三个量子数的物理意义

合集下载

描述单个电子的4个量子数,其物理意义是什么?

描述单个电子的4个量子数,其物理意义是什么?

1.描述单个电子的4个量子数,其物理意义是什么?答:单电子的量子数是量子力学中表述原子核外电子运动的一组整数或半整数。

因为核外电子运动状态的变化不是连续的,而是量子化的,所以量子数的取值也不是连续的,而只能取一组整数或半整数。

量子数包括主量子数n、角量子数l、磁量子数m和自旋量子数ms四种,前三种是在数学解析薛定谔方程过程中引出的,而最后一种则是为了表述电子的自旋运动提出的。

n是主量子数,它对电子能量的影响通常是最大的。

它主要就表示电子距离原子核的“平均距离”的远近,越远,n越大,相应的能量也越大。

n等于电子绕核一周所对应的物质波的波数——绕核一周有n 个波长的电子的物质波。

n可能的取值为所有正整数。

l是轨道量子数,它表示电子绕核运动时角动量的大小,它对电子的能量也有较大的影响。

l可能的取值为小于n的所有非负整数。

m是磁量子数,在有外加磁场时,电子的轨道角动量在外磁场的方向上的分量不是连续的,也是量子化的,这个分量的大小就由m来表示。

m可能的取值为所有绝对值不大于l的整数。

ms是自旋量子数,它对应着电子的自旋的角动量的大小和方向,它只有正负1/2这两个数值,这表示电子自旋的大小是固定不变的,且只有两个方向。

2.描述原子整体状态的四个量子数是什么?其光谱及光谱支项符号是什么?答:原子中各电子在核外的运动状态,是指电子所在的电子层和原子轨道的能级、形状、伸展方向等,可用解薛定谔方程引入的三个参数即主量子数、角量子数和磁量子数加以描述。

欲完整确定一个电子的运动状态,还有一个描述电子自旋运动特征的自旋磁量子数。

对于单电子原子,由于只有一个核外电子,其运动状态可用该电子的运动状态来表示,换言之,电子的量子数就是原子的量子数,即n,l,j和mj,或n,l,m,ms光谱项:多电子原子的运动状态可用L,S,J,mJ 4个量子数来规定,光谱学上常将不同的状态按L,S,J数值记成符号2S+1L,称为光谱项。

右上角2S+1称为光谱多重性,S=0,2S+1=1,称为单重态,S=1,2S+1=3称为三重态。

核外电子的运动状态

核外电子的运动状态

核外电子的运动状态电子在原子中的运动状态,可n,l,m,ms四个量子数来描述.(一)主量子数n主量子数n是用来描述原子中电子出现几率最大区域离核的远近,或者说它是决定电子层数的.主量子数的n 的取值为1,2,3…等正整数.例如,n=1代表电子离核的平均距离最近的一层,即第一电子层;n=2代表电子离核的平均距离比第一层稍远的一层,即第二电子层.余此类推.可见n愈大电子离核的平均距离愈远.在光谱学上常用大写拉丁字母K,L,M,N,O,P,Q代表电子层数.主量子数(n)1234567电子层符号KLMNOPQ主量子数n是决定电子能量高低的主要因素.对单电子原子来说,n值愈大,电子的能量愈高.但是对多电子原子来说,核外电子的能量除了同主量子数n有关以外还同原子轨道(或电子云)的形状有关.因此,n值愈大,电子的能量愈高这名话,只有在原子轨道(或电子云)的形状相同的条件下,才是正确的.(二)副量子数l副量子数又称角量子数.当n给定时,l可取值为0,1,2,3…(n-1).在每一个主量子数n中,有n个副量子数,其最大值为n-1.例如n=1时,只有一个副量子数,l=0,n=2时,有两个副量子数,l=0,l=1.余此类推.按光谱学上的习惯l还可以用s,p,d,f等符号表示.l 0 1 2 3光谱符号s p d F副量子数l的一个重要物理意义是表示原子轨道(或电子云)的形状.L=0时(称s轨道),其原子轨道(或电子云)呈球形分布(图4-5);l=1时(称p轨道),其原子轨道(或电子云)呈哑铃形分布(图4-6);…图4-5 s电子云图4-6 p电子副量子数l的另一个物理意义是表示同一电子层中具有不同状态的亚层.例如,n=3时,l可取值为0,1,2.即在第三层电子层上有三个亚层,分别为s,p,d亚层.为了区别不同电子层上的亚层,在亚层符号前面冠以电子层数.例如,2s是第二电子层上的亚层,3p是第三电子层上的p亚层.表4-1列出了主量子数n,副量子数l及相应电子层、亚层之间的关系.表4-1 主量子数n,副量子数l及其相应电子层亚层之间的关系n电子层l亚层1101s2202s12p3303s13p23d4404s14p24d34f对于单电子体系的氢原子来说,各种状态的电子能量只与n有关.但是对于多电子原子来说,由于原子中各电子之间的相互作用,因而当n相同,l不同时,各种状态的电子能量也不同,l愈大,能量愈高.即同一电子层上的不同亚层其能量不同,这些亚层又称为能级.因此副量子数l的第三个物理意义是:它同多电子原子中电子的能量有关,是决定多电子原子中电子能量的次要因素.(三)磁量子数m磁量子数m决定原子轨道(或电子云)在空间的伸展方向.当l给定时,m的取值为从-l到+l之间的一切整数(包括0在),即0,±1,±2,±3,…±l,共有2l+1个取值.即原子轨道(或电子云)在空间有2l+1个伸展方向.原子轨道(或电子云)在空间的每一个伸展方向称做一个轨道.例如,l=0时,s电子云呈球形对称分布,没有方向性.m只能有一个值,即m=0,说明s亚层只有一个轨道为s轨道.当l=1时,m可有-1,0,+1三个取值,说明p电子云在空间有三种取向,即p亚层中有三个以x,y,z轴为对称轴的px,py,pz轨道.当l=2时,m可有五个取值,即d电子云在空间有五种取向,d亚层中有五个不同伸展方向的d 轨道(图4-7).图4-7 s,p,d电子云在空间的分布n,l相同,m 不同的各轨道具有相同的能量,把能量相同的轨道称为等价轨道.(四)自旋量子数ms原子中的电子除绕核作高速运动外,还绕自己的轴作自旋运动.电子的自旋运动用自旋量子数ms表示.ms 的取值有两个,+1/2和-1/2.说明电子的自旋只有两个方向,即顺时针方向和逆时针方向.通常用“↑”和“↓”表示.综上所述,原子中每个电子的运动状态可以用n,l,m,ms四个量子数来描述.主量子数n决定电子出现几率最大的区域离核的远近(或电子层),并且是决定电子能量的主要因素;副量子数l决定原子轨道(或电子云)的形状,同时也影响电子的能量;磁量子数m决定原子轨道(或电子云)在空间的伸展方向;自旋量子数ms决定电子自旋的方向.因此四个量子数确定之后,电子在核外空间的运动状态也就确定了.量子数,电子层,电子亚层之间的关系每个电子层最多容纳的电子数2 8 18 2n^2主量子数n 1 2 3 4电子层K L M N角量子数l 0 1 2 3电子亚层s p d f每个亚层中轨道数目1 3 5 7每个亚层最多容纳电子数2 6 10 14核外电子的分布:1. 原子中电子分布原理:(两个原理一个规则):(1)、泡利(Pauli)不相容原理在同一原子中,不可能有四个量子数完全相同的电子存在.即每一个轨道最多只能容纳两个自旋方向相反的电子.(2)、能量最低原理多电子原子处于基态时,核外电子的分布在不违反泡利原理前提下,总是尽先分布在能量较低的轨道,以使原子处于能量最低状态.(3)、洪特(Hund)规则原子在同一亚层的等价轨道上分布电子时,尽可能单独分布在不同的轨道,而且自旋方向相同(或称自旋平行).基态原子中电子的分布1、核外电子填入轨道的顺序应用近似能级图,根据“两个原理一条规则”,可以准确地写出91种元素原子的核外电子分布式来.在110种元素中,只有19种元素原子层外电子的分布稍有例外:它们是若再对它们进一步分析归纳还得到一条特殊规律——全充满,半充满规则:对同一电子亚层,当电子分布为全充满(P6、d10、f14)、半充满(P3、d5、f7)或全空(P0、d0、f0)时,电子云分布呈球状,原子结构较稳定,可挑出8种元素,剩余11种可作例外.多电子原子结构1、核外电子排布三原理(1)泡利不相容原理:解决各电子层电子数目问题.◆在任何一个原子中,决不可能有两个电子具有四个完全相同的量子数,即在同一个原子中,不可能有运动状态完全相同的电子.◆当n一定时,L可取(n-1)个值,而在L限定下,原子轨道可有(2L+1)个伸展方向,即(2L+1)个轨道,而每个轨道可容纳两个电子,所以每层最多容纳电子数为电子层1 2 3 4电子数2 8 18 32(2)最低能量原理:解决电子排布问题◆多电子原子在基态时,核外电子总是尽可能地先占据能量最低的轨道,以使体系能量最低.◆轨道能级规律①当角量子数相同时,随主量子数增加,轨道能级升高1s<2s<3s<4s; 2p<3p<4p<5p; 3d<4d<5d②当主量子数相同时,随角量子数增加,轨道能级升高ns<np<nd<nf③当主量子数与角量子数都不同时,能级次序比较复杂,有时出现“能级交错”现象,即某些主量子数较大的原子轨道其能级可以比主量子数较小的原子轨道低.如4s<3d, 5s<4d , 6s<4f<5d<6p◆鲍林近似能级图鲍林根据大量光谱数据以及某些近似的理论计算,得到了多电子原子的原子轨道能级的近似图能级组:按照能级高低的顺序,把能量相近的能级划成一组,称为能级组.按照1、2、3能级组顺序,能量依次增高.电子分布式:核外电子的分布表达式,如K:Ti:鲍林近似能级顺序并不是所有元素轨道能级的实际顺序,它只不过是表示在考虑电子分布时,随核电荷数的增加的一个电子应分布在一哪一个轨道的一般规律,它不代表核外电子的实际分布情况,如钛原子的近似能级顺序为:而其电子分布式为:(3)洪特规则:解决同一电子层电子排布问题◆处于主量子数和角量子数都相同的轨道中的电子,总是尽先占据磁量子数不同的轨道,而且自旋量子数相同(自旋平行)◆两个电子同占一个轨道,这时电子间的排斥作用会使系统能量升高,两个电子只有分占等价轨道时,才有利于降低系统的能量,所以洪特规则可认为是最低能量原理的补充如P:3P轨道上的3个电子分布应为:↑↑↑(4)特殊情况◆有19种元素原子的电子分布式不完全符合近似能级顺序,如:它们的3d轨道电子分别为10和5,处于全满或半满状态,原子比较稳定,对于p、f轨道,半满状态为p3和f7,全满状态为p6和f14◆外层电子构型即外层电子分布式,对于原子来说:主族元素:最外层的电子分布式,如:副族元素:最外层S电子和次外层d电子的分布式,如:◆元素离子的外层电子构型:当原子失去电子成为阳离子时,一般是能量较高的最外层的电子失去,而且往往引起电子层数的减少.如:当原子得到电子成为阴离子时,电子总是分布在最外电子层上,如:元素离子的外层电子构型(1)8电子构型(2)9~17电子构型(3)18电子构型(4)18+2电子构型</np<nd<nf。

原子的量子数的物理意义和取值

原子的量子数的物理意义和取值

原子整体的状态与原子光谱项描述原子中个别电子的运动状态用n、l、m、m S这四个量子数。

原子整体的状态,取决于核外所有电子的轨道和自旋状态。

然而由于原子中各电子间存在着相当复杂的作用,所以原子状态又不是所有电子运动状态的简单加和。

例:碳原子基态: 电子层结构1s22s22p2原子的组态(Configuration)1s22s2构成了闭壳层.2p轨道上的两个电子,共有六种可能性 m=0,±1, ms =±1/2,∴p2组态的微观状态数可能有C62=6*5/2=15种之多。

微观状态原子能量、角动量等物理量以及其中电子间静电相互作用,轨道及自旋相互作用,以及在外磁场存在下原子所表现的性质等,原子光谱从实验上研究了这些问题。

一、原子的量子数与角动量的耦合(1)原子的量子数①原子的轨道角量子数L(即原子的总轨道角动量量子数)在多电子原子中,各个电子的轨道角动量的矢量和就是原子的(总的)轨道角动量,其值由L量子数决定。

以两个电子的原子为例,L 取值为l1+l2 , l1+l2-1 , l1+l2-2 , …,│l1-l2│。

(每步递减1,L只能取整数)(由量子力学得到)体系若有2个以上的电子,可先计算2个电子的总角动量,然后再将它和第三个电子的角动量相加,依此类推即可。

例对2p2组态l1 = l2 = 1,L12 =2,1,0 ;而2p3组态l3 = 1,L123 = L12+ l3,L12+ l3-1,L12+ l3-2,…, │L12+ l3│= 3,2,1,0相应的轨道运动——轨道角动量每个电子,把各电子的轨道角动量加起来得到原子的总轨道角动量。

②原子的(总)轨道磁量子数M L轨道角动量在Z方向的分量Z, Lz = M LM L取值:M L =∑m = L, L-1,....., 0,......,-L+1,-L (共2L+1)个例:2p2,l=1, m =1, 0, -1L=2,M L=2,1,0,-1,-2③自旋角动量与原子的自旋角量子数S与轨道角动量相似,由于电子的s 均等于1/2,故当电子数为2时,总自旋角量子数 S=1, 0; 当电子数等于3时,再用一次角动量耦合规则得S = 3/2, 1/2容易看出,电子数为偶数时,S 取0或正整数;电子数为奇数时, S 取正的半整数。

四个量子数之间的关系

四个量子数之间的关系

四个量子数之间的关系
量子数是描述一个粒子状态的物理量,其中有四个量子数是与电子状态有关的,它们分别是主量子数n、角量子数l、磁量子数m和自旋量子数s。

主量子数n决定电子所处的能级大小,n越大,能级越高。

角量子数l决定电子轨道的形状,l取值范围是0到n-1。

磁量子数m描述电子在空间中角动量的方向,m的取值范围是-l到+l。

自旋量子数s描述电子自旋的性质,取值为1/2或者-1/2。

这四个量子数之间有一些关系。

首先,主量子数n和角量子数l 决定了每个能级中有多少个轨道,即每个能级容纳的电子数。

其次,角量子数l和磁量子数m共同决定了电子在空间中的具体位置,即轨道的朝向和位置。

最后,自旋量子数s表示电子的自旋方向,它是由磁场产生的,因此与角量子数和磁量子数有一定的关系。

总之,四个量子数之间相互影响,共同决定了电子的状态和性质,进而影响到物质的结构和性质。

因此,量子数的研究对于深入理解物质世界具有重要的意义。

- 1 -。

粒子的自旋与角动量的量子数

粒子的自旋与角动量的量子数

粒子的自旋与角动量的量子数自旋和角动量是量子力学中非常重要的概念,它们描述了粒子的内禀性质和旋转动力学特性。

在量子力学中,自旋和角动量都被量子化,即只能取特定的离散值。

本文将探讨粒子的自旋和角动量的量子数,并解释它们在粒子物理中的重要性。

自旋是粒子的一种内禀性质,类似于旋转的动量。

虽然我们通常将自旋想象为粒子围绕自身轴旋转的动作,但实际上自旋并不是真正的旋转,它是一种纯量,没有经典物理中旋转的几何意义。

自旋量子数通常用s表示,其取值为整数或半整数。

对于电子、质子和中子等基本粒子来说,其自旋量子数为1/2,而对于玻色子如光子来说,其自旋量子数为1。

自旋量子数不仅具有整数或半整数的性质,还决定了粒子的一些基本特性。

考虑到自旋的量子化,粒子的波函数可以用自旋态和空间态的张量积表示。

这种张量积表示法可以描述粒子在自旋空间和坐标空间之间的耦合。

例如,自旋1/2的电子在自旋上有两个状态(自旋向上和自旋向下),在坐标空间上,电子又可以处于不同的位置态(如s轨道、p轨道等)。

通过将自旋态和空间态进行张量积,在波函数上表达出粒子的自旋和位置等信息。

与自旋类似,角动量也是量子化的。

角动量有两个独立的部分:轨道角动量和自旋角动量。

轨道角动量与粒子的运动轨迹和位置相关,而自旋角动量与粒子内部的性质关联。

在量子力学中,轨道角动量量子数通常用l表示,它的取值从0到n-1,其中n是主量子数。

自旋角动量量子数仍用s表示,取值为整数或半整数。

因此,一个粒子的角动量量子数可以表示为(l, s),即轨道角动量和自旋角动量的组合。

角动量量子数不仅仅是一种数学工具,它还具有物理上的重要性。

首先,角动量量子数可以用来解释粒子的能级结构。

根据泡利不相容原理,每个粒子在同一状态下的角动量量子数是唯一的,因此它们不能在相同的位置态上具有相同的角动量量子数。

这导致了电子在一个原子中分布在不同的轨道上,形成电子云模型。

其次,角动量量子数还决定了粒子在外加磁场中的行为。

四个量子数的物理意义ppt

四个量子数的物理意义ppt
所对应的r1=0.53A0 ,在数值上等于量子理论中,氢原
子处于基态 E1 时,核外电子出现几率最大的位置。 40
2. 氢原子中电子的稳定状态 (1)原子中电子的稳定状态用一组量子数来描述。
10 n主量子数:氢原子能量状态主要取决于 n 。
me 4 1
En
8
2 0
h2
n2
n 1,2,3n n 个值
都相同 e
L
2m
L
若每个原子有大小
不同的轨道磁矩,
而此磁矩又不是空间量子化的
若磁矩是空间量子化的(角动量空间量子化)
事实正是这样!
最奇怪的是:处于 S (l 0)态的银原子 L l(l 1) 0
原子本身没有轨道磁矩
e 2m
L
0
应有
而实际上却是
说明原子具有磁矩!
这种磁矩显然不是轨道磁矩,它是什么??
§ 氢原子的量子力学处理
1. 氢原子的薛定谔方程
氢原子核外电子在核电荷的势场中运动, U
e2
设 U 0 则 r 处:
40r
( U 是 r 的函数,不随时间变化,所以是定态问题。
不是一维)将一般的定态薛定谔方程改用球坐标表示:
1 r2
2
r
(r
2m 2
(
E
e2 40r
2
r
)
r
2
1 sin
)
(sin
0
)
r
2
1 sin
2
2 2
2m 2
(
E
e2 40
1 r
)
0
解之,得氢原子中电子的波函数及氢原子的一些量子化特
征,介绍如下: (r,,) R(r)()()

核外电子的运动状态.

核外电子的运动状态.

核外电子的运动状态电子在原子中的运动状态,可n,l,m,ms四个量子数来描述.(一)主量子数n主量子数n是用来描述原子中电子出现几率最大区域离核的远近,或者说它是决定电子层数的.主量子数的n的取值为1,2,3…等正整数.例如,n=1代表电子离核的平均距离最近的一层,即第一电子层;n=2代表电子离核的平均距离比第一层稍远的一层,即第二电子层.余此类推.可见n愈大电子离核的平均距离愈远.在光谱学上常用大写拉丁字母K,L,M,N,O,P,Q代表电子层数.主量子数(n)1 2 3 4 5 6 7电子层符号K L M N O P Q主量子数n是决定电子能量高低的主要因素.对单电子原子来说,n值愈大,电子的能量愈高.但是对多电子原子来说,核外电子的能量除了同主量子数n有关以外还同原子轨道(或电子云)的形状有关.因此,n 值愈大,电子的能量愈高这名话,只有在原子轨道(或电子云)的形状相同的条件下,才是正确的.(二)副量子数l副量子数又称角量子数.当n给定时,l可取值为0,1,2,3…(n-1).在每一个主量子数n中,有n个副量子数,其最大值为n-1.例如n=1时,只有一个副量子数,l=0,n=2时,有两个副量子数,l=0,l=1.余此类推.按光谱学上的习惯l还可以用s,p,d,f等符号表示.l 0 1 2 3光谱符号s p d F副量子数l的一个重要物理意义是表示原子轨道(或电子云)的形状.L=0时(称s轨道),其原子轨道(或电子云)呈球形分布(图4-5);l=1时(称p轨道),其原子轨道(或电子云)呈哑铃形分布(图4-6);…图4-5 s电子云图4-6 p电子副量子数l的另一个物理意义是表示同一电子层中具有不同状态的亚层.例如,n=3时,l可取值为0,1,2.即在第三层电子层上有三个亚层,分别为s,p,d亚层.为了区别不同电子层上的亚层,在亚层符号前面冠以电子层数.例如,2s是第二电子层上的亚层,3p是第三电子层上的p亚层.表4-1列出了主量子数n,副量子数l及相应电子层、亚层之间的关系. 表4-1 主量子数n,副量子数l及其相应电子层亚层之间的关系n电子层l亚层112 2 0 2s1 2p3 3 0 3s1 3p2 3d44s14p24d34f对于单电子体系的氢原子来说,各种状态的电子能量只与n有关.但是对于多电子原子来说,由于原子中各电子之间的相互作用,因而当n相同,l不同时,各种状态的电子能量也不同,l愈大,能量愈高.即同一电子层上的不同亚层其能量不同,这些亚层又称为能级.因此副量子数l的第三个物理意义是:它同多电子原子中电子的能量有关,是决定多电子原子中电子能量的次要因素.(三)磁量子数m磁量子数m决定原子轨道(或电子云)在空间的伸展方向.当l给定时,m的取值为从-l到+l之间的一切整数(包括0在内),即0,±1,±2,±3,…±l,共有2l+1个取值.即原子轨道(或电子云)在空间有2l+1个伸展方向.原子轨道(或电子云)在空间的每一个伸展方向称做一个轨道.例如,l=0时,s电子云呈球形对称分布,没有方向性.m只能有一个值,即m=0,说明s亚层只有一个轨道为s轨道.当l=1时,m可有-1,0,+1三个取值,说明p电子云在空间有三种取向,即p亚层中有三个以x,y,z 轴为对称轴的px,py,pz轨道.当l=2时,m可有五个取值,即d电子云在空间有五种取向,d亚层中有五个不同伸展方向的d轨道(图4-7).图4-7 s,p,d电子云在空间的分布n,l相同,m 不同的各轨道具有相同的能量,把能量相同的轨道称为等价轨道.(四)自旋量子数ms原子中的电子除绕核作高速运动外,还绕自己的轴作自旋运动.电子的自旋运动用自旋量子数ms表示.ms 的取值有两个,+1/2和-1/2.说明电子的自旋只有两个方向,即顺时针方向和逆时针方向.通常用“↑”和“↓”表示.综上所述,原子中每个电子的运动状态可以用n,l,m,ms四个量子数来描述.主量子数n决定电子出现几率最大的区域离核的远近(或电子层),并且是决定电子能量的主要因素;副量子数l决定原子轨道(或电子云)的形状,同时也影响电子的能量;磁量子数m决定原子轨道(或电子云)在空间的伸展方向;自旋量子数ms决定电子自旋的方向.因此四个量子数确定之后,电子在核外空间的运动状态也就确定了.量子数,电子层,电子亚层之间的关系每个电子层最多容纳的电子数2 8 18 2n^2主量子数n 1 2 3 4电子层K L M N角量子数l 0 1 2 3电子亚层s p d f每个亚层中轨道数目1 3 5 7每个亚层最多容纳电子数2 6 10 14核外电子的分布:1. 原子中电子分布原理:(两个原理一个规则):(1)、泡利(Pauli)不相容原理在同一原子中,不可能有四个量子数完全相同的电子存在.即每一个轨道内最多只能容纳两个自旋方向相反的电子.(2)、能量最低原理多电子原子处于基态时,核外电子的分布在不违反泡利原理前提下,总是尽先分布在能量较低的轨道,以使原子处于能量最低状态. (3)、洪特(Hund)规则原子在同一亚层的等价轨道上分布电子时,尽可能单独分布在不同的轨道,而且自旋方向相同(或称自旋平行).基态原子中电子的分布1、核外电子填入轨道的顺序应用近似能级图,根据“两个原理一条规则”,可以准确地写出91种元素原子的核外电子分布式来.在110种元素中,只有19种元素原子层外电子的分布稍有例外:它们是若再对它们进一步分析归纳还得到一条特殊规律——全充满,半充满规则:对同一电子亚层,当电子分布为全充满(P6、d10、f14)、半充满(P3、d5、f7)或全空(P0、d0、f0)时,电子云分布呈球状,原子结构较稳定,可挑出8种元素,剩余11种可作例外.多电子原子结构1、核外电子排布三原理(1)泡利不相容原理:解决各电子层电子数目问题.◆在任何一个原子中,决不可能有两个电子具有四个完全相同的量子数,即在同一个原子中,不可能有运动状态完全相同的电子.◆当n一定时,L可取(n-1)个值,而在L限定下,原子轨道可有(2L+1)个伸展方向,即(2L+1)个轨道,而每个轨道可容纳两个电子,所以每层最多容纳电子数为电子层1 2 3 4电子数2 8 18 32(2)最低能量原理:解决电子排布问题◆多电子原子在基态时,核外电子总是尽可能地先占据能量最低的轨道,以使体系能量最低.◆轨道能级规律①当角量子数相同时,随主量子数增加,轨道能级升高1s<2s<3s<4s;2p<3p<4p<5p; 3d<4d<5d②当主量子数相同时,随角量子数增加,轨道能级升高ns<np<nd<nf③当主量子数与角量子数都不同时,能级次序比较复杂,有时出现“能级交错”现象,即某些主量子数较大的原子轨道其能级可以比主量子数较小的原子轨道低.如4s<3d, 5s<4d , 6s<4f<5d<6p◆鲍林近似能级图鲍林根据大量光谱数据以及某些近似的理论计算,得到了多电子原子的原子轨道能级的近似图能级组:按照能级高低的顺序,把能量相近的能级划成一组,称为能级组.按照1、2、3能级组顺序,能量依次增高.电子分布式:核外电子的分布表达式,如K:Ti:鲍林近似能级顺序并不是所有元素轨道能级的实际顺序,它只不过是表示在考虑电子分布时,随核电荷数的增加的一个电子应分布在一哪一个轨道的一般规律,它不代表核外电子的实际分布情况,如钛原子的近似能级顺序为:而其电子分布式为:(3)洪特规则:解决同一电子层电子排布问题◆处于主量子数和角量子数都相同的轨道中的电子,总是尽先占据磁量子数不同的轨道,而且自旋量子数相同(自旋平行)◆两个电子同占一个轨道,这时电子间的排斥作用会使系统能量升高,两个电子只有分占等价轨道时,才有利于降低系统的能量,所以洪特规则可认为是最低能量原理的补充如P:3P轨道上的3个电子分布应为:↑↑↑(4)特殊情况◆有19种元素原子的电子分布式不完全符合近似能级顺序,如:它们的3d轨道电子分别为10和5,处于全满或半满状态,原子比较稳定,对于p、f轨道,半满状态为p3和f7,全满状态为p6和f14◆外层电子构型即外层电子分布式,对于原子来说:主族元素:最外层的电子分布式,如:副族元素:最外层S电子和次外层d电子的分布式,如:◆元素离子的外层电子构型:当原子失去电子成为阳离子时,一般是能量较高的最外层的电子失去,而且往往引起电子层数的减少.如:当原子得到电子成为阴离子时,电子总是分布在最外电子层上,如:元素离子的外层电子构型(1)8电子构型(2)9~17电子构型(3)18电子构型(4)18+2电子构型</np<nd<nf。

第二章 原子的结构和性质习题课

第二章 原子的结构和性质习题课

主峰位于离核较 远 的范围。
8、径向分布函数D(r)= D=r2R2 ;
它表示 电子在半径为r的球面单位壳层内出现的几率

9、n=3,l=2,m=0表示的原子轨道是 Ψ3.2.0 。
10、 n=4的原子轨道数目为 16 ;最多可容纳的电子数为 32 。
11、 n=5时其最大的轨道角动量M为
H) = -
2s
0.1
0.3
0.2
0.1 2
0 -0.1
0 012345
r/a0
02468
r/a0
径向分布函数D:
0.6
0.3
D=r2R2
0
反映电子云的分布随半径r的变
0.24 0.16
化情况。
0.08 0
Ddr代表在半径r到r+dr两个球
0.24 0.16
壳夹层内找到电子的几率。
0.08 0
0.16
0.08
(4 - r )= 0
r 24a50
a0
a0
r = 4a0
4、解:
ψ ¥ 2π π
P=
00
0
2 1s
r
2
sinθdθdφdr
5、 解:
4
= a03
2a0 r 2e-r 2a0 dr = 0.7618
0
Na:1s22s2p63s1
Z*(3s)= 11-1.00×2 - 0.85×8 = 2.2
12、写出C原子的哈密顿算符
h2 2m
20h
6
Σ
i= 1
i2
-

6
Σ
6e 2
i=1 4πε0 ri
+
1 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三个量子数的物理意义
量子数是描述物理系统特性的参数,对于描述一个粒子的量子态是
必不可少的。

在量子力学中,有三个量子数:主量子数、角量子数和
磁量子数。

每个量子数都有其特定的物理意义和数学表达。

本文将分
别介绍这三个量子数的物理意义。

1. 主量子数(n)
主量子数n用来描述一个电子的能级。

它代表了电子所在的主能级,表明了电子的径向距离和能量大小。

主量子数的取值范围为正整数,
从1开始逐渐增大。

较大的主量子数对应着更高的能级,电子离原子
核越远,能量越高。

主量子数对应着能级的分类,不同能级具有不同
的能量和轨道形状。

2. 角量子数(l)
角量子数l用来描述电子在原子或分子中的角动量。

它表明了电子
轨道的形状。

角量子数的取值范围为0到n-1。

当l=0时,对应的轨道
称为s轨道(球对称),当l=1时,对应的轨道称为p轨道(球面附加
一个环),以此类推,当l=2时,对应的轨道为d轨道,l=3时为f轨道,依次类推。

不同的轨道有着不同的几何形状和能量。

3. 磁量子数(m)
磁量子数m用来描述电子在轨道内角动量的方向。

它代表了电子在轨道内的轨道密度分布。

磁量子数的取值范围为-l到l。

例如,当l=0
时,m只能取0,对应着s轨道,不具有角向分布;当l=1时,m可以
取-1, 0, 1,对应着p轨道,有着相对于原子核的不同方向的轨道分布。

三个量子数的组合可以唯一地确定一个电子的量子态。

根据量子力
学中的排斥原理,每个能级上最多容纳2(2l+1)个电子。

因此,电子的
总角动量与能级相关,而能级又与主量子数相关。

这些量子数的物理
意义提供了对电子在原子中定位、能级分布和自旋方向的描述。

总结起来,三个量子数主要用来描述了电子在原子或分子中的能量、角动量和空间分布。

主量子数n描述了能级,角量子数l描述了轨道形状,而磁量子数m描述了轨道内的角动量方向。

这些量子数的物理意
义不仅在理论物理中起着重要作用,也在实验中提供了对电子行为和
原子结构的解释和预测依据。

通过对这三个量子数的研究和理解,科学家们能够更好地理解物质
的结构和性质,并在纳米科技、量子计算等领域中实现更多的应用。

在未来的科学研究和技术发展中,对这些量子数的深入研究将继续发
挥重要作用,并帮助人们更好地认识和利用量子力学的奇妙世界。

通过以上对三个量子数的物理意义的描述,我们可以更好地理解电
子在原子中的行为和结构,以及量子力学对于揭示微观世界的重要性。

不仅如此,对于未来的科学研究和技术发展,这些量子数的研究将在
新领域中发挥出更大的价值和意义。

相关文档
最新文档