隧道围岩应力与变形

合集下载

隧道工程第二章-围岩分级

隧道工程第二章-围岩分级

可采用定性划分和定量指标两种方法确定。
隧道工程
36
我国铁路隧道围岩分级方法
(一)围岩分级的基本因素 1 岩石坚硬程度 将岩浆岩、沉积岩和变质岩三大岩类按岩性、 物理力学参数、耐风化能力划分为硬质岩和软质 岩两大类。然后根据单轴饱和极限抗压强度再分 为5级,即极硬岩、硬质岩、较软岩、软岩、极 软岩。
隧道工程
16
岩体的基本工程性质
(三)力学性质
试件尺寸(cm):15×15×30
3 裂隙岩体的强度性质 试件强度(MPa):32.8~34.6
表中数值为试件的强度 与岩石试件强度的比值
结构面强度:c=0.11MPa;φ=38
隧道工程
17
围岩分级概述
围岩是指隧道开挖后其周围产生应力重分 布范围内的岩体,或指隧道开挖后对其稳定性产 生影响的那部分岩体(这里所指的岩体是土体与 岩体的总称)。 依据各种围岩的物理性质之间存在的内在联
隧道工程
26
围岩的分级方法
(二)以岩石强度或岩石的物性指标为代表 的分级方法 1 以岩石强度为基础的分级方法
该方法单纯以岩石的强度为分级依据。该方法认
为:坑道开挖后,它的稳定性主要取决于岩石的
强度。岩石愈坚硬,坑道愈稳定;反之岩石愈松
软,坑道的稳定性就愈差。该法不全面!
隧道工程
27
围岩的分级方法
节理较发育、节理发育、节理很发育4级。 按照岩体风化程度的不同将围岩分为:风化轻 微、较重、严重、极严重4级。
隧道工程
40
我国铁路隧道围岩分级方法
(一)围岩分级的基本因素
围岩完整程度
指标1:结构面发育程度 指标2:地质构造影响程度 由此两指标,将岩体完整程度分为5个级别,见下表:

隧道施工后的应力状态及力学行为

隧道施工后的应力状态及力学行为
隧道施工后的应力状态及力学行为
本讲主要内容: 1、隧道开挖后的应力状态 2、隧道支护后的应力状态 3、新奥法施工的力学解析 4、隧道施工力学相关问题讨论
第2讲 隧道开挖后的力学行为
(1)隧道的施工过程
开挖 支护 时间
原始岩体 毛洞
支护体系 稳定洞室
土木工程学院隧道工程系
施成华
第2讲 隧道开挖后的力学行为
土木工程学院隧道工程系
施成华
第2讲 隧道开挖后的力学行为—二次应力状态
(2)隧道开挖后的弹性应力状态
2)洞周应力和位移
当 时,1 隧道断面是均匀缩小
的,随着 值的减小,隧道上下顶
点继续向隧道内挤入,水平直径处 则减小而变成扁平的断面形状。
在多数情况下,隧道开挖后围岩 是向隧道内移动的,只在一定的
值条件下,在水平直径处有向两
(2)隧道开挖后的弹性应力状态
3)轴对称情况
在洞室周边上,主应力 和 r 的差 值最大(2 ),由p此0 衍
生的剪应力最大,所以洞室周边是最容易破坏的,实践也证 明,洞室的破坏总是从周边开始,并逐步向深处发展的。
土木工程学院隧道工程系
施成华
第2讲 隧道开挖后的力学行为—二次应力状态
(2)隧道开挖后的弹性应力状态
(2)隧道施工的力学过程
初始应力状态(原岩) 开挖
隧道开挖后应力状态(二次应力状态) 支护
支护体系应力状态(三次应力状态) 时间
终极应力状态(四次应力状态)
隧道的开挖施工实际上是一个应力状态的调整,重新达 到应力平衡的过程。
土木工程学院隧道工程系
施成华
第2讲 隧道开挖后的力学行为—二次应力状态
1、隧道开挖后的应力状态 (1)基本假设

隧道围岩的岩石力学参数测试方法

隧道围岩的岩石力学参数测试方法

隧道围岩的岩石力学参数测试方法隧道工程在现代城市建设中具有重要的作用,而隧道围岩的稳定性则是其安全性的关键。

岩石力学参数的测定是评估隧道围岩稳定性的重要手段,本文将介绍几种常见的岩石力学参数测试方法。

一、岩石抗压强度测试方法岩石抗压强度是衡量岩石抵抗破坏的能力,常用的测试方法有单轴抗压和三轴抗压。

单轴抗压测试是将岩石样品在试件上进行轴向力的作用,测定其破坏压力。

三轴抗压测试则模拟了岩石受到三个主应力的状态,通过变化施加的应力测定破坏压力。

二、岩石剪切强度测试方法岩石的剪切强度是描述岩石抵抗剪切破坏的能力,常用的测试方法有直剪、倾剪和扭剪。

直剪测试是将样品分离成两个部分,在其中施加力产生剪切应力,通过测定破坏荷载和位移来计算岩石的剪切强度。

倾剪测试则将岩样倾斜一定角度,施加力后测定位移和强度。

扭剪测试是将岩石样品在一个平面上旋转产生剪切应力,通过测定破坏荷载和位移计算岩石的剪切强度。

三、岩石抗拉强度测试方法岩石的抗拉强度是评估岩石抵抗拉伸破坏的能力,常用的测试方法有拉伸试验和间接试验。

拉伸试验是将岩石样品拉伸,通过测定应力和位移关系来计算抗拉强度。

间接试验则是通过其他试验结果,如岩石的抗压强度和剪切强度,来估计抗拉强度。

四、岩石弹性模量测试方法岩石弹性模量是描述岩石的弹性性质,常用的测试方法有压缩试验和超声波试验。

压缩试验是施加一定应力后测定变形,并得到应力-应变关系,从而计算弹性模量。

超声波试验则是通过测定超声波在岩石中传播的速度,利用弹性波理论计算弹性模量。

除了以上几种常见的测试方法,还有其他一些辅助的测试手段,如岩石的压缩波速测试、岩石渗流性测试等。

这些测试方法的综合分析可以帮助我们更全面地了解隧道围岩的力学参数,为隧道工程的设计和施工提供科学依据。

总结起来,隧道围岩的岩石力学参数测试方法包括了岩石的抗压强度、剪切强度、抗拉强度和弹性模量等多个指标。

通过使用合适的试验仪器和标准化试验程序,可以准确测定这些参数,并在隧道工程中得到合理应用,确保隧道的安全和稳定性。

高地应力状态下硬质碎裂岩隧道变形机理研究

高地应力状态下硬质碎裂岩隧道变形机理研究

高地应力状态下硬质碎裂岩隧道变形机理研究陈秀义【摘要】高地应力状态下硬质岩隧道产生岩爆,软质岩隧道产生大变形,在山区隧道建设中会经常遇到,也进行过大量的研究,但关山隧道硬质闪长岩在施工中遇到罕见的、特殊的大变形问题.通过对隧道区地质环境背景、岩石成分、岩体结构面特征、原地应力大小研究,配合理论分析,直观地解释硬质碎裂围岩的变形破坏特征与机理,为采取经济、合理的支护措施提供依据,隧道变形控制良好.%The hard rock tunnel with high geostress may encounter rockburst and the soft rock tunnel with high geostress may suffer large deformation,which happen frequently in mountain tunnel construction.Many researches have been conducted and the large hard flash rock deformation in Guanshan tunnel construction is exceptionally a rare case.This paper intuitively expoundsthe features and mechanism of deformation and failure of the hard cataclastic surrounding rock mass based on the study of the geological environmental background,rock composition,rock mass structure and characteristics,in-situ stress in the tunnel area and on the theoretical analysis,which provides a basis for taking economic and reasonable support measures to control tunnel deformation.【期刊名称】《铁道标准设计》【年(卷),期】2017(061)011【总页数】5页(P56-60)【关键词】铁路隧道;硬质岩;碎裂;大变形【作者】陈秀义【作者单位】兰州铁道设计院有限公司,兰州730000【正文语种】中文【中图分类】U451关山特长隧道是新建天平铁路重点工程之一,长15.634 km,最大埋深830 m[1]。

基于FLAC3D模拟不同倾角断层下隧道围岩稳定性分析

基于FLAC3D模拟不同倾角断层下隧道围岩稳定性分析

基于FLAC 3D模拟不同倾角断层下隧道围岩稳定性分析摘要:本研究以狮子洋隧道为例,采用FLAC 3D软件模拟四个不同倾角的断层,探讨各倾角断层下隧道开挖前后围岩应力和应变变化。

结果显示,断层破碎带的初始地应力分布不均匀,尤其在破碎带处波动明显。

当开挖至破碎带,围岩应力降低迅速,隧道变形增大。

同时,断层倾角减小时,隧道开挖影响范围扩大,破碎带隧道位移更大更集中,围岩应力分布更不均匀。

主要表现为围岩应力在断层处下降幅度加大,隧道应力集中区域应力更密集更高。

关键词:有限差分法;数值模拟;断层落差Stability analysis of tunnel surrounding rock under different drop faults based on FLAC 3D simulationZhang YangTian1Abstract: This study takes the Shiziyang Tunnel as an example and uses the FLAC 3D software to simulate four different dip angles of faults, exploring the changes in stress and strain of surrounding rock before and after tunnel excavation under each dip angle fault. The results show that the initial stress distribution of the faulted zone is uneven, especially with significant fluctuations in the fractured zone. When excavating to the fractured zone, the surrounding rock stress decreases rapidly, and tunnel deformation increases. At the same time, when the fault dip angle decreases, the range of tunnel excavation influence expands, and the displacement of the fractured zone tunnel is larger and more concentrated, and the stressdistribution of surrounding rock is more uneven. This is mainly manifested by the greater decrease in rock stress at the faultlocation and a more concentrated and higher stress region in the tunnel's stress concentration area.Keywords: finite difference method; Numerical simulation; Fault drop随着中国的加速发展,基础设施的建设也成为中国迫切需要解决的问题,其中地质隧道和地下工程的复杂性成为中国隧道工程发展中遇到的最大问题。

五类围岩变形规范

五类围岩变形规范

五类围岩变形规范变形的类别1)脆性破裂,经常产生于高地应力地区。

存储有很大弹性应变能的岩体,在开挖卸荷后,能量突然释放形成的。

2)块体滑移,是块状结构围岩常见的破坏形式,常以结构面交汇切割组合成不同形状的块体滑移、塌落等形式出现。

3)岩层的弯曲折断,是层状围岩变形失稳的主要形式。

在倾斜层状围岩中,当层间结合不良时,顺倾向一侧拱脚以上部分岩层易弯曲折断,逆倾向一侧边墙或顶拱易滑落掉块。

在陡倾或直立岩层中,因洞周的切向应力与边墙岩层近于平行,所以边墙容易凸邦弯曲。

4)碎裂结构岩体在张力和振动力作用下容易松动、解脱,在洞顶则产生崩落,在边墙上则表现为滑塌或碎块的坍塌。

当结构面间夹泥时,往往会产生大规模的塌方,如不及时支护,将愈演愈烈,直至冒顶。

5)一般强烈风化、强烈构造破碎或新近堆积的土体,在重力、围岩应力和地下水作用下常产生冒落及塑性变形。

围岩的分级按国家标准《工程岩体分级标准》规定,本规范将原规范的“围岩分类”改为围岩分级。

分级方法与国家标准一致,采用《工程岩体分级标准》规定的方法、级别和顺序,即岩石隧道围岩稳定性等级由好至坏分为Ⅰ级、Ⅱ级、Ⅲ级、Ⅳ级和Ⅴ级。

考虑到土体中隧道的围岩分级,将松软的土体围岩定为Ⅵ级。

国内外现有的围岩分级方法有定性、定量、定性与定量相结合3种方法,且多以前两种方法为主。

定性分级的做法是,在现场对影响岩体质量的诸因素进行定性描述、鉴别、判断,或对主要因素作出评判、打分,有的还引入部分量化指标进行综合分级。

以定性为主的分级方法,如现行的公路、铁路隧道围岩分类(分级)等方法经验的成分较大,有一定人为因素和不确定性,在使用中,往往存在不一致,随勘察人员的认识和经验的差别,对同一围岩作出级别不同的判断。

采用定性分级的围岩级别,常常出现与实际差别1~2级的情况。

定量分级的做法是根据对岩体(或岩石)性质进行测试的数据或对各参数打分,经计算获得岩体质量指标,并以该指标值进行分级。

如国外N.Barton的Q分级、z.T.Bieni—awsks的地质力学(MRM)分级、Dree的RQD值分级等方法。

分析影响隧道围岩稳定性因素

分析影响隧道围岩稳定性因素

文章编号:1004 5716(2003)05 59 02中图分类号:U451+ 2 文献标识码:B 分析影响隧道围岩稳定性因素习小华(西安科技学院,陕西西安710054)摘 要:主要对影响隧道围岩稳定性的自然因素如岩石性质及岩体的结构、岩体的天然应力状态、地质构造、地下水进行了详细的分析。

关键词:围岩稳定性;天然应力状态;地质构造毫无疑问,隧道围岩的稳定性对隧道的正常运营是至关重要的。

从许多隧道发生的交通事故中可以知道,隧道围岩的稳定性不仅与岩石的性质、岩体的结构与构造、地下水、岩体的天然应力状态、地质构造等自然因素有关,而且还与隧道的开挖方式及支护的形式和时间等因素有关。

但其中起主导作用的还是岩石性质及岩体的结构、岩体的天然应力状态、地质构造、地下水等自然因素。

因此了解这些因素对围岩稳定性的影响和机理,才能够客观实际的采取相应的维护隧道围岩稳定的措施。

1 岩石性质及岩体的结构围岩的岩石性质和岩体结构通过围岩的强度来影响围岩的稳定性,是影响围岩稳定性的基本因素。

从岩性的角度,可以将围岩分为塑性围岩和脆性围岩,塑性围岩主要包括各类粘土质岩石、粘土岩类、破碎松散岩石以及吸水易膨胀的岩石等,通常具有风化速度快,力学强度低以及遇水软化、崩解、膨胀等不良性质,故对隧道围岩的稳定最为不利;脆性围岩主要各类坚硬体,由于这类岩石本身的强度远高于结构面岩石的强度,故这类围岩的强度主要取决于岩体的结构,岩性本身的影响不是很显著。

从围岩的完整性(围岩完整性可以用岩石质量指标RQ D、节理组数Jn、节理面粗糙程度Jy、节理变质系数Ja、裂隙水降低系数Jw、应力降低系数SR F八类因素进行定量分析)角度,可以将围岩分为五级即:完整、较完整、破碎、较破碎、极破碎。

如果隧道围岩的整体性质良好、节理裂隙不发育(如脆性围岩)即围岩为完整或较完整,那么,隧道开挖后,围岩产生的二次应力一般不会使岩体发生破坏,即使发生破坏,变形的量值也是较少的。

王明年教授-高地应力隧道大变形机理及控制措施

王明年教授-高地应力隧道大变形机理及控制措施

5-10
0.25-0.5 15-35
3-6
较大
洞周位移明显, 喷混凝土层严 弯曲型、软岩 中等 洞底局部有隆 重开裂,掉块, 塑流型、膨胀 10-15 (Ⅱ级) 起现象,变形 局部钢架变形, 型 持续时间长 锚杆垫板凹陷
0.150.25
35-50
6-10

现象同上,但 洞周变形强烈, 大面积发生, 强烈 洞底有明显隆 且产生锚杆拉 (Ⅲ级) 起现象,流变 断及钢架变形 特征很明显 扭曲现象
大变形是相对正常变形而言,正常支护位移上限取为预留变形量的0.8倍,即单线 隧道13cm、双线隧道25cm,高地应力隧道位移上限取为正常支护位移上限的2倍, 即单线隧道25cm、双线隧道50cm。
…………..
主要包括3种类型:
①高地应力作用下的挤压变形;②膨胀性围岩的膨胀变形;③断层破碎带的松弛变形
隧道塑性区、洞壁位移的3个影响因素 围岩强度应力比、围岩强度
塑性区半径与强度应力比、围岩强度的关系(朱永全)
强度应力比与隧道洞壁变形的关系(朱永全)
兰渝铁路毛羽山隧道
双线铁路隧道 薄层状碳质板岩地层,区域原岩应力较 大且以水平构造应力为主 最大水平主应力近22MPa
(李廷春,毛羽山隧道高地应力软岩大变形施工控制技术)
最大收敛值1200 mm 成因4点: ① 区域原岩应力较大,且与隧道线路走向大 角度相交 ② 围岩岩质软弱 ③ 支护强度不足 ④ 施工方法不当
西南交通大学 Southwest Jiaotong University
高地应力隧道大变形机理及 控制措施
主讲人:王明年 教授、博导 电 话:13808029798 E-mail:1653325765@
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档