无线频谱分析测试技术
射频测试方案

3.测试场地:符合国家及行业标准的测试实验室。
七、测试流程
1.测试准备:了解被测设备的技术规格,确定测试项目和方法;
2.测试实施:按照测试方案进行各项性能测试;
3.数据分析:对测试数据进行整理、分析,形成测试报告;
4.结果反馈:将测试结果反馈给设备制造商,协助其改进产品性能;
3.评估射频设备的抗干扰能力;
4.检验射频设备在极端环境条件下的可靠性。
三、测试范围
1.射频发射测试;
2.射频接收测试;
3.射频抗干扰测试;
4.射频环境适应性测试。
四、测试依据
1.国家及行业标准:如《无线通信设备射频技术要求》等;
2.设备制造商提供的技术规格书;
3.测试实验室的相关规定。
五、测试项目及方法
5.测试报告:出具符合国家及行业标准的测试报告。
八、测试结果判定
测试结果根据国家及行业标准进行判定,符合标准要求的视为合格,否则为不合格。
九、方案实施与监督
1.本测试方案由测试实验室负责实施;
2.设备制造商应积极配合测试工作,提供必要的技术支持;
3.测试过程中,如有疑问或争议,双方应及时沟通,确保测试工作的顺利进行;
1)使用射频信号发生器产生标准信号,发送至被测设备;
2)使用矢量网络分析仪或其他测试仪器监测被测设备的接收性能;
3)测试结果与标准要求进行比对。
3.射频抗干扰测试
(1)测试内容:邻道干扰抑制、同频干扰抑制、窄带干扰抑制等。
(2)测试方法:
1)使用射频信号发生器产生干扰信号,注入被测设备;
2)观察被测设备在干扰条件下的性能变化;
3)按照国家标准和设备制造商的技术规格要求,对测试结果进行评估。
频谱分析仪检测电路信号质量

频谱分析仪检测电路信号质量频谱分析仪有许多功能,能察觉元件在电路中的变化,分析其频率响应来说明电路特性;也能测量信号强度,对信号失真有帮助;也能测量频率占有率,防范邻近信号干扰;并且是兼具计频器与功率计的仪器。
日常生活里充斥频谱(Spectrum)的概念,各种不同频率信号以机率分配方式存在。
在一般时域分析(Time-domain Analysis)中,很容易从时间轴上观察到任何信号波形变化事件,只要用示波器测量,就能看出任何具有时间函数的电子信号事件的瞬间物理量。
频谱分析仪的发展起源,从早期通信系统上频率测量开始,为实现以频率为基准点,在频域上检测信号而研发的仪器,广泛用于测量通信系统的各种重要参数,如平均噪声位准(Average Noise Level)、动态范围(Dynamic Range)、频率范围(Frequency Range)等。
此外还可用在时域测量,如测量传输输出功率等。
从功能面看,一般计频器只能测量信号频率,功率计能测量信号功率,频谱分析仪可视为兼具计频器与功率计的测量仪器(表1,*:指模拟解调)。
频谱分析与时域分析相辅相成如要理清信号特性,除使用示波器从时域(Time Domain)观察信号外,需从频率的角度,简称频域(Frequency Domain)去分析信号。
用示波器观察信号无法一窥全貌,只能看到组成后的波形。
法国数学家傅立叶(Jean-Baptiste-Joseph Fourier)认为,任何时域上的电子信号现象,皆由多组适当的频率、振幅与相位的弦波信号(Sine Wave)组成。
因此,任何有适当滤波功能的电子系统,必可将信号波形分解成多个分别不同的弦波或频率,不同弦波则由其所具有的振幅与相位来决定信号特性。
换言之,借由这种组成分析,可将弦波信号由时域转为频域。
对无线射频(RF)与微波信号而言,不加入分析要素时,保留相位信息往往会使转换过程变得复杂,因此要设法隔离相位信息。
现代实时频谱测试技术

采用 F T方式 ( F 基于快速傅立叶变换的分析方式 )实 现 了实时频谱分析功能 。但 是 由于受限于半导体 工艺 水平 ,ADC的采样率无法 实现高位数 ,因此 当时的 F T F 频谱 分析仪的频率范 围均在 几十兆赫兹或几百兆赫兹 , 这
行信号的频 谱分析 。
上 o f: : Il : n l 。 e r e s
F T原理的频谱分析仪为获得 良好的线性 度和高分辨 F 率, 对信号进行数据采集时 ADC 的取样率最少等于输入 信号 最高频率 的两倍 ,亦 即频率上限是 10MHz 0 的实时
频谱分析仪需 要 ADC有 2 0 mS S的取样率 。 0 / F T的性能 用取样 点数和取样率 来表征 , F 例如用 10 0
字方法直接 由模拟 /数字转换器( ADC 对输入信号取样 , )
分辨率提高到 2 Hz 由此可知 ,最高输 入频率 取决于取 5 。
样率 , 分辨率取决于取样 点数 。 F F T运算时 间与取样点数
成对数关 系。 F F T频谱分析仪需要高频率 、 高分辨率和高 速运算时 , 要选 用高速的 F T硬件 , F 或者相应的数字信号 处理器( S ) D P 芯片 。 从原理上说 ,由于 F T分析方式 中没 有超外差频谱 F
析仪的优点。
离散傅立叶变换X() 看成是Z k可 变换 在单位 圆上的等
距 离采样值 , 同样 , ( ) X k 也可看作是 序列傅氏变换 x (j e
∞)的采 样 ,采样间隔为 ∞N= 2丌/ N。因此 ,离散傅立 叶变换实质上是 其频谱 的离散 频域采样 , 对频率具 有选择 性 ( = ∞k 2丌k N) / ,在这些点上反映 了信号的频 谱。 根据采样定律 , 一个频带有 限的信号可以对它进行时 域采样而不丢失任何信息 , F F T变换 则说 明对时 间有 限的
史上最好的频谱分析仪基础知识(收藏必备)

频谱分析是观察和测量信号幅度和信号失真的一种快速方法,其显示结果可以直观反映出输入信号的傅立叶变换的幅度。
信号频域分析的测量范围极其宽广,超过140dB,这使得频谱分析仪成为适合现代通信和微波领域的多用途仪器。
频谱分析实质上是考察给定信号源,天线,或信号分配系统的幅度与频率的关系,这种分析能给出有关信号的重要信息,如稳定度,失真,幅度以及调制的类型和质量。
利用这些信息,可以进行电路或系统的调试,以提高效率或验证在所需要的信息发射和不需要的信号发射方面是否符合不断涌现的各种规章条例。
现代频谱分析仪已经得到许多综合利用,从研究开发到生产制造,到现场维护。
新型频谱分析仪已经改名叫信号分析仪,已经成为具有重要价值的实验室仪器,能够快速观察大的频谱宽度,然后迅速移近放大来观察信号细节已受到工程师的高度重视。
在制造领域,测量速度结合通过计算机来存取数据的能力,可以快速,精确和重复地完成一些极其复杂的测量。
有两种技术方法可完成信号频域测量(统称为频谱分析)。
1.FFT分析仪用数值计算的方法处理一定时间周期的信号,可提供频率;幅度和相位信息。
这种仪器同样能分析周期和非周期信号。
FFT 的特点是速度快;精度高,但其分析频率带宽受ADC采样速率限制,适合分析窄带宽信号。
2.扫频式频谱分析仪可分析稳定和周期变化信号,可提供信号幅度和频率信息,适合于宽频带快速扫描测试。
v1.0 可编辑可修改图1 信号的频域分析技术快速傅立叶变换频谱分析仪快速傅立叶变换可用来确定时域信号的频谱。
信号必须在时域中被数字化,然后执行FFT算法来求出频谱。
一般FFT分析仪的结构是:输入信号首先通过一个可变衰减器,以提供不同的测量范围,然后信号经过低通滤波器,除去处于仪器频率范围之外的不希望的高频分量,再对波形进行取样即模拟到数字转换,转换为数字形式后,用微处理器(或其他数字电路如FPGA,DSP)接收取样波形,利用FFT计算波形的频谱,并将结果记录和显示在屏幕上。
11 信号频谱测量

实验十一实时频谱分析仪对时域信号频谱的测量随着信号处理和DSP技术的不断发展,频谱分析仪的功能越来越强大。
不仅仅在显示的频率范围和可操作性上有了长足的发展,而且测试的精度进一步提高和测试的功能越来越多。
频谱分析仪发展到今天,不仅在频域测试中独领风骚,而且还具有一定的时域、调制域测试功能。
本实验使用高性能频谱分析仪频谱测量功能,以NEX1高性能频谱分析仪为例,测量谐波、方波、三角波信号的频谱,并准确测量频率成分的频率与功率分配、与理论进行比较,加深信号频谱的傅里叶变换理解。
学会信号源、示波器和频谱仪的使用。
1 高性能频谱分析仪测量原理频谱分析仪测量的事信号的频率成分的频率分布。
横坐标是频率:左小右大、频率范围最大0-3G;显示频率范围可调。
纵坐标是功率:单位dB, 是信号功率的大小,也可以是信噪比。
常用按键:FREQ:频率设置,含中心频率、起始频率和截止频率。
SPAN:频率跨度,频谱显示的频率范围。
CPL:频谱分辨率设置。
左下角按钮式电源开关,按一下=“开”,再按住3秒=“关”。
右下角是信号输入端。
左边是显示屏,右边是操作面板和按钮、旋钮、U盘插孔。
频谱显示画面的右面是相应菜单栏,在屏幕的右框有F1-F7的功能按钮。
2 单音谐波的频谱测量接入幅值100mV的10K谐波。
按“FREQ”、再按“F1”、旋转旋钮使得中心频率为50K。
按“F2”、旋转旋钮(按数字键后选择单位)使得起始频率为0;按“F3”、旋转旋钮(按数字键后选择单位)使得截止频率为100K。
说明:1 信号频率的确定:起始0、截止100K。
每格10K,信号峰在第一格右边线,所以信号频率是10K。
(也可以用后面介绍的peack自动读取)2 信号相对幅度:信号峰值点离0点的距离为5格,信噪比为50dB。
信噪比不同也反映了幅度不同(也能推算出绝对幅度,后面方波不同成分具有不同幅度或信噪比)2 方波的频谱测量接入幅值100mV的10K方波。
按“FREQ”、再按“F1”、旋转旋钮使得中心频率为50K。
WIFI测试技术(中文)

WIFI性能测试
– EVM(误差矢量幅度) – 定义:该EVM是实际的发射信号,并在一个固定点的理想参考发
射信号之间的矢量差。
PERROR:平均功率为误差向 量
偏好:平均功率参考打了个平 手
EVMdB=20*log(EVM%) SNR= -20LogEVM
接 收:丢包率
无线 质量
(WIFI)
发 射:EVM
接 收:接收杂散
EMI 发 射:发射杂散、6dB带宽
WIFI性能测试
– 释义 – 极端测试条件: – 温度:0°C至+55°C – 的频率范围和e.i.r.p.上限不得超出。 – e.i.r.p.(等效全向辐射功率) – 正常的测试条件: – 温度:+15°C到+35°C – 相对湿度:20%至75% – 测试标准: – 行政长官:ETSI EN300328(V1.7.1(2006-710)) – FCC:FCC第15部分
WIFI调制技术
1. DSSS(Direct Sequence Spread Spectrum) 直接序列扩频技术将窄带信息信号扩展成宽
带噪声,通过将射频载波和伪噪声(PN)数字信 号有效地相乘来执行数据处理。
抑制干扰能力强 功率谱密度低,具有隐蔽性和低的截获概率 具有保密性 抗多径衰落 可高精度测量 对外界的干扰小,固定干扰运行
WIFI标准
4. 802.11n 工作频段:2.4/5GHz 调制技术:MIMO OFDM 数据速率:300Mbps甚至600Mbps 采用智能天线技术,覆盖范围可达好几平方公里 高兼容性:当工作在2.4GHz时可向下兼容11b/g 当工作在5GHz时可向下兼容11a 2009年被IEEE批准
频谱分析仪的使用方法
频谱分析仪的使用方法13MHz信号..一般情况下;可以用示波器判断13MHz电路信号的存在与否;以及信号的幅度是否正常;然而;却无法利用示波器确定13MHz电路信号的频率是否正常;用频率计可以确定13MHz电路信号的有无;以及信号的频率是否准确;但却无法用频率计判断信号的幅度是否正常..然而;使用频谱分析仪可迎刃而解;因为频谱分析仪既可检查信号的有无;又可判断信号的频率是否准确;还可以判断信号的幅度是否正常..同时它还可以判断信号;特别是VCO信号是否纯净..可见频谱分析仪在手机维修过程中是十分重要的..另外;数字手机的接收机、发射机电路在待机状态下是间隙工作的;所以在待机状态下;频率计很难测到射频电路中的信号;对于这一点;应用频谱分析仪不难做到..一、使用前须知在使用频谱分析仪之前;有必要了解一下分贝dB和分贝毫瓦dBm的基本概念;下面作一简要介绍..1.分贝dB分贝是增益的一种电量单位;常用来表示放大器的放大能力、衰减量等;表示的是一个相对量;分贝对功率、电压、电流的定义如下:分贝数:101gdB分贝数=201gdB分贝数=201gdB例如:A功率比B功率大一倍;那么;101gA/B=10182’3dB;也就是说;A功率比B功率大3dB;2.分贝毫瓦dBm分贝毫瓦dBm是一个表示功率绝对值的单位;计算公式为:分贝毫瓦=101gdBm例如;如果发射功率为lmw;则按dBm进行折算后应为:101glmw/1mw=0dBm..如果发射功率为40mw;则10g40w/1mw--46dBm..二、频谱分析仪介绍生产频谱分析仪的厂家不多..我们通常所知的频谱分析仪有惠普现在惠普的测试设备分离出来;为安捷伦、马可尼、惠美以及国产的安泰信..相比之下;惠普的频谱分析仪性能最好;但其价格也相当可观;早期惠美的5010频谱分析仪比较便宜;国产的安泰5010频谱分析仪的功能与惠美的5010差不多;其价格却便宜得多..下面以国产安泰5010频谱分析仪为例进行介绍..1.性能特点AT5010最低能测到2.24uv;即是-100dBm..一般示波器在lmv;频率计要在20mv以上;跟频谱仪比相差10000倍..如用频率计测频率时;有的频率点测量很难;有的频率点测最不准;频率数字显示不稳定;甚至测不出来..这主要足频率计灵敏度问题;即信号低于20mv频率计就无能为力了;如用示波器测量时;信号5%失真示波器看不出来;在频谱仪上万分之一的失真都能看出来..但需注意的是;频谱仪测量的是高频信号;其高灵敏度也就决定了;要注意被测信号的幅度范围;以免损坏高频头;在2.24uv-1V之间;超过其范围应另加相应的衰减器..AT5010频谱分析仪频率范围在0.15~1000MHz1G;其系列还有3G、8G、12G等产品..AT5010频谱分析仪可同时测量多种理论上是无数个频率及幅度;Y轴表示幅度;X轴表示频率;因此能直观的对信号的组成进行频率幅度和信号比较;这种多对比件的测量;示波器和频率计是无法完成的..2.性能指标1频率频率范围:0.15—1050MHz中心频率显示精度:士lOOkHz频率显示分辨率:lOOkHz扫频宽度:100kHz/格—100MHz/格中频带宽一3dB:400kHz和20kHz扫描速度:43Hz2幅度幅度范围:一100~+13dBm屏幕显示范围:80dBm10dB/格参考电平:一27-13dBm每级10dB参考电平精度:±2dD平均噪声电平:一99dBm3输入..输入阻抗:50n插座:BNC衰减器:0~40dB输入衰减精度:±1dDm最大输入电平:+10dBm、+25VDC3.安泰5010频谱分析仪功能介绍安泰5010频谱分析仪面板功能示意图如图4-4所示..1聚焦旋钮FOCJS:用于光点锐度调节..2亮度调节旋钮1NTENS:用于光点亮暗调节..3电源开关POWER:被按下后;频谱分析仪开始工作..4轨迹旋钮TR:即使有磁性铍膜合金屏蔽;地球磁场对水平扫描线的影响仍不可能避免..通过轨迹旋钮内装的一个电位器来调整轨迹;使水平扫描线与水平刻度线基本对齐..频谱分析仪测量场强方法中心议题:频谱仪的电平刻度的转换和阻抗匹配问题频谱分析仪防过载选择合适的中频带宽测试解决方案:采用中频替代法输入衰减器不宜放在0dB的位置频谱分析仪是一种应用广泛的信号分析仪器..它可用来测量信号的频率、电平、波形失真、噪声电平、频谱特性等;加上标准天线还可用来测量场强..它的主要特点是:能宽频带连续扫描;并将测得的信号在CRT屏上直观地显示出来..在整个频段内;电平显示范围大于70dB;在无线电电波测量中可以很方便地看出频谱占用和信号活动情况;所以在很多场合;频谱仪正在替代场强仪成为电波测量中一种新的被广泛应用的仪器..但必竟二者设计上有差异;因此使用侧重面应有所有同;否则将会带来很大的测量误差..一、电平刻度的转换和阻抗匹配问题通常;频谱仪的显示刻度单位是dBm;而在场强测量和有关电波传播问题讨论中;习惯采用dBμv/m为单位;因此首先就有一个单位转换问题..实际上场强测量就是标准天线端感应电压的测量;因此只要将频谱仪的读数换算成电压单位;加上天线的天线系数即可求得待测场强..频谱仪的单位换算系数随其输入阻抗的不同而不同;对于50Ω系统;VdBuV=PdBm+107dB而对于75Ω系统;则VdBuV=PdBm+108.8dB 现代频谱仪多采用微机处理;显示刻度可以自动转换..在实际测量中要特别注意天线阻抗与测试系统的匹配问题;避免产生失配误差..由于频谱仪在使用中是进行宽带扫描;所以所用天线要求也都是宽带天线;而宽带天线的VSWR一般都较大;如果与频谱仪联接的不是匹配天线;则要对所用天线的天线系数重新校对..在实际测量中;输入衰减器不宜放在0dB的位置;如果衰减器置0;输入信号直接接到混频器上;则阻抗特性变差;造成较大的失配误差..二、防止频谱分析仪过载一般测试接收机的输入端都有带有调谐式高放电路;以抑制带外信号;提高灵敏度..而频谱分析仪由于其宽带连续快速扫描的特性;输入端一般都直接接到第一混频器上..当信号电平较高时;混频器工作在非线性变频状态;将产生高阶互调和混频增益压缩;而且过高的电平一般大于5dBm将烧坏混频器;故在使用中要合理地选择射频衰减器以确保线性工作状态..为使混频器进行线性变频;中频放大器进行线性放大;使示波屏上出现的假响应电平缩至最小;这就要求加在混频器上的输入信号功率越小越好;而为了扩大测量电平的动态范围;则要求输入功率越大越好..为此对输入信号电平的选择有如下三个规定:1最佳输入信号电平在频谱仪输入混频器上输入信号时;使所产生的失真电平小于某个规定电平时的输入信号电平叫最佳输入电平..它随混频器的构造不同而有所不同;通常频谱仪的最佳输入电平是-30dBm..用这样的电平输入时;规定频谱仪产生的失真电平和假响应电平小于-90dBm;即在-30dBm到-90dBm间出现的信号是真正的信号;这时;显示器的动态范围有60dB..2线性输入信号电平;使输入混频器的特性保持线性的最大输入信号电平叫线性输入电平..所谓“线性”;是指允许输入混频器有1dB的增益压缩..增益压缩1dB;约产生12.2%的误差..当加到混频器的信号电平在线性输入电平范围内时;则增益压压缩小于1dB;这并不意味着在频谱仪显示器上不同生失真响应和假响应..只有当输入到混频器的信号功率等于最佳输入电平时;在示波屏上才不出现假响应..通常;频谱仪的线性输入电平是-5dBm到-10dBm;视输入混频器的特性而定..3最大输入电平频谱仪输入回的烧毁电平叫频谱仪的最大输入电平..它由输入衰减器和混频器的特性决定..输入混频器的烧毁电平的典型值是+10dBm;输入衰减器的烧毁电平是+30dBm..在实际测量中;为使测量不失真;或使假响应电平减至最小;应经常使用最佳输入电平..就输入端是单个大信号而言..采用最佳输入电平;将会得到较满意的测量结果..但当输入端存在多个高电平信号时;即使这些信号可能在频谱仪的工作频带外;终因输入端没有选择性;这些信号功率的迭加很容易使混频器过载产生高阶交互调失真;从而产生假响应;因此有必要对所测信号以外的信号功率加以衰减;最好的办法是加一个跟踪滤波器;即预选器;如美国HP公司和西德R/S公司都有为其频谱仪配套的预选器..有些频谱分析仪没有配套的预选器;但可根据测量频段加固定的带通滤波器..此时;用频谱分析仪和跟踪信号发生器对通带内波动、插入损耗仔细进行测量并一一记录下来;在测量场强时计入到天线校正系数去..如果连带通滤波器也没有;那么可按照所测频段配置合适的高通滤波器..实践证明;强电台及电磁干扰大多集中在中、短波及调频波段、VHF低端;在采用高通滤波器后;可把被测频段以下的信号衰减40dB以上;这样可大大减少互调、交调失真..检验混频器是否工作在最佳状态;可以采用射频衰减器增加10dB;显示减少10dB的方法验证..通常;-30~-35dBm为混频器的最佳工作状态;即频谱仪的最佳输入电平为-30~-35dBm..最佳输入电平的择定为以后进一步的精确测量打下了良好基础..三、选择合适的中频带宽频谱仪的中频带宽又称分辨率带宽很多;从1MHz到1kHz以下约有10档左右..但由于频谱仪的连续扫描特性;它的滤波器是高斯型的矩形系数较大;一般60dB:3dB带宽为10:1..而测试接收机的中频滤波器矩形系数较小;一般60dB:6dB带宽为2:1一般测试接收机为双调谐回路;且B3=0.8B6..频谱仪的噪声系数较大;典型值为19dB;因此在频带宽相同的情况下;频谱仪的噪声电平比测试接收机高..了解这些不同后;就可以根据实测情况及所测信号的特点;选择合适的中频带宽..如果要测量间隔25KHz的两相邻信号;若它们的电平相差不大;则用10KHz的中频带宽就可以区分两信号..如果电平相差较大;则必须用3kHz 或1kHz的中频带宽才能区分两信号..在选择中频带宽时;还应注意扫描时间;太快会使滤波器来不及响应;导致测量不准..有些频谱仪有自动调节功能;特别是现代较先进的它可将扫描时间自动调节到与扫描频宽、中频带宽相适应..若是手动调节的;应注意一旦中频带宽改变;扫描时间也要相应地变化;以保证准确测量..如果要测量较弱信号;就要减小中频带宽;使频谱仪的噪声电平低于被测信号..频谱仪一般给出最小中频带宽以下的平均噪声电平;中档频谱仪的典型值为-115dBm..为保证测量结果有效;应使信噪比优于6dB;故它可测量的最小电平为-109dBm即-2dBμV..实际上可测的最小电平还受到频谱仪杂散响应指标的影响;而且当被测信号小于1μV时;通过机壳、电源线等引入干扰会使测量结果不可靠..四、怎样保证测量精度测试接收机都装有标准脉冲振荡器;以便在测量状态;如频率、衰减器、中频带宽改变时随时可进行校准..其测量精度主要由标准振荡器的准确度及输入失配误差来决定;一般为±2dB..频谱仪系采用固定频率的标准信号进行校准;当测量频率不同时就会产生误差..同时;射频衰减器参考电平、中频带宽、显示刻度等的改变都会产生误差..对于现代频谱仪这些误差一般为:校准信号绝对误差±0.3dB频率响应包括输入失配±0.5~2dB射频衰减器改变1~2dB参考电平改变0.5dB中频带宽改变0.5~1dB显示刻度改变1dBCRT显示非线性误差1~2dB粗看起来;这些误差相加超过4.5dB;但实际上与测量方法有很大关系..测量时;如能保持与校准时的仪器设置状态一样;就可使误差减至最小..一般是采用中频替代法;即在不改变中频带宽及显示刻度的情况下;通过改变参考电平..使校准信号电平与被测信号电平等于相应的参考电平时;则被测信号电平值等于校准信号电平值加上参考电平的改变量..值得注意的是;测量时保持信噪比大于12dB;这种测量的误差仅取决于整个误差的前四项可达到±2dB..浅析频谱分析仪和EMI接收机随着电力技术的广泛应用;带来了很大的便利;但同时也带来了不容忽视的电磁干扰EMI问题;这就要求必须对EMI特性进行准确的测量;这对提高电力电子装置的电磁兼容性EMC具有重要意义..近几年;在整个电磁兼容测量技术及所属服务领域不断出现许多新的器和测试方法;最基本且有效的测试设备还是和EMI接收机..1 频谱谈到测量电信号;电气工程师首先想到的可能就是..示波器是一种将电压幅度随时间变化的规律显示出来的仪器;它相当于电气工程师的眼睛;使你能够看到线路中电流和电压的变化规律;从而掌握的工作状态..但是示波器并不是电磁干扰测量与诊断的理想工具..这是因为:1最关键的是动态范围;干扰频谱不同分量的差别有5个量级以上;需要100 dB以上的动态范围;而八位的示波器仅有40 dB左右的动态范围;不能满足电磁干扰的测量要求..2所有电磁兼容标准中的电磁干扰极限值都是在频域中定义的;而示波器显示出的是时域波形;因此测试得到的结果无法直接与标准比较..为了将测试结果与标准相比较;必须将时域波形变换为频域频谱..3电磁干扰相对于电路的工作信号往往都是较小的;并且电磁干扰的频率往往比信号高;而当一些幅度较低的高频信号叠加在一个幅度较大的低频信号时;用示波器无法进行测量..4示波器的灵敏度在毫伏级;而由接收到的电磁干扰的幅度通常为微伏级;因此示波器不能满足灵敏度的要求..测量电磁干扰更合适的仪器是频谱分析仪;频谱分析仪是一种将电压幅度随频率变化的规律显示出来的仪器;它显示的波形称为频谱..频谱分析仪克服了示波器在测量电磁干扰中的缺点;它能够精确测量各个频率上的干扰强度..对于电磁干扰问题的分析而言;频谱分析仪是比示波器更有用的仪器;用频谱分析仪可以直接显示出信号的各个频谱分量..1.1 频谱分析仪的原理频谱分析仪是一台在一定频率范围内扫描接收的接收机;它的原理图如图1所示..频谱分析仪采用频率扫描超外差的工作方式..混频器将天线上接收到的输入信号与本振产生的信号混频;当混频的频率等于中频时;这个信号可以通过中频;被放大后;进行峰值检波..检波后的信号被进行放大;然后显示出来..由于本振电路的振荡频率随着时间变化;因此频谱分析仪在不同的时间输出的频率是不同的..当本的频率随着时间进行扫描时;屏幕上就显示出了被测信号在不同频率上的幅度;将不同频率上信号的幅度记录下来;就得到了被测信号的频谱..根据这个频谱;就能够知道被测设备是否有超过标准规定的干扰发射;或产生干扰的信号频率是多少..1.2 的使用方法要获得正确的测量结果;必须正确地操作频谱分析仪..本节简单介绍频谱分析仪的使用方法..正确使用频谱分析仪的关键是正确设置频谱分析仪的各个参数..下面解释频谱分析仪中主要参数的意义和设置方法..1频率扫描范围规定了频谱分析仪扫描频率的上限和下限..通过调整扫描频率范围;可以对感兴趣的频率进行细致的观察..在频率分辨率一定的情况下;扫描频率范围越宽;则扫描一遍所需要时间越长;频谱上各点的测量精度越低;因此;在可能的情况下;尽量使用较小的频率范围..在设置这个参数时;可以通过设置扫描开始频率和终止频率来确定;例如:startfrequency=l MHz;stop frequency=ll MHz..也可以通过设置扫描中心频率和频率范围来确定;例如: frequency=6 MHz;span=10 MHz..这两种设置的结果是一样的..2中频分辨带宽规定了频谱分析仪的中频带宽;这项指标决定了仪器的选择性和扫描时间..调整分辨带宽可以达到两个目的;一个是提高仪器的选择性;以便对频率相距很近的两个信号进行区别..另一个目的是提高仪器的灵敏度..因为任何电路都有热噪声;这些噪声会将微弱信号淹没;而使仪器无法观察微弱信号..噪声的幅度与仪器的通频带宽成正比;带宽越宽;则噪声越大..因此减小仪器的分辨带宽可以减小仪器本身的噪声;从而增强对微弱信号的检测能力..分辨带宽一般以3 dB或者6 dB带宽来表示..当分辨带宽变化时;屏幕上显示的信号幅度可能会发生变化..若测量信号的带宽大于通频带带宽;则当带宽增加时;由于通过中频放大器的信号总能量增加;显示幅度会有所增加..若测量信号的带宽小于通频带宽;如对于单根谱线的信号;则不管分辨带宽怎样变化;显示信号的幅度都不会发生变化..信号带宽超过中频带宽的信号称为宽带信号;信号带宽小于中频带宽的信号称为窄带信号..根据信号是宽带信号还是窄带信号能够有效地鉴别干扰源..3扫描时间仪器接收的信号从扫描频率范围的最低端扫描到最高端所使用的时间叫做扫描时间..扫描时间与扫描频率范围是相匹配的..如果扫描时间过短;频谱仪的中频不能够充分响应;结果幅度和频率的显示值变为不正确..4视频带宽视频带宽至少与分辨带宽相同;最好为分辨带宽的3至5倍..视频带宽反映的是测量接收机中位于包络检波器和模数之间的视频放大器的带宽..改变视频带宽的设置;可以减小噪声峰一峰值的变化量;提高较低信噪比信号测量的分辨率和复现率;易于发现隐藏在噪声中的小信号..1.3 频谱仪的种类频谱仪通常可以分为常规扫频分析仪和实时频谱分析仪;通过比较可以知道实时频谱分析仪适用性更强..1常规扫频分析仪图2是常规扫频分析仪的框图..此例涉及两个RF输入信号..RF信号通过扫描定位振荡器被转化为IF中间频率..IF输出通过带通滤波器;此处频谱分析仪分辨率被定义..滤波器由Fstart扫至Fstop;见图3..此时仅观察到滤波器带宽内的一个点的信号..信号A首先被探测和显示;然后是信号B间歇信号;如突发现象一般不会被探测到;除非在滤波器扫过时;在某一准确时间出现..2实时频谱分析仪实时频谱分析仪是由一系列带通滤波器组成;如下图4所示..信号通过这些滤波器观察和连续纪录..信号A和B同时采集和显示;如图5..2 EMI接收机由电力电子设备产生的电磁发射通常是宽带、连续的;其频率范围从工频到几十兆赫..通常传导EMI应在这一频率范围被测量..由于许多国家和国际标准只在0.15 MHz~30 MHz的频率范围内确定传导发射;传导EMI 的测量也仅仅在这一范围内讨论信号的测量方法..在0.15 MHz~30 MHz频率乃至低至10 kHz范围内的EMI分量;由EMI 接受装置测量..EMI接收机测得的是一个被测设备的输出电压..实质上EMI接收机是可调谐的、有频率选择的、具有精密的振幅响应的电压计;如图6所示..各部分功能如下:1..可由电压、电流探头、各类天线等部件组成..根据测量的目的;选用不同部件来提取信号..2输入衰减器..可将外部进来的过大信号或干扰电平给予衰减;调节衰减量高低;保证测量接收机输入的电平在测量接收机可测范围之内;同时也可避免过电压或过电流造成测量接收机损坏..3校准信号源..与普通接收机相区别;测量接收机本身提供内部校准信号源;可随时对测量接收机的增益加以自我校准;以保证测量值的准确..4..利用选频放大原理;仅选择所需的测量信号进入下级电路;而外来的各种杂散信号包括镜像频率信号、中频率信号、交调谐波信号等均排除在外..5混频器..将来自射频放大器的射频信号和来自本机振荡器的信号合成产生一个差频信号输入到中频放大级;由于差频信号的频率远低于射频信号频率;使得中频放大级增益得以提高..6本机振荡器..提供一个频率稳定的高频振荡信号..7中频放大器..由于中频放大器的调谐电路可提供严格的频率带宽;又能获得较高的增益;因此保证接收机的总选择性和整机灵敏度..8检波器..测量接收机的检波方式与普通接收机的检波方式有着重大差异..测量接收机除可接收正弦波信号外;更常用于测量脉冲骚扰电平;因此测量接收机除了通常具有的平均值检波功能外还增加了峰值检波和准峰值检波功能..3 频谱仪和接收机原理差异频谱分析仪是当前频谱分析的主要工具;尤其是扫频外差式频谱分析仪是当今频谱仪的主流;应用扫频测量技术;通过扫频信号源得到外差信号进行频域动态分析..接收机是进行EMC测试的主要工具;以点频法为基础;应用本振调谐的原理测试相应频点的电平值..接收机的扫描模式应当是以步进点频调谐的方式得到的..3.1 基本原理图根据工作原理;频谱分析仪和接收机可分为模拟式和数;字式两大类..外差式分析是当前使用最为广泛的接收和分析方法..下面就外差式频谱分析仪与接收机之间的主要差别作一分析..原理图如7所示;频谱仪与接收机类似;但是频谱仪与接收机在以下几方面差别较大:前端预选器、本振信号扫描、中频滤波器、测量精度..3.2 输入RF信号的前端处理接收机与频谱仪在输入端对信号进行的处理是不同的..频谱仪的信号输入端通常是较为简单的低通滤波器;而接收机要采用对宽带信号有较强的抗扰能力的预选器..通常包括一组固定带通滤波器和一组跟踪滤波器;完成对信号的预选..由于RF信号的谐波、交调和其它杂散信号的影响;造成频谱仪和接收机测试误差..相对于频谱仪而言;接收机需要更高的精度;故在接收机的前端比普通频谱仪多出一个预选器;提高选择性..接收机的选择性在GB/T6113CISPRl6中有明确规定..3.3 本振信号的调节现在的EMC测量;人们不止要求能手动调谐搜索频率点;也需要快速直观观察EUT under 一被测设备的频率电平特性..这就是要求本振信号既能测试规定的频率点;也能够在一定频率范围扫描..。
无线电频谱数据的实时监测与大数据分析
运营维护技术 2024年1月25日第41卷第2期227 Telecom Power TechnologyJan. 25, 2024, Vol.41 No.2刘晓春:无线电频谱数据的 实时监测与大数据分析2.3 利用大数据分析技术优化频谱利用对大量监测数据进行存储、整合和分析,挖掘频谱利用的潜在规律。
通过历史数据和预测模型,预测未来的频谱需求,实现资源的预先分配和优化。
根据实时监测数据和预测结果,动态调整频谱分配,提高频谱利用效率。
数据挖掘的这2类任务并不是完全独立的,它们往往需要相互配合,同时结合领域知识和业务需求来开展[5]。
频谱的数据挖掘需要依据具体任务类别选择针对性的模型,为能够适应不同的需求和技术应用,需要经过监测数据预处理、监测数据分析及数据结果可视化3步。
监测数据预处理是数据挖掘前的关键步骤,旨在将原始数据转化为适用于分析的形式。
监测数据分析作为数据挖掘的核心环节,能够运用各类算法与技术,从预处理后的数据中提取有价值的信息与知识。
构建分类模型,识别数据中的不同类别或群体。
最终利用数据可视化将挖掘结果以图形、图像、动画等直观的形式展示出来,有助于用户理解和解释挖掘结果,实现数据的更好理解和应用。
针对不同的数据特性和业务需求,需要选择适当的挖掘算法。
K -均值聚类是一种无监督学习方法,用于将对象组合到K 个聚类中,使同一个聚类中的所有数据项尽可能相似,而不同聚类中的数据项尽可能不相似。
数据点x 和y 之间的欧几里得距离为 ()()2i i 1ni d x,y x y ==−∑ (2)式中:x i 、y i 为数据点x 和y 在第i 个维度上的值;n 为数据的维度。
设数据分为2个聚类,确定数据点坐标为 (6,10),将该坐标点视为输入项,使用K -均值聚类算法计算它与各个聚类中心之间的距离。
聚类1的 中心坐标是(4,7),聚类2的中心坐标是(9,2)。
根据式(2),通过比较数据坐标与聚类1中心和聚类2中心的距离,可以将数据点位分配到距离最近的聚类。
Wi-Fi_认证中的干扰规避技术分析与测试
第22期2023年11月无线互联科技Wireless Internet Science and TechnologyNo.22November,2023作者简介:王欢(1988 ),男,浙江杭州人,工程师,硕士;研究方向:无线通信㊂Wi-Fi 认证中的干扰规避技术分析与测试王㊀欢1,方勇军2,闫富贵1(1.浙江大华技术股份有限公司,浙江杭州310000;2.浙江大华视觉物联融合应用重点实验室,浙江杭州310000)摘要:‘关于加强和规范2400MHz ㊁5100MHz 和5800MHz 频段无线电管理有关事宜的通知“中增加了对无线电发射设备需具备干扰规避技术的要求,这对相关无线电产品的认证提出了新的要求㊂文章通过对当前802.11协议㊁主流Wi-Fi 应用方案的基于帧和基于负载的2种干扰避让技术的分析,结合EN 300328标准中关于产品自适应测试的方法,搭建出满足干扰避让技术要求的测试方案,从而实现对无线电发射设备的干扰避让技术的验证,并针对测试未通过的情况给出了原因分析和解决问题的方向㊂关键词:信道接入;干扰规避;干扰规避测试中图分类号:TN929.5㊀㊀文献标志码:A0㊀引言㊀㊀国内最新型号核准(SRRC)指导文件,工信部无 2021 129号‘关于加强和规范2400MHz㊁5100MHz 和5800MHz 频段无线电管理有关事宜的通知“对非跳频无线电发射设备的干扰规避技术提出了要求,本文就采用当前主流干扰规避方案发射前侦听 的技术原理进行分析,如图1所示㊂详解干扰规避技术实现的原理,结合相关标准实现干扰规避的测试验证㊁问题分析与解决,为相关产品型号核准的认证测试提供指导㊂图1㊀非跳频无线电发射设备干扰规避分类1㊀干扰规避技术㊀㊀无线电发射设备干扰规避技术是为提高区域内所有无线设备的总传输效率而开发的一种技术[1],通过限制设备的发射时间㊁发射功率以及根据数据类型优化信道竞争机制而形成㊂目前,较为常见的干扰规避技术分为2大类:一是基于帧的干扰规避技术;二是基于负载的干扰规避技术㊂以Wi-Fi 技术为例,目前,所有Wi-Fi 方案都内置了Wi-Fi 干扰规避接口,均支持上述两种干扰规避技术㊂1.1㊀基于帧的干扰规避技术㊀㊀㊀基于帧的设备采用的是一种 先听后说 信道接入机制来监测信道上是否有其他设备正在发射数据,即设备在发射前会先进行信道监测,当发射设备检测到此时信道空闲时即可进行发送数据,若不空闲则需要进行下一个周期的等待,直到检测到信道空闲为止㊂以Wi-Fi 技术为例,Wi-Fi 设备的固定帧周期如图2所示,包含3个部分:信道可用性检测时间㊁信道占用时间和空闲时间,整个时间周期为1~10ms,具体由设备制造商宣称[2]㊂信道可用性检测时间(Clear Channel Assessment,CCA):评估信道是否空闲所需的时间,不小于16μs;信道占用时间(Channel Occupancy Time,COT ):设备在给定信道上进行数据传输的时间,在1~10ms;信道空闲时间:设备在当前信道上的空闲时间,至少为信道占用时间的5%,其间可以发送短控制信令,控制信令的占空比应ɤ10%㊂按照信道可用性检测时间为16μs,信道空闲时间为信道占用时间的5%来计算,那么整个帧周期为16μs +COT +COT ˑ5%,在1.066~10.516ms㊂设备在该信道占用期间可以多次传输,当传输间隙不大于16μs 时不需要进行信道评估㊂信道占用时间为1~10ms,信道空闲评估时间不小于18μs,空闲时间至少为信道占用时间的5%但不小于100μs㊂图2㊀基于固定帧的发包时序1.2㊀基于负载的干扰规避技术㊀㊀和基于帧的干扰规避技术一样采用的是基于 先听后说 的信道接入机制,只是对 说 的内容进行了优先级的定义,并赋予不同竞争窗口(Contention Window,CW)[2]㊂基于负载的设备应实现一种基于EDCA (Enhanced Distributed Channel Access)机制的信道接入机制,EDCA 是对基本DCF(Distributed Coordination Function)的扩展,通过采纳带优先级的QoS(Quality of Service)实现设备根据传递报文类型不同制定优先级,从而为其分配不同的等待时间,来实现有差别的数据传输服务㊂以Wi-Fi 设备为例,该机制定义了4种接入类别:背景(AC_BK)㊁尽力而为(AC_BE)㊁视频(AC_VI)㊁音频(AC _VO),默认优先级从低到高,制造商可以个根据设备类型自行设定优先级顺序,为Wi-Fi 设备在不同业务场景提供不同的无线信道接入能力[3]㊂DCF(Distributed Corrdination Function)是一种分布式的,基于信道竞争的信道接入技术㊂当一个站点需要发送数据时,首先要对当前信道进行一个16μs 的CCA(Clear Channel Assessment)侦听,从而判断当前信道是否空闲㊂若信道空闲,则站点认为其可以开始发送数据,否则需要进行下一个随机等待(Backoff Time =Random [0,CW (k )]ˑa Slot Time)其中,CW (k )=min(2k CW min ,CM max );a slot Time 是单个时隙;k 是回退级数,即当前传输失败次数,若是首次尝试传输,k 取值为0,CW 取CW min ,每次传输失败,则k 加1,CW 增大一倍,直到k 增加至最大值;期间如有一次传输成功,CW 重置为CW min ㊂如图3所示,站点2发送数据时检测到信道繁忙,在目的站发出ACK 后,经过DIFS(分布式帧间间隙=SIFS(短帧间间隙,通常为16μs)+2ˑa Slot Time)后,开始进行预先分配好的随机等待,等待结束立即发送数据㊂图3㊀基于负载的发包时序㊀㊀由此可见,基于负载的干扰规避技术会使站点的工作效率更高,这也是当前大多数设备采用的信道接入方案㊂1.3㊀短控制信令㊀㊀Wi-Fi 信号按照帧的类别主要分为管理帧㊁控制帧和数据帧[3]㊂控制帧:协助发送数据帧的控制报文,RTS㊁CTS㊁ACK 等;数据帧:用户间的数据报文;管理帧:负责STA 和AP 之间的能力级的交互㊁认证㊁关联等管理工作,包括信标帧㊁扫描帧㊁认证帧㊁关联帧㊂短控制信令通常指控制帧和管理帧,在Wi-Fi 干扰规避测试时,加入干扰信号后不允许除控制帧㊁管理帧之外的其他数据帧在此时发送,并要求在任意一个50ms 的观测周期内,发射时间的比例不超过10%,即最大发射时间不大于5ms㊂2 干扰规避测试方法2.1㊀测试环境搭建㊀㊀本文以测试对象为Wi-Fi STA 的设备为例进行搭建,测试方法参考EN 300328V2.2.2,环境搭建如图4所示㊂综测仪是陪测设备,主要功能是使被测物能够以较高的占空比进行主动发包;干扰源1是干扰信号发生器,主要功能是产生20MHz 以上带宽高斯白噪声信号;干扰源2是无用信号发生器,主要功能是产生单载波信号;频谱仪是信号分析仪,主要用来监测被测物的状态,比如被测物是否在连续的发包㊁受到干扰后是否停止发包或者仅剩下短控制信令信号等㊂图4㊀干扰规避测试环境搭建2.2㊀测试步骤㊀㊀(1)保持干扰源1㊁干扰源2关闭,综测仪与被测物建立连接,调节衰减器,使UUT 端接收到的信号强度在-50dBm 左右,Iperf 最好保持50%以上的流量㊂(2)打开干扰源1(信号频率:被测信道频点;带宽:20MHz;Level:-70dBm /MHz ++10ˑlog10(100mW /P out )(P out in mW e.i.r.p.)),比如P out 是20dBm,调整信号源的功率,使频谱仪监测到的AWGN 信号为-70dBm /MHz㊂(3)在频谱以上观察:①停止发射,如图5所示;②仅剩余部分短控制信令信号,且占空比在10%内(任意50ms 的观测时间内),以上观测结果测试通过,如图6所示;否则不通过(如没有停止发射或者短控制信号占空比大于10%等)㊂(4)保持干扰源1不变,打开干扰源2(频率:2395MHz㊁2488.5MHz,Level:-35dBm);说明:测试高信道时(工作信道位于2442~2483.5MHz),CW 的频率为2395MHz;测试低信道时(工作信道位于2400~2442MHz),CW 的频率为2488.5MHz;Level 的调整也可以在测试前调整好㊂(5)在频谱仪上观察:①只要存在干扰信号㊁CW 信号,不会恢复数据传输,观测时间至少60s;②存在干扰信号㊁CW 信号期间,允许段控制信号的存在和发射,发射满足占空比不大于10%的要求㊂(6)关闭干扰源1㊁干扰源2,设备会立即恢复数据传输㊂3㊀测试结论与问题分析3.1㊀测试结论㊀㊀从频谱上看到的情况如图5 6所示,表示测试通过,如果不满足图5 6两种情况,则测试失败㊂图5㊀设备停止发射,无短控制信令信号发出3.2㊀问题分析㊀㊀(1)按照标准要求的干扰信号强度,设备没有停止数据发送;通过增加干扰信号强度,在频谱上监测到被测物不再进行发送数据,如图7所示㊂原因分析:增大干扰,被测物会停止发送数据,说明被测物干扰规避相关的检测阈值设置过高㊂(2)在(1)的基础上增大干扰信号强度,设备依旧没有停止发送数据㊂原因分析:增大干扰,被测物未停止发送数据,说明被测物干扰规避功能没打开㊂以RTLTEK 平台的一款WiFi 产品为例,通过以下两条指令的配置来打开设备的自适应功能,CONFIG_RTW_ADAPTIVITY_EN =1;ADAPTIVITY _MODE =normal㊂通过调整 th_l2h_ini th_edcca_hl_diff 0xf5 命令中的参数 0xf5 来改变设备的干扰规避检测阈值,太㊀㊀图6㊀设备停止发射,有短控制信令信号发出图7㊀增加干扰信号强度,设备停止发射高干扰规避测试失败,太低无法竞争信道成功,所以需要经过多次测试来找到合适的参数,以达到较好的传输效果㊂参考文献[1]工业和信息化部无线电管理局.关于加强和规范2400MHz ㊁5100MHz 和5800MHz 频段无线电管理有关事宜的通知[EB /OL ].(2021-10-13)[2023-09-13].https :// /zwgk /zcwj /wjfb /tz /art /2021/art_e4ae71252eab42928daf0ea620976e4e.html.[2]高峰,李盼星,杨文良,等.HCNA -WLAN 学习指南[M ].北京:人民邮电出版社,2015.[3]ETSI.EN300328V2.2.2Wideband transmission systems ;Data transmission equipment operating in the 2.4GHz band ;Harmonized Standard for access to radio spectrum [EB /OL ].(2019-07-02)[2023-09-13].https :// /deliver /etsi _en /300300_300399/300328/02.02.02_60/en_300328v020202p.pdf.(编辑㊀李春燕)Analysis and test of interference avoidance technology in Wi-Fi certificationWang Huan 1 Fang Yongjun 2 Yan Fugui 11.Zhejiang Dahua Technology Co. Ltd. Hangzhou 310000 China2.Zhejiang Dahua Key Laboratory of Visual IoT Fusion Application Hangzhou 310000 ChinaAbstract Based on the Notice on strengthening and standardizing the radio management of 2400MHz 5100MHz and 5800MHz band the need for radio transmission equipment to have interference avoidance technical requirements has been added which puts forward new requirements for the certification of related radio products.Through the analysis of the frame -based and load -based interference avoidance technologies of the current 802.11protocol and mainstream Wi -Fi application solutions combined with the method of product adaptive testing in the EN 300328standard a test scheme that meets the interference avoidance technology in the Notice is built.So as to realize the verification of the interference avoidance technology of the radio transmission equipment and give the reason analysis and the direction to solve the problem for failed cases.Key words channel access interference avoidance interference avoidance testing。
射频测试方法总结
射频测试方法总结引言射频(Radio Frequency,RF)测试是在电子设备中对无线通信模块进行性能测量和验证的过程。
在现代科技中,射频技术已经广泛应用于无线通信、雷达、卫星通信、医疗设备等众多领域。
本文将对射频测试中常用的方法进行总结和介绍。
1. 射频信号发生器(RF Signal Generator)测试射频信号发生器是将基础波形通过改变频率、幅度、调制等参数生成射频信号的设备。
在射频测试中,常用的方法包括:•频率调制测试:通过改变射频信号发生器的频率参数,观察接收设备对不同频率信号的响应。
可以测试设备的频率响应范围和频率稳定性。
•幅度调制测试:通过改变射频信号发生器的输出功率参数,观察接收设备对不同功率信号的响应。
可以测试设备的灵敏度和动态范围。
•调制测试:通过改变射频信号发生器的调制方式(如调频、调幅、调相等),观察接收设备对不同调制信号的响应。
可以测试设备的解调能力和信号损耗。
2. 射频功率计(RF Power Meter)测试射频功率计是用于测量射频信号输出功率的设备。
在射频测试中,常用的方法包括:•功率输出测试:将射频信号发生器的输出信号连接到射频功率计上,通过读取功率计显示的数值,可以准确测量射频信号的输出功率。
•功率校准测试:通过将已知功率的射频信号输入到射频功率计上,比对测量值和已知值,从而校准射频功率计的准确性。
3. 射频网络分析仪(RF Network Analyzer)测试射频网络分析仪是用于测量电路、组件和系统的射频特性的设备。
在射频测试中,常用的方法包括:•频率响应测试:通过改变射频网络分析仪的扫频范围和步进值,测量待测试设备在不同频率下的响应情况。
可以得到频率响应曲线,评估设备在不同频段的性能。
•衰减测试:通过将待测试设备与射频网络分析仪连接,并测量两端的信号强度,可以计算设备对射频信号的衰减量。
可以评估设备对信号的损耗情况。
•相位测试:通过测量射频信号在待测试设备中的相位变化,可以评估设备对相位稳定性和相位延迟的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
测 试 技 术 卷
Te T g 5 2
^■● trmc l T h k :
文 献标 识 码 : A
文 章 编 号 : 0 3 0 0 0 6 0 - 01 —0 10-17 0)70 4 2
0
I
, / ’ T _1 F
了 每 根 谱 线 的 宽 度 , 也 决 定 r间 隔 多 大 距 离 的 信 号 可 以 被 分 开 RBw 滤 波 器 的 带 宽 越 窄 , 靠 得 很 近 的 潜 线 就 可 被 分 开 , 看 得 更 清 楚 , 分
辨 率 就 越 高 。 从 理 想 状 态 讲 , 为 了
C LC num bi =TM g3 21 5
OO CMm oNt coce = l A
Ar cl I : 003- 07( 006) 001 0 tl  ̄ 口 1 01 2 07- 4- 2
1. 谱 分析 仪 基本 原 理 频
频 谱 分 析 仪 就 是 在 频 城 内 分
析 信 号 的 图 示测 试 仪 , 以 图 形方 式 显示信号幅度接频率的分布 ( x 即
那 么 就 可 画 出 图 1 1的 波 形 图 。 如 —
成 。其 中 的 丹 辨率 带 宽 是 放在 第 三
中 频 级 后 而 的 带 通 滤 渡 器 , 它 决 定
果 把这 个 信号 用 幅 度 作 为频 率 的 函 数 ,就 会 得到 图 I 一2 的 波 形 图 。 这
个 图形 要 比 图 ! 一1简 单 得 多 一 眼 就 可 看 出这 个 信号 为 只 包 含 一 个频 率 成 分 r 幅 度 为 ^ 的 正 弦 泼 这 ,
n y s BI si
pap r ’ e i tod U r cB8 ba8 c ic e W I I ● Prn 0 pl of … ss S p eGt u AnaI e 1 … rm yz r h .
I he adv n ag… a t
f^ 8 M W IeI ’
就 是 信 号 的 频域 表 示 法 , 即 信 号的
■—r五而 丽
真 实 地 描 绘 出 信 号 的 频 谱 和 分 辨 出
噎 } 童 EETOt UL Y LCRN SOAf C r
2 O 5 0 7 船
维普资讯
测 试
技 术
S pec r t um nBl A yzer base d On gener c ;I haf act t s ors
Key w o r s= peclum nal e : er er d S r A yz r I nt F ence si gnBlR BW ; ; AS M
0
通 常 . 数字 式 频 瀚 分析 仪 由基
变 化 E + 就 不 仅 _ 描 述 其 变 化 的 大 f l , 璺 小 ,并 且 要 描 述 它 随时 间是 如 何 变
化 的 。 比 如 已知 一 个 随H 间 作 正 弦 变 化 的 信 号 fc ) s 2 t =^ i n f ,其 t
电池 无 需市 电, 及可 编程 、存 储
作 为 时 间 的 函 数 。 一 个 简 单 的 直 流 信 号 用 电 压 的 幅 度 火 小 及 其 极 性 表
示 就 足 够 r, I 为 信 号 不 髓 I 间 而 訇 付
等 先 进 性 而 得 到 越 来 越 广 泛 的 应
用
变 化 。 但 是 当 一 十 电 信 号 随 时 而
频潜 。
常 使 用 而 且 比 较 简 单 、 直 观 、 易 懂
的 信 号 时 域 分 析 仪 器 两 者 观 测 同
一
其 巾 需 注意 的 是 , 如 果信 号 不
是 正 弦 波信 号 , 从 理 论上 讲 是 可 通 过傅 立 叶变 换 将 其 用一 些 单 个 正 弦 渡 之 和 来 表 示 的 如 上 所 述 , 一 个 电 信 号 可 队 用 它 所 包 含 的频 率 分 量 即频 谱 分布 情
试 众 所 周 知 , 一 个 电信 号 是 电 压
况 来 描 述 。频 谱 分 析 仪 就 是信 号 频 域 的 分 析 仪 器 而 电 子 示 渡 器 是 经
数 字 式 频 谱 分 析 仪 以 其 运 算 速 度
f t ()
A …
快 、 体 积 、 重 量 轻 、 内 附 可 充 电 、
卷
… … ●●● ● ●
T est I echnoI ogY
电 信 号 时 所 产 生 的 结 果 有 着 密 切
的 内 在 联 系 , 一 般 情 况 下 频 谱 仪 和 示 波 器 是 从 不 同 的 角 度 去 观 察 同
一
轴 表 示频 率. Y 轴 表示 信 号 幅 度 ) ,
频 谱 分 析 仪 的 原理 是 用 窄带 带通 滤 被 器 对 信 号 进 行 选 通 主 要 功 能 是
一 A ■■r五
厂f F
A
1户—_ / _ 1
准 电 平 控 制器 , 频 率控 制 器. 分 辨 率 带 宽 ( ) 控 制 器 , 扫 描 控 制 RBW 器 , 视 频 滤 波控 制器 , 波 形存 储 器
以及 其 它 的 ・ 控 制 及 显 示 部分 组 些
幅 度 为 ^ 频 率 为 f 周 期 T /l, , , =1 f
信 呼 的 , 各 自 反 应 了 信 号 的 某 个
侧 面 , 两 者 所 得 结 果 是 可 互 译 的 频 谱 分 析 仪 就 其 工 作 原 理 可 分 为 数 字 式 和 模 拟 式 两 大 类 , 其 中
显示 被测 信号 的 频谱 、 幅度 、频 率
可 以 全 景 显 示 , 也 可 选 定 带 宽 测