石墨烯修饰电极同时测定邻苯二酚和对苯二酚

合集下载

岭回归法同时测定邻、间、对苯二酚

岭回归法同时测定邻、间、对苯二酚
H ( × ) S( × ) ( 1 1 = 1X × )
式 中 : 1 —吸 光度矩 阵 ; H( ) —
化合物结构 、 性质相似时其分配系数差异不大 ,
色谱 峰容 易发生重 叠 。 由于 多组分 复杂样 品大量存 在, 杂质干扰十分复杂 , 峰也就普遍存在 , 析色 重叠 解 谱重叠峰 已成为近 年来 色谱分 析的重 大研究课 题。 高效液 相色谱 法灵 敏度 高 、 分辨 力强 , 年来 常 近
引 言
酚类 化 合 物是 常 见 的环 境污 染 物 , 毒 性可 致 其 癌、 致畸 和致突 变 , 已成 为环保 、 现 卫生 、 医药 和食 品 等行业 检测 的重 要 指标 , 因此 对 酚 类化 合 物 测定 方 法 的研究 也成为环 境 分析 的热点 问题 。
更为稳定的估算 , 并且 回归系数的标准差也比最小 二乘法估算的要小。 当对 种组 分混合样 同时进行 测定 时 , 选择 m 个 时间点测 定其 吸光度 , 朗伯一 根据 比耳定 律 , : 得
作站 。
邻 、 、 苯二 酚 ( 间 对 分析 纯 ) 甲醇 ( 析纯 )流 动 ; 分 ;
相: ( 甲醇 ) ( ) 5 3 。 : 水 =6 :5
3 实 验 方 法 [ 5 ]
用真 空 抽 滤装 置 滤 除水 和 甲醇 中的杂 质 , 用 并 超声 波清洗 器脱 气 1 n以上 。按 均 匀设 计 法阵 ;
X( 1 —组 分浓度矩 阵 。 ) —
上式两边左乘 s 1 ( ) 的转置矩阵 s 1 当 i ) ,
S l为满秩 矩 阵时 , S 考虑 到误 差 造成 色谱 时 间参 数不稳 定 , 到 : 可得
X =( 丁 S S+d 一 S H E) r

用电化学方法还原石墨烯修饰玻碳电极来同时测定鸟嘌呤和腺嘌呤

用电化学方法还原石墨烯修饰玻碳电极来同时测定鸟嘌呤和腺嘌呤

2 设备和程序 GO表面形态的特点是通过原子力显微镜(AFM,Agilent5500, 美国)和扫描电子显微镜(SEM、日立H- 9000、日本)得到的。 所有的电化学实验都是在三电极电解池下进行的。包括 CHI660D电化学工作站(Chenhua,中国),铂电极和Ag /AgCl电极 分别作为辅助电极和参比电极。修饰电极的电化学性质是通 过循环伏安法(CV)和电化学阻抗谱(EIS)来测定的。CV是在 0.1mol/L氯化钾+ 1.0×10-3mol/L K3Fe(CN)63-/4-溶液中测定。 EIS是在0.1mol/L氯化钾+ 5.0×10-3mol/LK3Fe(CN)63--/4-溶液 中测定的。这时的平衡电势是0.175 V(vs . Ag /AgCl)、扰动振 幅为5mV,频率范围从100千赫至0.1赫兹。所有测量是在室 温下进行的(25±2 ℃)。
谢谢大家!
mol /L鸟嘌呤和腺嘌呤混合溶液 (1 : 1)的CV图 , (c) erGO/GCE 在 0.1 mol /L PBS (pH=6.2) 在0.1 V/s的CV图
Fig. 5 (A) 在 5.0× 10-6 mol /L腺嘌呤存在时, er-GO/GCE 在0.4, 0.8, 2.0, 4.0, 8.0, 12.0,和16.0 × 10-6 mol/ L鸟嘌呤 (从a到g) 溶液的 DPV图,坐标是峰电流对鸟嘌呤浓度 (B) 在 5.0 ×10-6 mol/ L鸟嘌呤 存在时,er-GO/GCE 在0.6, 1.0, 3.0, 5.0, 7.0, 10.0, 15.0, and 20.0 × 10-6 mol /L腺嘌呤(从 a到h) 溶液 的DPV图,坐标是峰电流对腺嘌呤 浓度。
4 er-GO/GCE选择性、稳定性和重现性

复合修饰电极同时测定2,7-萘二酚与双酚A

复合修饰电极同时测定2,7-萘二酚与双酚A

复合修饰电极同时测定2,7-萘二酚与双酚A2,7-萘二酚(2,7-NAPhthalenediol ,NAP )是医药、染料、纤维等领域的一种重要单体,对皮肤、眼睛、呼吸道有强烈刺激性和腐蚀性[1]。

双酚A (BisPhenol A ,BPA )是一种能够扰乱内分泌的类雌性激素,可以迅速完好地进入细胞膜,影响人体激素程度和代谢能力,导致内分泌系统的紊乱[2]。

这两种酚类物质的高毒性和潜在的致突变性将会严重地威胁人类的健康。

由于NAP 与BPA 能够由工业排放的废液和垃圾填埋处的滤液渗入到地表水层中污染水源,因此发展一种简单、快速、高灵敏度、可同时测定环境水样中NAP 与BPA 的方法十分重要。

目前,检测NAP 和BPA 的主要方法有高效液相色谱法[1,3]、荧光光谱法[4]、比色传感法[5]和电化学检测法[6]等。

相比其他方法,电化学检测法具有灵敏度高、操作简便、便于现场检测等优点。

电化学检测法多利用具有高电化学活性或高电催化性能的纳米材料来修饰电极,通过灵敏的方波伏安法、差分脉冲伏安法等进行检测。

迄今为止,β-环糊精/石墨烯纳米复合材料(β-CycloDextrin/Graphene Nanocomposites ,CD-GN )修饰电极同时测定NAP 和BPA 的物质的量浓度的研究尚未见报道。

本实验制备了CD-GN ,将其用于修饰玻碳电极(Glassy Carbon Electrode ,GCE ),并比较了NAP 和BPA 在不同修饰电极上的电化学行为。

考察了不同实验参数对传感器分析性能的影响。

实验发现,CD-GN/GCE 修饰电极对NAP 和BPA 同时具有更好的电催化和富集作用,与文献报道方法相比,用它制作的酚类传感器具有优良稳定性、高灵敏度和低检测限。

在最优的实验条件下,实现了对NAP 和BPA 快速、灵敏的同时测定,此外,将CD-GO/GCE 修饰电极用于实际样品中NAP 和BPA 的物质的量浓度的分析,获得了较好的回收率,为NAP 和BPA 的同时测定提供了新的方法。

基于石墨烯_壳聚糖修饰电极电化学测定4_壬基酚

基于石墨烯_壳聚糖修饰电极电化学测定4_壬基酚

基于石墨烯壳聚糖修饰电极电化学测定壬基酚作者:周文姝赵波黄晓华杨小弟来源:《分析化学》2013年第05期摘要:通过原位还原法制得GRCSGCE电极,对制得的电极用红外光谱、拉曼光谱进行表征,结果均表明氧化石墨烯被成功还原。

采用循环伏安法和示差脉冲伏安法研究了4NP的电化学行为,发现其氧化电流信号较GCE及GOCSGCE电极明显增强且电位负移,表明修饰电极对4NP的氧化具有一定的催化作用。

对富集电位、富集时间、扫速及缓冲溶液的pH等实验条件进行了优化,在最优条件下,4NP的浓度与电流的线性响应范围为0.01~40.0 靘olL,线性回归方程为I (霢)=0.364C(靘olL) + 0.618(R=0.9988),检出限为5.2 nmolL(SN=3),将该电极用于实际样品中4NP检测,加标回收率为95.0%~101.0%。

关键词:石墨烯;4壬基酚;电化学检测;示差脉冲伏安法1引言4壬基酚(4NP)是一种重要的化工原料,具有环境雌激素效应,已被确认为环境内分泌干扰物(EEDs)之一,对生物体的生殖系统和发育能力有着严重危害[1,2]。

目前检测4NP 的主要方法有高效液相色谱[3,4]、液气相色谱质谱联用技术[5,6]、液相色谱电喷雾离子化串质谱联用技术[7]、免疫检测法[8]等。

但基于电化学检测4NP的方法鲜有报道。

石墨烯(Graphene)因其独特的单原子结构具有一系列特殊的性质,如量子霍尔效应[9]、良好的导热导电效应[10]及超高的比表面积(2630 m2g)[11],已成为电化学传感器的理想电极材料。

目前已有利用石墨烯修饰电极检测环境中的污染物的文献报道,如:五氯酚[12]、对苯二酚及邻苯二酚[13] 、双酚A[14] 等,但将石墨烯修饰玻碳电极用于4NP的检测尚未见报道。

本研究采用原位还原法制备了石墨烯壳聚糖修饰玻碳电极(GRCSGCE),考察了4NP在此电极上的电化学行为。

本方法操作简单、检测线性范围宽、检测限低、灵敏度高、重现性及稳定性好,并用于实际样品中4NP检测。

纳米银/三维石墨烯修饰玻碳电极测定对硝基苯酚

纳米银/三维石墨烯修饰玻碳电极测定对硝基苯酚

文 章编号 :1 0 0 7 — 9 8 3 1( 2 0 1 7) 0 8 — 0 0 6 0 - 0 5
纳米银/ 三维石 墨烯修饰玻碳 电极测定对硝基苯酚
李微微 ,杨铁金
( 齐齐 哈尔大 学 化 学与 化学 工程 学院 ,黑 龙江 齐 齐哈 尔 1 6 1 0 0 6)
摘要 :制备 了纳米银 / 三 维石 墨烯 修饰 的玻 碳 电极 并 测定 对硝基 苯 酚 ,通过循 环 伏安 法 ( C V)和 计 时 电 流法 ( C A) 研 究其 电化 学 行 为. 该修 饰 电极 在 测 定对硝 基 苯 酚 时 ,表 现 出较 正的还 原 电
De t e r mi n a t i o n o f p - n i t r o p h e n o l b y g l a s s y c a r b o n e l e c t r o d e mo d i f i e d wi t h n a n o s i l v e r/ t h r e e - d i me n s i o n a l g r a p he n e
第 3 7卷 第 8期
2 0 1 7年 8 月
高 师 理 科 学 刊
J o u r n a l o f S c i e n c e o f Te a c h e r s C o l l e g e a n d Un i v e r s i t y
V0 1 .37 No . 8 Au g . 2 01 7
p - n i t r o p h e n o l a n d i t s e l e c t r o c h e mi c a l b e h a v i o r wa s s t u d i e d b y c y c l i c v o h a mme t r y( C V )a n d c h r o n o a mp e r o me t r y ( C A ). T h e mo d i i f e d e l e c t r o d e d i s p l a y e x c e l l e n t p e r f o ma r n c e i n t h e e l e c h ’ o c h e mi c a l r e d u c t i o n o f p - n i t r o p h e n o l

石墨烯修饰电极的制备及其对对乙酰氨基酚的伏安测定

石墨烯修饰电极的制备及其对对乙酰氨基酚的伏安测定
热息痛) 为乙酰苯胺类药物, 在中西药及其制剂中广泛使用, 具有解热、 镇 , , 、 、 、 、 、 痛的功效 在临床上应用较为广泛 适用于感冒引起的发热 头痛 关节痛 各种神经痛 偏头痛 痛经等 症, 但 ACOP 对人体也有一定毒副作用, 过量服用可致肝坏死, 此外对消化系统、 呼吸系统、 泌尿系统等 [1 ] 因此测定 ACOP 含量具有重要意义。目前, 检测对乙酰氨基酚的方法有滴定分析法 、 也有一定影响, 分光光度法
20110810 收稿, 20111010 修回 山东省高等学校科技计划项目( J10LB64 ) , 山东省自然科学基金资助项目( 2R2009BM003 ) 5973928 ; Fax: 05305696765 ; Email: lzhaojie@ sohu. com; 研究方向: 电分析、 通讯联系人: 马心英, 副教授; Tel: 0530化学修饰电极
色絮状沉淀, 洗涤、 抽滤、 干燥, 得到石墨烯粉末 1 . 3 石墨烯修饰电极的制备
[1416 ]

将 5 mg 纳米石墨烯粉末加入 10 mL 二次蒸馏水中, 超声分散 20 min, 直至得到黑色的石墨烯悬浮 湿润的 Al2 O3 ( 0. 05 μm ) 上抛光成镜面, 然后依次 液。将玻碳电极( Ф = 3. 8 mm) 在金相砂纸( 800 号) 、 用 HNO3 ( V( HNO3 ) ∶ V( H2 O) = 1 ∶ 1 ) 、 无水乙醇、 蒸馏水超声波清洗, 红外灯下烘干。用微量进样器取 5 μL石墨烯悬浮液滴加在玻碳电极表面 , 红外灯下烘干即制得石墨烯修饰玻碳电极 。 1. 4 实验方法 在电解池中加入一定量的 ACOP 标准溶液, 加入适量 pH = 6. 0 的 PBS 溶液, 以石墨烯修饰电极为 Ag / AgCl 电极为参比电极, 工作电极, 铂丝电极为对电极, 在 0 ~ 0. 9 V 电位范围内以 60 mV / s 的扫描速 率扫描, 记录循环伏安图。每次扫描结束后, 将修饰电极置于空白底液中循环扫描至无峰, 用水淋洗后 用滤纸吸干, 即可再用。

碳纳米管复合物修饰电极对邻苯二酚的检测

碳纳米管复合物修饰电极对邻苯二酚的检测
CAT(CAT)是一种重要的有机化工原料,应用广泛 且对人体器官(如肾脏、肝脏)毒性巨大,对环境污染也 比较严重,相对于复杂的油田废水检测,CAT电化学反应 敏感,以此污染物作为检测切入点,初步开展相关检测实 验,为今后检测方向提供依据。
因此,本文利用物理吸附在电极表面修饰羧基化碳纳 米管,利用共价键共同作用,将巯基乙胺的氨基和硫醇键
2018年第6期
技术研究
碳纳米管复合物修饰电极对邻苯二酚的检测
赵英杰1 陈亮1 刘帅1 罗占刚2 赵妤志3
1.唐山冀油瑞丰化工有限公司 河北 唐山 063000 2.中石油海外勘探开发公司 北京 100034 3.冀东油田企管法规处 河北 唐山 063000
摘要:本文利用共价键和静电吸附作用,将血红蛋白(Hb)固定于纳米金(nanoAu)/巯基乙胺(cys)/羧基化 碳纳米管(CNT-COOH2)修饰的玻碳电极表面,从而制得Hb-nanoAu/cys/CNT-COOH2修饰电极。在pH=6.98的磷 酸缓冲溶液(PBS)中,利用线性伏安法和差分脉冲法,对邻苯二酚的检测(1×10-6~3.2×10-4 M)呈良好的线性关系 (r=0.9964),检出限为1.33×10-8M,并对其检测条件进行了优化。
1 概述
含酚工业废水处理是当今世界危害最大的工业废水之 一,也是水污染治理与控制中最受关注的问题。随着新环 保法的出台,油田生产中产生的环境问题日益得到人们的 关注,环保压力越来越大。因此,工业废水处理尤其是油 田废水处理必须建立一套完整、高效、准确、易推广的监 测手段。常用的检测方法主要有液相色谱法、气相色谱 法、分光光度法等[1-4]。这些方法精度虽然高,但是操作 繁琐、费时,设备也比较昂贵,难以普及。电化学修饰电 极具有制作成本低、使用方便、检测速度快、灵敏度高等 特点,因此,成为各学者关注的方向。

有关邻苯二酚又称儿茶酚

有关邻苯二酚又称儿茶酚

邻苯二酚又称儿茶酚。

分子式为1,2-(HO)2C6H4。

邻苯二酚多数以衍生物的形式存在于自然界中。

基本信息中文名称:邻苯二酚。

英文名称:o-Dihydroxybenzene;Catechol。

别名:1,2-苯二酚;儿茶酚;焦儿茶酚;焦儿茶素;二羟基苯。

邻苯二酚CAS No.:120-80-9。

分子式:C?6H?6O?2;C?6H?4〖DK〗(OH)?2。

分子量:110.11。

危险标记:15(毒害品)。

包装方法:塑料袋或二层牛皮纸袋外纤维板桶、胶合板桶、硬纸板桶;塑料袋或二层牛皮纸袋外普通木箱;螺纹口玻璃瓶、铁盖压口玻璃瓶、塑料瓶或金属桶(罐)外普通木箱;螺纹口玻璃瓶、塑料瓶或镀锡薄钢板桶(罐)外满底板花格箱、纤维板箱或胶合板箱。

物理性质主要成分:纯品。

外观与性状:无色结晶,见光或露置空气中变色,能升华。

熔点(℃):105。

沸点(℃):246。

相对密度(水=1):1.34。

相对蒸气密度(空气=1):3.79。

蒸气压(kPa):1.33(118.3℃)。

闪点:127℃。

燃烧热(kJ/mol):2854.9。

稳定性和反应活性:稳定。

禁配物:酰基氯、酸酐、碱、强氧化剂、强酸。

避免接触的条件:光照、空气。

危险特性:遇明火、高热可燃。

受高热分解放出有毒的气体。

与强氧化剂接触可发生化学反应。

溶解性:溶于水,易溶于乙醇、乙醚。

化学性质邻苯二酚是一种强还原剂,易被氧化成邻苯醌,反应式如下:邻苯二酚在室温下可还原费林溶液和氧化银溶液。

与氯化亚砜反应,生成亚硫酸邻苯二酚酯:与邻苯二胺反应,生成吩嗪:与氢氧化钡作用生成钡盐。

邻苯二酚最早是由干馏原儿茶酸或蒸馏儿茶提取液得到的,其反应式如下:后来发现,干馏某些植物和碱熔融某些树脂等也能得到邻苯二酚。

工业上是通过重氮化(见重氮化反应)邻氨基苯酚后水解,或者在高压釜中水解邻氯苯酚制得。

邻苯二酚常用作显影剂,但不如对苯二酚的作用强;也可作试剂、消毒剂等。

用途是重要的化工中间体,可用于制造橡胶硬化剂、电镀添加剂、皮肤防腐杀菌剂、染发剂、照相显影剂等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

石墨烯修饰电极同时测定邻苯二酚和对苯二酚万其进;廖华玲;刘义;魏薇;舒好;杨年俊【摘要】制备石墨烯玻碳修饰电极,进而采用循环伏安法、交流阻抗等电化学方法对该电极进行表征,研究该石墨烯修饰电极在邻苯二酚和对苯二酚上的电化学行为.结果表明,在石墨烯修饰电极上邻苯二酚的氧化峰电位和还原峰电位分别是270 mV和161 mV,对苯二酚氧化峰电位和还原峰电位分别是145mV和64 mV,由于邻苯二酚和对苯二酚的氧化峰电位大约相离125 mV,还原峰大约相离97 mV,因此适合同时检测邻苯二酚和对苯二酚.邻苯二酚和对苯二酚的浓度在5.0×10-6~1.0×10-4 mol/L范围内与峰电流分别呈良好的线性关系;且在8.0×10-5~1.0×10-3 mol/L范围能同时检测邻苯二酚和对苯二酚,邻苯二酚的检测限可达5.0×10-7 mol/L,对苯二酚的检测限可达1.0×10-7 mol/L.该石墨烯修饰电极可作为电化学传感器用于邻苯二酚和对苯二酚的含量同时测定及环境水体中实际样品的分析.%A novel graphene modified glassy carbon electrode was fabricated. The resulting substrates were characterized by Cyclic Voltammetry and EIS in [Fe (CN)6 ]3-/4- solution and showed the electrochemical behavior of catechol and hydroquinone on the graphene modified glassy carbon electrode. Experiment result shows that the catechol oxidation peak potential is 270 mV and reduction peak potential is 161 mV, and the hydroquinone oxidation peak potential is 145 mV and reduction peak potential is 64 mV on the graphene modified electrode, respectively. The oxidation peak potential distance is about 125 mV and the reduction peak potential distance is about 97 mV of catechol and hydroquinone which are suited for the simultaneous detection. Catechol and hydroquinone havegood electrocatalytic activity on modified electrode and the peak currents of differential pulse voltammetry are liner to the catechol and hydroquinone over the range of 5. 0× 10-6 —1. 0× 10~4 mol/L, respectively, and the graphene modified electrode can simultaneously detect catechol and hydr oquinone in the rang of 8. 0× 10-5 —1. 0 × 10-3 mol/L. The catechol detection limit is 5. 0 × 10-7 mol/L, the hydroquinone detection limit is 1. 0 × 10-7 mol/L. So the graphene modified electrode can be used for analysis the facilitation of actual samples and electrochemical sensors and biosensors.【期刊名称】《武汉工程大学学报》【年(卷),期】2013(035)002【总页数】8页(P16-23)【关键词】石墨烯;修饰电极;示差脉冲法;邻苯二酚;对苯二酚【作者】万其进;廖华玲;刘义;魏薇;舒好;杨年俊【作者单位】武汉工程大学绿色化工过程教育部重点实验室,湖北省新型反应器与绿色化学工艺重点实验室,湖北武汉430074【正文语种】中文【中图分类】O657.10 引言石墨烯(Graphene),又称单层石墨,是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料[1].石墨烯是世上最薄却也是最坚硬的纳米材料[2],导热系数高达5 300 W/(m·K)[3],高于碳纳米管和金刚石,常温下其电子迁移率超过15 000 cm2/(V·s),又比纳米碳管或硅晶体高,而电阻率只约10-6Ω·cm,比铜或银更低,为目前世上电阻率最小的材料,其敏锐的导电性能用于电材料时有利于促进电子的转移,提供了一种新型的方式于电化学传感器和生物传感器[4-11].因为它的电阻率极低,电子跑的速度极快,因此提供了一种新的方式来研究电化学和生物传感器.已有报道石墨烯成功的应用于研究和检测一些生物和有机分子,包括 DNA[4-5],葡萄糖[6-7],NADH[5],过氧化氢[5],多巴胺[5,8-11],抗坏血酸[5,8-11],尿酸[5,8-11],血清素[9]等.邻苯二酚和对苯二酚是酚的两种同分异构体,是医药、食品和环境中的重要污染物.因此,建立一种快速、灵敏、简单、准确的测定邻苯二酚和对苯二酚的方法非常有意义.已经报道的邻苯二酚和对苯二酚的检测方法有气相色谱(GC)分析方法、荧光光度法、吸光度比值导数法、紫外分光光度法及双波长比值法等[12-16],但这些方法大都仪器昂贵,灵敏度低,且前处理复杂.相比于上述方法,电化学方法[17]具有仪器简单、选择性好、灵敏度高等优点.用石墨烯修饰电极检测塑料和水样中的邻苯二酚和对苯二酚已有报道[17-18].本实验将3 mg石墨烯分散于1 m L DMF中超声分散30 min,取适量分散液滴涂于已经处理好的玻碳电极表面,红外烘干,即制得石墨烯修饰电极(GR/GCE),用循环伏安法[19]研究了 CC和HQ在磷酸氢二钠-柠檬酸缓冲溶液中的电化学行为[20],并对一系列浓度的CC和HQ进行了电化学测定,得到了较好的实验结果.该石墨烯修饰电极有望用于实际污水中邻苯二酚和对苯二酚含量的测定.1 实验部分1.1 仪器与试剂CHI760B电化学工作站(上海辰华仪器公司),KQ-250型超声波清洗器(昆山市超声仪器有限公司),三电极系统:玻碳电极或修饰电极为工作电极;饱和甘汞电极为参比电极;铂丝电极为对电极.石墨烯(Graphene Nanopowder 8 nm flakes);邻苯二酚和对苯二酚(上海三浦化工有限公司);磷酸氢二钠-柠檬酸溶液作为支持电解质;K 3 Fe(CN)6 溶液:0.02 mol/L;避光保存.其它试剂均为分析纯,实验用水均为超纯水;实验均是在室温下进行.1.2 石墨烯修饰电极的制备将3 mg石墨烯超声分散于1 m L DMF中,得到石墨烯悬浊液,然后用微量进样器取适量石墨烯分散液滴涂在预处理好的玻碳电极表面,红外烘干,即得到石墨烯修饰电极.2 结果与讨论2.1 GR/GCE循环伏安特性根据 Hrapovic和 Yang 的观点[21-22],纳米材料电活性表面积越大,电催化性能越好,灵敏度越高.因此,选择循环伏安法来计算修饰电极电活性表面积.图1为裸电极(a)和 GR/GCE(b)分别在5×10-3 mol/L[Fe(CN)6]3-/4溶液中的循环伏安图,可以看出与裸电极相比,GR/GCE的峰电流明显增加,这表明石墨烯修饰电极拥有较大的电活性表面积.图1 裸电极(a)和石墨烯修饰电极(b)在5×10-3 mol/L[Fe(CN)6]3-/4溶液中的循环伏安图Fig.1 CV of bare glassy carbon electrode(a)and GR/GCE(b)in 5×10-3 mol/L[Fe(CN)6■3-/4 at scan rate of 100 mv/s活性表面积可通过Randles-Sevcik方程I p=2.69×105 AD 1/2 n3/2 v1/2 c来计算.其中n代表参加氧化还原反应反应电子数,A表示电极的活性表面积(cm2),D 表示分子在溶液中的扩散系数(cm2/s),c为溶液浓度(mol/cm3),v 表示电位扫描速度(v/s).[Fe(CN)6]3-/4氧化还原体系是电化学研究最广泛的氧化还原对之一,属于单电子转移(n=1).当溶度为5×10-3 mol/L时,扩散系数(D)约为(6.79±0.02)×10-6 cm2/s.根据上述方程,可以计算出GR/GCE和裸电极的活性表面积的平均值分别为0.17cm2 和0.11 cm2,GR/GCE的活性表面积增加了54.5%.活性表面积的增加表明GR/GCE具有更好的电催化活性,适合作为电化学传感器和生物传感器.2.2 GR/GCE的交流阻抗特性用交流阻抗法分别对裸电极和GR/GCE进行了表征.如图2所示,在选定的频率范围内,裸玻碳电极(曲线a)上探针[Fe(CN)6]3-/4-的阻抗谱图在高频部分出现半圆,在低频部分得到近似直线,这说明裸玻碳电极表面对电子的传递存在一定的阻抗,而在GR/GCE(曲线b)上,探针[Fe(CN)6]3-/4-的阻抗谱图基本上是一条直线,表明此时电极上不存在阻碍电子传递的物质,[Fe (CN)6]3-/4-非常容易达到表面发生氧化还原反应.说明石墨烯修饰层起到了增强电子传输的作用,与裸电极相比,GR/GCE的电导性明显增强.图2 裸电极(a)和石墨烯修饰电极(b)的交流阻抗图Fig.2 Impedance plots of bare glassy carbon electrode(a)and GR/GCE(b)2.3 邻苯二酚和对苯二酚分别在不同电极上的电化学行为图3为5×10-4 mol/L的邻苯二酚(CC)分别在裸电极(a)和GR/GCE(b)上的循环伏安图.由此可见,邻苯二酚在裸电极上的电化学行为是不可逆的且响应相对较弱,其氧化峰电位是486 mV,而在GR/GCE上的电化学行为是准可逆的且响应相对较强,其氧化峰电位是270 mV,氧化峰电位负移了216 mV,峰电流显著增大达到276 mA.由此可见,GR/GCE对邻苯二酚产生了明显的电催化作用.图4为5×10-4 mol/L的对苯二酚(HQ)分别在裸电极(a)和GR/GCE(b)上的循环伏安图.由此可见,对苯二酚在裸电极上氧化过电位较高(大于600 m V),而在GR/GCE上的电化学行为是准可逆的且响应相对较强,其氧化峰电位是145 m V,氧化峰电流显著增大达到257 mA.由此可见,GR/GCE对对苯二酚产生了明显的电催化作用.图3 为5×10-4 mol/L CC在裸电极(a)和GR/GCE修饰电极(b)上的循环伏安图Fig.3 Cyclic voltammograms of bare electrode(a)and GR/GCE (b)in 5×10-4 mol/L CC图4 为5×10-4 mol/L HQ在裸电极(a)和GR/GCE修饰电极(b)上的循环伏安图Fig.4 Cyclic voltammograms of bare electrode(a)and GR/GCE (b)in 5×10-4 mol/L HQ2.4 最佳条件的选择2.4.1 支持电解质及p H的选择实验比较了邻苯二酚和对苯二酚在相同p H值的不同缓冲溶液如醋酸缓冲溶液、磷酸缓冲溶液、硫酸缓冲溶液、KH 2 PO4-NaOH 缓冲溶液、Na2 HPO4-柠檬酸缓冲溶液中的电化学行为,发现邻苯二酚和对苯二酚都在Na2 HPO4-柠檬酸缓冲溶液中表现出良好的电化学行为,二者的氧化还原峰较好,峰电流较高.配制p H5.4~6.0范围的 Na2 HPO4-柠檬酸缓冲溶液,研究了邻苯二酚和对苯二酚在GR/GCE上的电化学行为随p H值的变化情况.由图5可知,邻苯二酚在Na2 HPO4-柠檬酸缓冲溶液中峰电位和峰电流随pH的变化并不明显,随pH的增大峰电位稍有负移且峰电流略有下降,因此本实验对邻苯二酚的测定底液pH值选择为5.6,由图6可知,对苯二酚在Na2 HPO4-柠檬酸缓冲溶液中峰电位和峰电流随pH的变化明显,随pH的增大峰电流先增大后减小,在pH=5.8时峰电流达到最大,故本实验对对苯二酚的测定底液pH值为选择5.8.图5 pH对邻苯二酚在GR/GCE上的循环伏安图影响Fig.5 Cyclic voltammograms of GR/GCE in CC solution with different p H注:a pH=5.4,b pH=5.6,c pH=5.8,d pH=6.0,扫描速度:100 m V/s.图6 pH对对苯二酚在GR/GCE上的循环伏安图影响Fig.6 Cyclic voltammograms of GR/GCE in HQ solution with different pH注:a p H=5.4,b p H=5.6,c p H=5.8,d p H=6.0,扫描速度:100 m V/s.2.4.2 滴涂量的选择a.石墨烯浓度的选择在同一条件下分别滴涂1 mg/m L、3 mg/m L和5 mg/m L的石墨烯溶液在GCE电极上,测对苯二酚和邻苯二酚的响应,结果发现用3 mg/mL的石墨烯效果明显好一些.b.石墨烯滴涂次数的选择在其它实验条件不变的情况下,在裸电极表面分别滴涂不同量的石墨烯悬浊液,当悬浊液的滴涂量由4~18μL(3 mg/m L)变化时,氧化峰电流先增大后几乎不变最后略有减小,这可能是由于石墨烯厚度增加到一定程度而阻碍了电子的传递,故导致导电性变差.为了得到最佳峰电流和峰电位,邻苯二酚(图7)选择滴涂16μL,对苯二酚(图8)选择滴涂12μL.图7 邻苯二酚的峰电流与石墨烯滴涂量的关系Fig.7 The relationship between the peak current of CC and dispensing the quantity of graphene注:石墨烯滴涂量分别为4,6,8,10,12,14,16,18μL.图8 对苯二酚的峰电流与石墨烯滴涂量的关系Fig.8 The relationship between the peak current of HQ and dispensing the quantity of graphene注:石墨烯滴涂量分别为4,6,8,10,12,14,16,18μL.2.4.3 扫速的影响在其它条件不变的情况下,以不同的扫描速度分别对含邻苯二酚和对苯二酚的溶液进行CV扫描,如图9和10所示.从图中可知,随扫描速度的增加,二者的氧化还原峰电流明显增大.邻苯二酚(图9)在20~160 m V/s扫速范围内氧化还原峰电流与扫速的平方根呈良好的线性关系,线性回归方程为I Pa=-0.209 03+2.135E-4c,线性相关系数R=0.998 6表明石墨烯修饰电极/溶液界面上的电极反应为受扩散控制的电极过程,同样对苯二酚(图10)在20~160 m V/s扫速范围内氧化还原峰电流与扫速呈良好的线性关系,线性回归方程为I Pa=0.637 78+1.222E-5c,相关系数R=0.996 2,表明石墨烯修饰电极/溶液界面上的电极反应为受吸附控制的表面电极过程.图9 GR/GCE在5.0×10-4 mol/L邻苯二酚溶液中不同扫描速度的循环伏安图(A)和峰电流与扫描速度的关系(B)Fig.9 Cyclic voltammograms of the GR/GCE in 5.0×10-4 mol/L CC(A)and the relation between the peak currentsand different speed(B)注:扫速分别为20(a),40(b),60(c),80(d),100(e),120(f),140(g),160(h)m V/s.图10 GR/GCE在5.0×10-4 mol/L对苯二酚溶液中不同扫描速度的循环伏安图(A)和峰电流与扫描速度的关系(B)Fig.10 Cyclic voltammograms of the GR/GCE in 5.0×10-4 mol/L HQ(A)and the relation between the peak currentsand different speed(B)注:扫速分别为20(a),40(b),60(c),80(d),100(e),120(f),140(g),160(h)m V/s.2.4.4 富集时间和富集电位的影响由于对苯二酚在电极上的反应主要受吸附过程控制,所以每次测定前需要在选定电位条件下富集一段时间以达到良好的测定效果.研究不同富集时间对峰电流的影响(图11),随着富集时间的增大,峰电流先增大后减小,最佳富集时间为20 s.研究不同富集电位对电流的影响(图12),随着富集电位的减小,峰电流先增大后减小,最佳富集电位为-1.0 V.图11 对苯二酚富集时间与峰电流的关系Fig.11 The relationship between the peak current of HQ and deposit time图12 对苯二酚富集电位与峰电流的关系Fig.12 The relationship between thepeak current of HQ and deposit electrodes2.4.5 线性范围和检出限图13为在p H=5.6的磷酸氢二钠-柠檬酸缓冲溶液为底夜的条件下,石墨烯修饰电极在不同浓度的邻苯二酚溶液中的示差脉冲伏安(DPV)图.图14为在p H=5.8的磷酸氢二钠-柠檬酸缓冲溶液为底夜的条件下,石墨烯修饰电极在不同溶度的对苯二酚溶液中的示差脉冲吸附溶出伏安(DPADV)图.在5.0×10-6~1.0×10-4 mol/L溶度范围内,邻苯二酚和对苯二酚的氧化峰与其浓度有良好的线性关系.对应的线性回归方程:邻苯二酚是I pa=1.163 21 E-6+0.029 44c;相关系数R=0.998 2;检测限可达5.0×10-7 mol/L;对苯二酚是I pa=2.264 17E-6+0.335 82c;相关系数R=0.997 7;检测限可达1.0×10-7 mol/L.图13 不同浓度的邻苯二酚在GR/GCE上的DPV图(A)和峰电流和邻苯二酚浓度的关系(B)Fig.13 DPV for different concentrations of CC at the GR/GCE(A)and the relationship between the peak currents and concentrations(B)注:浓度分别为(a)4.0×10-6,(b)8.0×10-6,(c)2.0×10-5,(d)4.0×10-5,(e)6.0×10-5,(f)8.0×10-5,(g)1.0×10-4 mol/L.图14 不同浓度的对苯二酚在GR/GCE上的DPV图(A)与峰电流和对苯二酚浓度的关系(B)Fig.14 DPV for different concentrations of HQ at the GR/GCE(A)and the relationship between the peak currents and concentrations(B)注:浓度分别为(a)4.0×10-6,(b)8.0×10-6,(c)2.0×10-5,(d)4.0×10-5,(e)6.0×10-5,(f)8.0×10-5,(g)1.0×10-4 mol/L.2.4.6 邻苯二酚和对苯二酚的同时测定图15为在p H=5.8的磷酸氢二钠-柠檬酸缓冲溶液为底夜的条件下,裸电极和石墨烯修饰电极分别同时测定2×10-4 mol/L同浓度的邻苯二酚和对苯二酚溶液的DPV图,可知裸电极上出现一个小峰且完全不能将邻苯二酚和对苯二酚分开,而GR/GCE的峰电流明显增加而且能够很好的将邻苯二酚和对苯二酚的峰分开,这表明石墨烯修饰电极对邻苯二酚和对苯二酚的分离效果很好.图15 裸电极(a)和石墨烯修饰电极(b)同时测定邻苯二酚和对苯二酚的DPV图Fig.15 DPV for simultaneous determinnation of HQ and CC with the bare electrode and the GR/GCE in phosphate solution注:浓度为2×10-4 mol/L.图16 不同浓度的HQ和CC同时在GR/GCE上的DPV图(A)以及峰电流与CC(图C)和HQ(图B)的线性关系Fig.16 DPV for different concentrations of HQ and CC at the GR/GCE(A)and the relationship between the peak currents and concentrations of CC(B)and HQ(C)注:浓度分别为(a)4.0×10-5,(b)8.0×10-5,(c)2.0×10-4,(d)4.0×10-4,(e)6.0×10-4,(f)8.0×10-4,(g)1.0×10-3 mol/L.图16为在p H=5.8的磷酸氢二钠-柠檬酸缓冲溶液为底夜的条件下,石墨烯修饰电极对不同溶度的CC和HQ同时测定的DPV图.在4.0×10-5~1.0×10-3 mol/L浓度范围内,CC和 H Q的氧化峰均与浓度成良好的线性关系.对应的线性回归方程:对苯二酚是I pa=1.139 29E-6+0.016 77c;相关系数R=0.999 6;邻苯二酚是I pa=8.810 1E-7+0.017 15c;相关系数R=0.998 4.2.4.7 稳定性和重现性使用石墨烯修饰电极分别平行测定20次1×10-4 mol/L的邻苯二酚和对苯二酚,峰电流基本稳定,邻苯二酚的相对标准偏差为2.5%,对苯二酚的相对标准偏差为2.6%,由此可以说明体系重现性良好,对比新制备的石墨烯修饰电极,分别使用放置一周后,15 d后以及一个月后的电极测定同一浓度的邻苯二酚和对苯二酚溶液,其峰电流无明显变化,表明石墨烯修饰电极具有较长的使用寿命和良好的稳定性,可以用于实际样品的分析测定.2.4.8 干扰实验本实验在已选定的最佳条件下考察了一些废水中常见的离子对2×10-5 mol/L邻苯二酚和对苯二酚溶液进行测定的影响,误差控制在±5%以内,100倍的Ca2+、Al 3+、Zn2+、Fe3+、Fe2+、K+、Ag2+、Cl-、NO3-、SO24-等离子以及VB1、VC、半胱氨酸、赖氨酸、葡萄糖、对硝基苯酚、尿酸等常见酚类物质对邻苯二酚和对苯二酚的测定不造成干扰.2.4.9 模拟水样的测定取叠翠湖中的水样配制不同溶度邻苯二酚和对苯二酚的模拟废水,用 G R/GCE 在-0.2~0.8 V 电位范围内,100 m V/s扫数下测定峰电流,用加标回收法获得模拟废水中邻苯二酚和对苯二酚含量,平行三次,结果见表1和表2.由此可见,测定邻苯二酚的回收率在98.3%~114.3%之间,相对标准偏差在0.2~3.0范围内,对苯二酚的回收率在92.5%~108.6%之间,相对标准偏差在0.6~3.5范围内.表1 不同浓度的邻苯二酚混合液的回收率Table 1 Recoveries of CC with different concentrations样号原始量/(1×10-5 mol/L)加入量/(1×10-5 mol/L)测得量/(1×10-5 mol/L)回收率/% 相对标准偏差/%1 2.0 1.0 3.01 100.9 3.0 2.0 4.28 114.3 1.2 3.0 5.17 105.7 1.1 2 4.0 1.0 4.98 98.3 0.2 2.0 6.21 110.5 1.5 3.0 7.18 105.9 0.3表2 不同浓度的对苯二酚混合液的回收率Table 2 Recoveries of HQ with different concentration样号原始量/(1×10-5 mol/L)加入量/(1×10-5 mol/L)测得量/(1×10-5 mol/L)回收率/% 相对标准偏差/%1 2.0 1.0 2.92 92.5 2.8 2.0 4.02 108.6 1.1 3.0 5.07 102.10.7 2 4.0 1.0 5.05 104.6 3.5 2.0 6.03 101.3 1.0 3.0 6.89 96.5 0.6致谢感谢国家自然科学基金委的资助(国家自然科学基金21075096,21275113).参考文献:[1]Novoselov K S,Geim A K.The rise of graphene[J].Nat Mater,2007,6:183-191.[2]Lee C G,Wei X D,Jeffrey W K,et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J].Science,2008,321(5887):385-388.[3]Balandin A A,Ghosh S,Bao W Z,et al.Superior thermal conductivity of single-layer graphene[J].Nano Letters,2008,8(3):902-907.[4]Lu C H,Yang H H,Zhu C L,et al.A Graphene platform for sensing biomolecules[J].Angew Chem Int Ed,2009,48(26):4785-4787.[5]Zhou M,Zhai Y M,Dong S J.Electrochemical biosensing based on reduced graphene oxide[J].Anal Chem,2009,81:5603-5613.[6]Shan C S,Yang H F,Han D X,et al.Water-Soluble graphene covalently functionalized by biocompatibe polylysine[J],Anal Chem,2009,81:2378-2382.[7]Fu C L,Yang W S,Chen X,et al.Direct electrochemistry of glucose oxidase on a graphite nanosheet-Nafion composite film modified electrode [J].Electrochem Commun,2009,11(5):997-1000.[8]Wang Y,Li Y M,Tang L H,et al.Application od graphenemodified electrode for selective detection of dopamine[J],Electrochem Commun,2009,11:889-892.[9]Alwarappan S,Erdem A,Liu C,et al.Probing the electrochemical properties of graphene nanosheets for biosensing application[J],J Phys Chem C,2009,113:8853-8857.[10]Shang N G,Papakonstantinou P,Mc Mullan M,et al. Marchetto -Free efficient growth,orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes [J].Adv Funct Mater,2008,18:3506-3514.[11]Tang L H,Li Y M,Feng H B,et al.Preparation structure and electrochemical properties of graphene modified electrode[J].Adv Mater,2009,19:2782-2789.[12]李强,张建斌,霍天瑞,等.对苯二酚合成过程中酚醌物质的气相色谱法分析[J].广州化工,2011,39(1):104-106.[13]王微宏,喻晓峰,文莉.紫外分光光度法同时测定苯酚、邻苯二酚、对苯二酚[J].中国现代医学杂志,2002,12(10):86-88.[14]李淮芬,谢成根,宗佳佳,等.同步荧光法同时测定苯二酚中邻苯二酚和对苯二酚[J].冶金分析,2009,29(9):31-35.[15]杜建中,梁风颜,谭国兵.双波长比值法测定苯二酚异构体的含量[J].福建分析测试,2009,18(12):31-35.[16]耿玉珍,刘葵,刘连伟.吸光度比值导数法同时测定苯酚、邻苯二酚和对苯二酚[J].分析化学研究简报,1997,9(25):1024-1026.[17]李江,李容,李永强,等.BPA 在 Na-MMT-CMC/GCE修饰电极上的电化学行为与检测[J].分析测试学报,2008,27(7):766-768.[18]Du H J,Ye J S,Zhang J Q,et al.Graphene nanosheets modified glassy carbon electrode as a highly sensitive and selective voltammetric sensor for rutin[J].Electroanailsis,2010,10,22(20):2399-2406.[19]杨平,李兰芳,蔡惠,等.双酚A在聚茜素红/碳纳米管电极上的伏安行为[J].武汉工程大学学报,2010,32(11):18-21.[20]蔡惠,廖华玲,刘义,等.对甲基本酚在PLYS/TiO2-CS修饰电极上的电化学行为[J].武汉工程大学学报,2011,33(12):13-17.[21]Hrapovic S,Liu Y L,Male K B,et al.,Electrochemical Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes [J].AnalChem,2004,76(4):1083-1088.[22]Yang M H,Yang Y H ,Liu Y L,et al.,Platinum Nanoparticles-Doped Sol-gel/Carbon Nanotubes composite Electrochemical Sensors and biosensors[J].Bioelectron,2006,2(17):1125-1131.。

相关文档
最新文档