最新人教版新课标数学小学六年级下册《鸽巢原理》公开课教学设计第三课时

合集下载

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】一、教材分析“鸽巢问题”是六年级下册教学内容,“鸽巢原理”又称“抽屉原理”,是组合教学中最基本最简单的原理之一,灵活多变,应用广泛。

教学“鸽巢问题”,教材安排了两个例题。

这节课教学内容是例1。

例1把4支铅笔放进3个笔筒中的操作情景,介绍“鸽巢原理”的最基本形式。

初步接触“鸽巢问题”对于学生来说,有一定的难度。

教学时,应放手让学生自主探索。

教师要引导学生对教材上提供的两种方法进行比较,思考枚举的方法有什么优越性和局限性,假设的方法有什么独特的优点,使学生逐步学会运用一般性的数学方法来思考问题。

二、教学内容教材第68页例1及“做一做”第1、2题。

三、教学目标1.让学生经历“鸽巢问题”的探究过程,通过数学活动理解“鸽巢原理”,学会简单的“鸽巢问题”分析方法,并解决一些简单问题。

2.结合具体的实际问题,通过实验、观察、分析、归纳等数学活动使学生经历“鸽巢原理”的形成过程,体会和掌握逻辑推理思想和模型思想,提高解决实际问题的能力。

3.在主动参与数学活动的过程中,让学生感受到数学的魅力,提高学习数学的兴趣。

四、教学重难点教学重点:能用“鸽巢原理”解决最基本的相关实际问题。

教学难点:初步理解“鸽巢原理”,能口头表达推理过程。

五、教学准备一副扑克牌、课件等。

六、教学过程(一)引入新知1.抢凳子游戏。

2.抽扑克牌游戏。

教师:这类问题在数学上称为鸽巢问题(板书)。

因为52张扑克牌数量较大,为了方便研究,我们先来玩数量较小的抢凳子游戏。

【设计意图】从学生喜欢的“抢凳子”“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。

(二)探究新知1.教学例1。

(1)把3枝铅笔放进2个笔筒中。

想一想:可以怎样放?有几种不同的放法?(不考虑笔筒摆放顺序,学生可用笔盒当笔筒)摆一摆:先用来学具摆一摆,然后用自己喜欢的方法表示出来,如画一画,写一写。

人教版数学六年级下册鸽巢问题教案3篇

人教版数学六年级下册鸽巢问题教案3篇

人教版数学六年级下册鸽巢问题教案3篇〖人教版数学六年级下册鸽巢问题教案第【1】篇〗一、教材分析“鸽巢问题”是六年级下册教学内容,“鸽巢原理”又称“抽屉原理”,是组合教学中最基本最简单的原理之一,灵活多变,应用广泛。

教学“鸽巢问题”,教材安排了两个例题。

这节课教学内容是例1。

例1把4支铅笔放进3个笔筒中的操作情景,介绍“鸽巢原理”的最基本形式。

初步接触“鸽巢问题”对于学生来说,有一定的难度。

教学时,应放手让学生自主探索。

教师要引导学生对教材上提供的两种方法进行比较,思考枚举的方法有什么优越性和局限性,假设的方法有什么独特的优点,使学生逐步学会运用一般性的数学方法来思考问题。

二、教学内容教材第68页例1及“做一做”第1、2题。

三、教学目标1.让学生经历“鸽巢问题”的探究过程,通过数学活动理解“鸽巢原理”,学会简单的“鸽巢问题”分析方法,并解决一些简单问题。

2.结合具体的实际问题,通过实验、观察、分析、归纳等数学活动使学生经历“鸽巢原理”的形成过程,体会和掌握逻辑推理思想和模型思想,提高解决实际问题的能力。

3.在主动参与数学活动的过程中,让学生感受到数学的魅力,提高学习数学的兴趣。

四、教学重难点教学重点:能用“鸽巢原理”解决最基本的相关实际问题。

教学难点:初步理解“鸽巢原理”,能口头表达推理过程。

五、教学准备一副扑克牌、课件等。

六、教学过程(一)引入新知1.抢凳子游戏。

2.抽扑克牌游戏。

教师:这类问题在数学上称为鸽巢问题(板书)。

因为52张扑克牌数量较大,为了方便研究,我们先来玩数量较小的抢凳子游戏。

【设计意图】从学生喜欢的“抢凳子”“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。

(二)探究新知1.教学例1。

(1)把3枝铅笔放进2个笔筒中。

想一想:可以怎样放?有几种不同的放法?(不考虑笔筒摆放顺序,学生可用笔盒当笔筒)摆一摆:先用来学具摆一摆,然后用自己喜欢的方法表示出来,如画一画,写一写。

六年级下册数学教案-第3课时鸽巢问题(练习课)-人教版

六年级下册数学教案-第3课时鸽巢问题(练习课)-人教版

六年级下册数学教案第3课时鸽巢问题(练习课)人教版教学内容本课时为六年级下册数学的第三课时,主要围绕“鸽巢问题”进行深入的练习和探讨。

鸽巢问题,亦称狄利克雷抽屉原理,是组合数学中的一个基本原理,用于阐述在特定条件下,无限多个物体分配到有限数量的容器中,必然存在至少一个容器内有两个或更多物体的现象。

通过本课时的学习,学生将加深对这一数学原理的理解,并能够运用它来解决实际问题。

教学目标1. 理解鸽巢原理:学生能够理解并表述鸽巢原理的基本概念。

2. 问题解决能力:学生能够运用鸽巢原理解决具体的数学问题。

3. 逻辑推理能力:通过练习,学生能够培养逻辑推理和数学证明的能力。

4. 应用拓展:学生能够将鸽巢原理应用到日常生活或其他学科问题中。

教学难点1. 抽象概念的理解:鸽巢问题是一个抽象的数学概念,学生可能难以理解其背后的数学原理。

2. 问题解决技巧:如何引导学生将实际问题转化为鸽巢问题,并应用原理解决。

3. 逻辑推理的建立:如何帮助学生建立严密的逻辑推理过程。

教具学具准备教具:PPT演示文稿、黑板、粉笔学具:练习本、笔教学过程1. 导入:回顾上一课时学习的鸽巢原理的基本内容,通过简单的实例引起学生的兴趣。

2. 例题讲解:选取几个典型的例题,引导学生如何应用鸽巢原理解决问题,强调解题步骤和逻辑推理的重要性。

3. 小组讨论:学生分组讨论,共同解决一些更具挑战性的问题,教师巡回指导。

4. 成果分享:每组选取代表分享解题过程和答案,其他学生进行评价和讨论。

板书设计板书将围绕鸽巢原理的定义、应用和例题进行设计,确保内容清晰、逻辑性强,方便学生理解和记忆。

作业设计作业将包括基础练习题、提高题和拓展题,以帮助学生巩固知识,提高解题能力。

课后反思课后,教师应反思教学过程中的不足之处,如是否所有学生都能理解鸽巢原理,是否需要更多的实例来帮助学生掌握解题技巧等,以便在后续的教学中进行改进。

通过本课时的学习,学生不仅能够掌握鸽巢问题的解决方法,还能够培养他们的逻辑思维能力和问题解决能力,为他们日后的学习和生活打下坚实的基础。

六年级下册数学教学设计-5《鸽巢原理》人教新课标

六年级下册数学教学设计-5《鸽巢原理》人教新课标

六年级下册数学教学设计5《鸽巢原理》人教新课标一、教学内容二、教学目标通过本节课的学习,我希望学生们能够理解并掌握鸽巢原理,能够运用鸽巢原理解决实际问题,培养他们的逻辑思维能力和解决问题的能力。

三、教学难点与重点重点是让学生理解和掌握鸽巢原理,能够运用到实际问题中。

难点是让学生理解并能够证明鸽巢原理。

四、教具与学具准备我已经准备好了PPT和一些实际问题的案例,以及白板和记号笔,以便在课堂上进行演示和讲解。

五、教学过程1. 引入:我会在课堂上引入一个实际问题,比如:“如果有7个小朋友和5个玩具,那么至少有一个小朋友没有玩具吗?”让学生们思考并讨论。

2. 讲解:我会用PPT展示鸽巢原理的证明过程,并用实际案例来说明鸽巢原理的应用。

3. 演示:我会用白板和记号笔在课堂上进行演示,让学生们更直观地理解鸽巢原理。

4. 练习:我会给出一些练习题,让学生们运用鸽巢原理进行解答。

六、板书设计我会用白板和记号笔在课堂上进行板书设计,主要包括鸽巢原理的定义、证明过程和应用案例。

七、作业设计(1)如果有8个学生和5本书,那么至少有一个学生没有书吗?(2)如果有10个球和5个盒子,那么至少有一个盒子里面有超过一个球吗?答案:(1)是的,至少有一个学生没有书。

(2)是的,至少有一个盒子里面有超过一个球。

在一个班级里有30个学生,如果有31个苹果,那么至少有一个学生得不到苹果。

答案:因为如果有31个苹果,那么至少有一个学生得不到苹果,这是因为学生的数量少于苹果的数量,根据鸽巢原理,至少有一个学生得不到苹果。

八、课后反思及拓展延伸通过本节课的学习,我发现学生们对鸽巢原理的理解和掌握情况比较好,他们能够运用鸽巢原理解决实际问题。

但是在课堂上,我也可以感觉到一些学生对于证明过程的理解还有些困难,我需要在课后给他们更多的指导和帮助。

拓展延伸:鸽巢原理在生活中的应用非常广泛,比如在安排比赛场地、分配资源等方面都有应用。

我可以在课后给学生们提供一些相关的实际案例,让他们进一步了解和掌握鸽巢原理的应用。

人教版数学六年级下册鸽巢问题例3教学设计:王籍辉

人教版数学六年级下册鸽巢问题例3教学设计:王籍辉

《鸽巢问题》例3 教学设计
矮桥小学:王籍辉
【教学内容】: 人教版六年级数学下册《数学广角—鸽巢问题》例3。

【教学目标】:
1.在了解简单的“鸽巢问题”的基础上,使学生会用此原理解决简单的实际问题。

2.培养学生有根据、有条理的进行思考和推理的能力,以及小组协作能力。

3.通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力,从而学数学,爱数学。

【教学重点】:引导学生把具体问题转化为“鸽巢问题”。

【教学难点】:利用“鸽巢问题”进行反向推理。

【教学准备】:PPT,教案,扑克牌,MV,磁性教具,实物投影仪。

【教学过程】:
一、激趣导入
1、播放一段魔术MV,激发兴趣。

2、扑克牌小魔术师生互动,导入课题。

二、展开课题
1、出示P70例3。

2、小组实验探究,初步感知。

3、汇报实验结果。

4、总结规律,自主提炼算理。

在什么情况下一定出现2个同色的球?
①、先把所有的颜色的球各拿1个。

②、再随便拿1个。

5、尝试列式解答例3。

6、学生代表交流讲解,师点评。

三、巩固练习:P70做一做第2题。

四、拓展:例3变式练习。

五、课外延伸、结束课题
1、P70小资料。

2、总结。

【板书设计】:
《鸽巢问题》例3
在什么情况下一定出现2个同色的球?
①、先把所有的颜色的球各拿1个。

②、再随便拿1个。

六年级下册数学教案-《鸽巢原理》人教新课标(2023秋)

六年级下册数学教案-《鸽巢原理》人教新课标(2023秋)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与鸽巢原理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示鸽巢原理的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“鸽巢原理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了鸽巢原理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对鸽巢原理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
此外,在小组讨论环节,我发现有些学生参与度不高,可能是因为他们对自己的观点缺乏信心。在今后的教学中,我要更加关注这部分学生,鼓励他们大胆表达自己的想法,增强他们的自信心。
在实践活动方面,学生们对于实验操作表现出了极大的热情,但也有一部分学生在操作过程中出现了错误。我认为在以后的实践中,可以增加一些引导性的问题,让学生在操作前进行思考,以减少错误的发生。
-理解鸽巢原理的定义及其数学表达,明确至少有一个鸽巢里至少有两只鸽子的条件。
-学会运用鸽巢原理解决实际问题,如分配物品、安排座位等。
-掌握鸽巢原理与其他数学概念的联系,如抽屉原理、整数分解等。

新人教版新课标数学小学六年级下册鸽巢问题公开课优质课教案

新人教版新课标数学小学六年级下册鸽巢问题公开课优质课教案鸽巢问题优秀教案教学目标1.使学生初步了解简单的“抽屉原理”;2.培养学生有根据、有条理地进行思考和推理的能力;3.通过用“抽屉原理”解决简单的实际问题,初步感受教学的魅力。

教学重点经历“抽屉原理”的探究过程,初步了解“抽屉原理”教学难点理解“抽屉原理”并对一些简单实际问题“模型化”导入新课7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。

为什么?⑴说出想法。

⑵尝试分析有几种情况。

学生活动:小组1号、2号说一说。

自主学习把7本书放进3个抽屉中,不管怎么放,总有一个抽屉至少放进几本书?⒈摆一摆,有几种放法。

不难得出,总有一个抽屉至少放进本。

说一说你的思维过程。

如果每个抽屉放2本,放了本书。

剩下的1本还要放进其中一个抽屉,所以至少有1个抽屉放进本书。

2.如果一共有7本书会怎样呢?9本呢?⒊学生独立思考,寻找结果。

交流探讨⒋小组交流思维过程和结果。

⒌汇报结果,全班交流。

⒍你能用算式表示以上过程吗?你有什么发现?7÷3=2……1 (至少放3 本)8÷3=2……2 (至少放3 本)10÷3=3……1 (至少放4本)说明:先平均分配,再把余数进行分配,得出的就是一个抽屉至少放进的本数。

小组交流思维过程和结果。

汇报结果,全班交流。

通过交流你发现了什么?“总有1个抽屉至少放进的本数”等于“商+1”展示提升8只鸽子飞回3个鸽舍,至少有3只鸽子要飞回同一个鸽舍例,为什么?学生先思考,后交流检测清遗1、填空。

①把5封信投进4个邮筒,则总有一个邮筒至少投进了()封信。

②把9本书放入2个抽屉,则总有一个抽屉里至少放()本书。

③7只鸽子飞回5个鸽舍,至少有()只鸽子要飞进同一鸽舍。

④春游时30个同学到公园划船,现有5条船,则总有一条船上至少坐()人。

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】教学内容:人教版小学数学六年级下册教材第68~69页。

教材分析:鸽巢问题又称抽屉原理或鞋盒原理,它是组合数学中最简单也是最基本的原理之一,从这个原理出发,可以得出许多有趣的结果。

这部分教材通过几个直观的例子,借助实际操作,向学生介绍了“鸽巢问题”。

学生在理解这一数学方法的基础上,对一些简单的实际问题“模型化”,会用“鸽巢问题”解决问题,促进逻辑推理能力的发展。

学情分析:“鸽巢问题”的理论本身并不复杂,对于学生来说是很容易的。

但“鸽巢问题”的应用却是千变万化的,尤其是“鸽巢问题”的逆用,学生对进行逆向思维的思考可能会感到困难,也缺乏思考的方向,很难找到切入点。

设计理念:在教学中,让学生经历将具体问题“数学化”的过程,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发展抽象能力、推理能力和应用能力,这是《标准》的重要要求,也是本课的编排意图和价值取向。

教学目标:1、知识与技能:通过操作、观察、比较、推理等活动,初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题。

2、过程与方法:在鸽巢原理的探究过程中,使学生逐步理解和掌握鸽巢原理,经历将具体问题数学化的过程,培养学生的模型思想。

3、情感态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学生解决问题的能力和兴趣。

教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。

教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。

教学准备:多媒体课件、微视频、合作探究作业纸。

教学过程:一、谈话引入:1、谈话:你们知道“料事如神”这个词是什么意思吗?今天老师也能做到“料事如神”,你们信不信?现在老师任意点13位同学,我就可以肯定,至少有2个同学的生日在同一个月。

你们信吗?2、验证:学生报出生月份。

根据所报的月份,统计13人中生日在同一个月的学生人数。

新人教部编版六年级数学下册第3课时 鸽巢问题(3)(导学案)

第3课时鸽巢问题(3)
教学内容
教材第70页例3。

教学目标
◆知识与技能
进一步理解“鸽巢原理”,运用“鸽巢原理”进行逆向思维,解决实际问题。

◆过程与方法
经历运用“鸽巢问题”解决问题的过程,体验观察猜想和实践操作的学习方法。

◆情感态度与价值观
加强数学知识与日常生活的联系,激发学生的学习兴趣,提高学生的动手操作能力。

重点、难点
◆重点掌握“鸽巢原理”的逆应用。

◆难点能熟练地运用“鸽巢原理”解决问题。

教法与学法
◆教法情景教学法,实验探究引导。

◆学法实验观察,独立思考。

教学准备
教具准备:多媒体课件。

学具准备:每组准备红球、蓝球各4个、1个不透明的盒子。

五、教学板书
六、教学反思
本节课教学,教师应充分利用学具操作,为学生提供主动参与的机会,把抽象的数学知识同具体的实物结合起来,化难为易,化抽象为具体,让学生体验和感悟数学,为学生营造宽松自由的学习氛围和学习空间,让学生能自己动脑解决一些实际问题,从而更好地理解鸽巢问题。

教师点评和总结:。

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)

人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】一、教学三维目标1.知识与技能目标:初步理解鸽巢原理;2.过程与方法目标:经历鸽巢原理的的探究过程,培养学生的模型思想;3.情感态度与价值观目标:感受数学的魅力,提高学习数学的兴趣。

二、教学重点经历探究过程,初步了解鸽巢原理;三、教学难点理解鸽巢原理;四、教学过程1.游戏引入教师提问:你们玩过“抢椅子”的游戏吗?谁能说说游戏规则呢?学生回答后,组织学生进行几次“抢椅子”的游戏。

请学生注意观察,提问:一个简单的游戏里,蕴含着什么数学知识呢?顺势引入课题。

2.讲授新知活动一:初步认识鸽巢原理出示例1:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。

提问:你得到了什么数学信息?至少和总有是什么意思?总结:总有就是一定存在的意思,至少表示最低限度,有最少的意思。

再提问:这句话对吗?组织小组活动,进行验证。

总结:学生探究出两种方法,方法一是枚举法,将可能的情况都列出进行观察;方法二是假设法。

两种方法都能验证这句话是正确的。

在此基础上,教师把铅笔换成鸽子,笔筒换成鸽笼,介绍鸽巢问题。

活动二:探究一般形式出示例2:把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。

提问:这句话对吗?为什么?组织小组活动,进行探究。

总结:用枚举法和假设法都能证明这句话是对的,教师利用除法算式7÷3=21,引导理解用“平均分”的思维来理解假设法。

追问:如果有8本书会怎样?10本呢?组织同桌交流,指名学生回答。

学生回答时继续用除法表示,最后提问:观察算式,你发现了什么?师生总结:观察3个算式,发现至少放的本数是商+1,而不是商+余数。

引出鸽巢问题又叫抽屉问题。

3.巩固练习完成做一做4.课堂小结教师提问:你有什么收获?学生回答后教师总结完善。

5.布置作业课后习题1、2题,将今天学到的整理成数学日记人教版数学六年级下册鸽巢问题优秀教案【第2篇】《鸽巢问题》就是以前奥数的教学内容《抽屉原理》,兴趣是学习最好的老师。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学课题:“鸽巢原理”练习课
教学内容:教材71页练习十三的5、6题,及相关的练习题。

三维目标:
1、知识与技能:进一步熟知“鸽巢原理”的含义,会用“鸽巢原理”熟练解决简单的实际问题。

2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。

3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。

教学重点:应用“鸽巢原理”解决实际问题。

引导学会把具体问题转化成“鸽巢问题”。

教学难点:理解“鸽巢原理”,找出”鸽巢问题“解决的窍门进行反复推理。

教具准备:多媒体课件。

个人调整意见教学过程:
一、谈话导入 ------出示课题
二、指导练习
(一)基础练习题 1、填一填:
(1)鱼岳三小六年级有30名学生是二月份(按28天计算)
出生的,六年级至少有()名学生的生日是在二月份的同一天。

(2)有3个同学一起练习投篮,如果他们一共投进16个球,
那么一定有1个同学至少投进了()个球。

(3)把6只鸡放进5个鸡笼,至少有()只鸡要放进同
1个鸡笼里。

(4)某班有个小书架,40个同学可以任意借阅,小书架上至
少要有()本书,才可以保证至少有1个同学能借到2本或2
本以上的书。

学生独立思考解答,集体交流纠正。

2、解决问题。

(1)(易错题)六(1)班有50名同学,至少有多少名同学是同一个月出生的?
(2)书籍里混装着3本故事书和5本科技书,要保证一次一定能拿出2本科技书。

一次至少要拿出多少本书?
(3)把16支铅笔最多放入几个铅笔盒里,可以保证至少有1个铅笔盒里的铅笔不少于6支?
(二)拓展应用
1、把27个球最多放在几个盒子里,可以保证至少有1个盒子里有7个球?教师引导学生分析:盒子数看作抽屉数,如果要使其中1个抽屉里至少有7个球,那么球的个数至少要比抽屉数的(7-1)倍多1个,而(27-1)÷(7-1)=4...2,因此最多放进4个盒子里,可以保证至少有1个盒子里有7个球。

教师引导学生规范解答:
2、一个袋子里装有红、黄、蓝袜子各5只,一次至少取出多少只可以保证每种颜色至少有1只?
教师引导学生分析:假设先取5只,全是红的,不符合题意,要继续去;假设再取5只,5只有全是黄的,这时再取一只一定是蓝色的,这样取5×2+1=11(只)可以保证每种颜色至少有1只。

教师引导学生规范解答:
3、六(2)班的同学参加一次数学考试,满分为100分,全班最低分是75。

已知每人得分都是整数,并且班上至少有3人的得分相同。

六(2)班至少有多少名同学?
教师引导学生分析:因为最高分是100分,最低分是75分,所以学生可能得到的不同分数有100-745+1=26(种)。

教师引导学生规范解答:
三、巩固练习:
完成教材第71页练习十三的5、6题。

(学生独立思考解答问题,集体交流、纠正。


四、课堂总结
说说这节课你有什么收获?还有什么疑问,我们一起解决。

五、作业
教学反思:。

相关文档
最新文档