间不断发生蠕变损伤,逐步出现明显的鼓胀与减薄,破裂而成事故。

即使载荷恒定和应力低于屈服点也会发生蠕变失效,不同材料在高温下的蠕变行为有所不同。

·材料高温下的蠕变损伤是晶界的弱化和在应力作用下的沿晶界的滑移,晶界上形成蠕变空洞。

时间愈长空洞则愈多愈大,宏观上出现蠕变变形。

·当空洞连成片并扩展时即形成蠕变裂纹,最终发生蠕变断裂的事故。

·材料经受蠕变损伤后在性能上表现出强度下降和韧性降低,即蠕变脆化。

·蠕变失效的宏观表现是过度变形(蠕胀),最终是由蠕变裂纹扩展而断裂(爆破或泄漏)。

6)失稳失效容器在外压(包括真空)的压应力作用下丧失稳定性而发生的皱折变形称为失稳失效。

皱折可以是局部的也可以是总体的。

高塔在过大的轴向压力(风载、地震载荷)作用下也会皱折而引起倒塌。

7)泄漏失效容器及管道可拆密封部位的密封系统中每一个零部件的失效都会引起泄漏失效。

例如法兰的刚性不足导致法兰的过度变形而影响对垫片的压紧,紧固螺栓因设计不当或锈蚀而过度伸长也会导致泄漏,垫片的密封比压不足、垫片老化缺少反弹能力都会引起泄漏失效。

系统中每一零部件均会导致泄漏失效,所以密封失效不是一个独立的失效模式,而是综合性的。

8)多模式交互作用失效(1)腐蚀疲劳在交变载荷和腐蚀介质交互作用下形成裂纹并扩展的交互失效。

(2)蠕变疲劳这是指高温容器既出现了蠕变变形又同时承受交变载荷作用而在应力集中的局部区域出现过度膨胀以至形2 压力容器设计准则失效准则(设计准则)·一个问题的两个方面,采用何种设计准则就是采用何种失效准则的问题。

·一种设计上的共识,且经过实践验证的。

·防止某一(几)种失效模式发生,不意味着符合某种失效准则时容器就破坏了。

·针对具体的失效模式,选择不同的设计准则,是设计者应该掌握的技能。

2.1 弹性失效准则为防止容器总体部位发生屈服变形,将总体部位的最大应力限制在材料的屈服点以下,保证容器的总体部位始终处于弹性状态而不会发生弹性失效。

1)规定屈服极限是容器失效的应力,考虑安全系数后,容器实际应力处在弹性范围内。

2)主要着眼于限制容器中的最大薄膜应力或其他由机械载荷直接产生的弯曲应力及剪应力等。

3)应用:常规设计方法准则,如,GB150、ASME VI I 1-1:内压圆筒、凸形封头等元件设计。

2.2 塑性失效准则容器某处(如厚壁筒的内壁)弹性失效后并不意味着容器失去承载能力。

将容器总体部位进入整体屈服时的状态或局部区域沿整个壁厚进入全屈服状态称为塑性失效状态,若材料符合理想塑性假设,载荷不需继续增加,变形会无限制发展下去,称此载荷为极限载荷。

Treaca屈服条件或Mises屈服条件1)外载荷<极限载荷:结构塑性变形是局部、可控的;2)将极限载荷作为设计准则的判据加以限制,防止总体塑性变形,又称极限分析(设计)。

如何求的极限载荷,是该准则的基础。

3)准则应用:·JB 4732、ASME Vffl-2;·GB 150:平板、整体法兰(含按整体法兰设计的任意式法兰)连接的圆筒径部等元件设计或应力计算公式。

4)适用范围:材料,载荷5)极限载荷设计原理的保守性·用矩形截面梁极限状态作为依据,梁只需要一个塑性铰即到达极限状态,而压力容器可近似看作多个矩形截面梁拼合而成,即需要多个塑性铰才能塑性失效。

是偏安全的。

极限载荷设计原理将板、壳看作由若干受拉弯作用下的矩形截面梁,材料为理想弹塑性;当拉伸为0时考察纯弯梁应力随M 的变化:1)弹性阶段;2)当上下表面(ReL 或Rp0.2)时,对应的最大弯矩:3)当继续增加载荷从弹性层减少,塑性层增加,直到整个截面屈服,此时不增加载荷截面梁变形也无限増大,即形成“塑性铰”,此时:“塑性铰”:梁某截面全部进入塑性状态后,该处曲率可以任意増大,称该点出现了一个塑性铰。

此时M’即为极限载荷,对应的应力:2.3 弹塑性失效设计准则1)如果容器的某一局部区域,一部分材料发生了屈服,而其他大部分区域仍为弹性状态,而弹性部分又能约束着塑性区的塑性流动变形,结构处于这种弹塑性状态可以认为并不一定意味着失效。

2)只有当容器某一局部弹塑性区域内的塑性区中应力超过了由“安定性原理”确定的许用值(安定载荷)时才认为结构丧失了“安定性”而发生了弹塑性失效。

3)安定性原理作为弹塑性失效的设计准则,亦称安定性准则。

4)概念:·安定性一结构除在初始阶段少数几个载荷循环中产生一定的塑性变形外,在继续施加的循环外载荷作用下不再发生新的塑性变形,或者说不出现塑性疲劳或棘轮现象。

此时结构处于安定状态。

·棘轮现象:构件受机械载荷、热应力或二者同时作用的循环作用,产生递増的非弹性变形的现象。

·安定载荷—安定与不安定的临界状态对应的载荷变化范围。

5)与极限载荷的区别:载荷达到安定载荷时,只是损伤累积的开始,到达破坏还有缓慢的过程,因此对“安定”不加安全系数,只要施加的载荷小于安定载荷。

2.4 爆破失效设计准则1)非理想塑性材料屈服后还有增强的能力,对于厚壁容器在整体屈服后仍有继续增强的承载能力,直到容器达到爆破时的载荷才为最大载荷。

2)以容器爆破作为失效状态,以爆破压力作为设计的判据加以限制,以防止发生爆破,这就是容器的爆破失效设计准则。

3)应用:超高压容器设计。

2.5 疲劳失效设计准则1)定义:为防止容器发生疲劳失效,将容器应力集中部位的最大交变应力的应力幅限制在由低周疲劳设计曲线确定的许用应力幅之内时才能保证在规定的循环周次内不发生疲劳失效。

2)压力容器的疲劳属于高应变(即在屈服点以上的)低周次(循环次数小于105次)的疲劳失效,亦称“低周疲劳”。

3)根据大量实验研究和理论分析建立了安全应力幅(Sa)与许用循环周次(N)的低周疲劳设计曲线,即Sa—N曲线。

2.6 失稳失效设计准则1)外压容器的失稳皱折需按照稳定性理论进行稳定性校核,这就是失稳失效的设计准则。

2)大型直立设备(如塔设备)在风载与地震载荷下的纵向稳定性校核也属此类。

3)应用:GB 150、JB 4732外压容器设计。

2.7 其他失效设计准则脆性断裂失效设计准则1)即“防脆断失效设计准则”,按断裂力学概念,以造成容器低应力脆断的应力或裂纹尺寸作为临界状态的一种计算准则。

2)为防止缺陷导致低应力脆断,可按断裂力学限制缺陷的尺寸或对材料提出必须达到的韧性指标,这是防脆断设计。

3)准则应用:安全评定;寿命评估;蠕变失效设计准则1)定义:将高温容器筒体的蠕变变形量(或按蠕变方程计算出的相应的应力)限制在某一允许的范围之内,以保证高温容器在规定的使用期内不发生蠕变失效。

2)应用:GB150JB 4732不适用。

例:Q245R、Q345R刚度失效设计准则1)为保证结构有足够的刚度,通过对结构的变形分析,将结构中特定点的线位移及角位移限制在允许的范围内。

相关文档
最新文档