初中数学竞赛辅导讲义及习题解答 第27讲 动态几何问题透视

初中数学竞赛辅导讲义及习题解答 第27讲 动态几何问题透视
初中数学竞赛辅导讲义及习题解答 第27讲 动态几何问题透视

第二十七讲动态几何问题透视

春去秋来,花开花落,物转星移,世间万物每时每刻都处于运动变化、相互联系、相互文档设计者:设计时间:文档类型:

文库精品文档,欢迎下载使用。Word精品文档,可以编辑修改,放心下载

转化中,事物的本质特征只有在运动中方能凸现出来.

动态几何问题,是指以几何知识和图形为背景,渗入运动变化观点的一类问题,常见的形式是:点在线段或弧线上运动、图形的翻折、平移、旋转等,解这类问题的基本策略是:1.动中觅静

这里的“静”就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.

2.动静互化

“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动”与“静”的关系.

3.以动制动

以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.

注:几何动态既是一类问题,也是一种观点与思维方法,运用几何动态的观点,可以把表面看来不同的定理统一起来,可以找到探求几何中的最值、定值等问题的方法;更一般情况是,对于一个数学问题,努力去发掘更多结论,不同解法,通过弱化或强化条件来探讨结论的状况等,这就是常说的“动态思维”.

【例题求解】

【例1】如图,把直角三角形ABC的斜边AB放在定直线上,按顺时针方向在l上转动两次,使它转到A″B″C″的位置,设BC=1,AC=3,则顶点A运动到点A″的位置时,点A 经过的路线与直线l所围成的面积是.

思路点拨解题的关键是将转动的图形准确分割.RtΔABC的两次转动,顶点A所经过的路线是两段圆弧,其中圆心角分别为120°和90°,半径分别为2和3,但该路线与直线l所围成的面积不只是两个扇形面积之和.

【例2】如图,在⊙O中,P是直径AB上一动点,在AB同侧作AA′⊥AB,BB′⊥AB,且AA′=AP,BB′=BP,连结A′B′,当点P从点A移到点B时,A′B′的中点的位置( ) A.在平分AB的某直线上移动B.在垂直AB的某直线上移动

C.在AmB上移动D.保持固定不移动

思路点拨画图、操作、实验,从中发现规律.

【例3】如图,菱形OABC的长为4厘米,∠AOC=60°,动点P从O出发,以每秒1厘米的速度沿O→A→B路线运动,点P出发2秒后,动点Q从O出发,在OA上以每秒1厘米的速度,在AB上以每秒2厘米的速度沿O→A→B路线运动,过P、Q两点分别作对角线AC的平行线.设P点运动的时间为x秒,这两条平行线在菱形上截出的图形(图中的阴影部分)的周长为y厘米,请你回答下列问题:

(1)当x=3时,y的值是多少?

(2)就下列各种情形:

①0≤x≤2;②2≤x≤4;③4≤x≤6;④6≤x≤8.求y与x之间的函数关系式.

(3)在给出的直角坐标系中,用图象表示(2)中的各种情形下y与x的关系.

思路点拨本例是一个动态几何问题,又是一个“分段函数”问题,需运用动态的观点,将各段分别讨论、画图、计算.

注:动与静是对立的,又是统:一的,无论图形运动变化的哪一类问题,都真实地反映了现

实世界中数与形的变与不变两个方面,从辩证的角度去观察、探索、研究此类问题,是一种重要的解题策略.

建立运动函数关系就更一般地、整体-地把握了问题,许多相关问题就转化为求函数值或自变量的值.

【例4】如图,正方形ABCD中,有一直径为BC的半圆,BC=2cm,现有两点E、F,分别从点B、点A同时出发,点E沿线段BA以1m/秒的速度向点A运动,点F沿折线A —D—C以2cm/秒的速度向点C运动,设点E离开点B的时间为2 (秒).

(1)当t为何值时,线段EF与BC平行?

(2)设1

(3)当1≤t<2时,设EF与AC相交于点P,问点E、F运动时,点P的位置是否发生变化?若发生变化,请说明理由;若不发生变化,请给予证明,并求AP:PC的值.

思路点拨动中取静,根据题意画出不同位置的图形,然后分别求解,这是解本例的基本策略,对于(1)、(2),运用相关几何性质建立关于t的方程;对于(3),点P的位置是否发生变

化,只需看

PC

AP

是否为一定值.

注:动态几何问题常通过观察、比较、分析、归纳等方法寻求图形中某些结论不变或变化规律,而把特定的运动状态,通过代数化来定量刻画描述也是解这类问题的重要思想.

【例5】⊙O1与⊙O2相交于A、B两点;如图(1),连结O2 O1并延长交⊙O1于P点,连结PA、PB并分别延长交⊙O2于C、D两点,连结C O2并延长交⊙O2于E点.已知⊙O2的半径为R,设∠CAD=α.

(1)求:CD的长(用含R、α的式子表示);

(2)试判断CD与PO1的位置关系,并说明理由;

(3)设点P′为⊙O1上(⊙O2外)的动点,连结P′A、P′B并分别延长交⊙O2于C′、D′,请你探究∠C′AD′是否等于α? C′D′与P′O l的位置关系如何?并说明理由.

思路点拨对于(1)、(2),作出圆中常见辅助线;对于(3),P点虽为OO l上的一个动点,但⊙O1、⊙O2一些量(如半径、AB)都是定值或定弧,运用圆的性质,把角与孤联系起来.

学力训练

1.如图, ΔABC 中,∠C=90°,AB=12cm ,∠ABC=60°,将ΔABC 以点B 为中心顺时针旋转,使点C 旋转到AB 延长线上的D 处,则AC 边扫过的图形的面积是 cm (π=3.14159…,最后结果保留三个有效数字).

2.如图,在Rt Δ ABC 中,∠C=90°,∠A=60°,AC=3 cm ,将ΔABC 绕点B 旋转至ΔA'BC'的位置,且使A 、B 、C'三点在同一条直线上,则点A 经过的最短路线的长度是 cm .

3.一块等边三角形的木板,边长为l ,现将木板沿水平线翻滚,那么B 点从开始至结束走过的路径长度为( ) A .

23π B .3

C .4

D .232π+

4.把ΔABC 沿AB 边平移到ΔA'B'C'的位置,它们的重叠部分的面积是ΔABC 的面积的一半,若AB=2,则此三角形移动的距离AA'是( )

A .12-

B .

2

2

C .1

D .21

5.如图,正三角形ABC 的边长为63厘米,⊙O 的半径为r 厘米,当圆心O 从点A 出发,沿着线路AB —BC —CA 运动,回到点A 时,⊙O 随着点O 的运动而移动. (1)若r=3厘米,求⊙O 首次与BC 边相切时AO 的长;

(2)在O 移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同的情况下,r 的取值范围及相应的切点个数;

(3)设O 在整个移动过程中,在ΔABC 内部,⊙O 未经过的部分的面积为S ,在S>0时,求关于r 的函数解析式,并写出自变量r 的取值范围.

6.已知:如图,⊙O韵直径为10,弦AC=8,点B在圆周上运动(与A、C两点不重合),连结BC、BA,过点C作CD⊥AB于D.设CB的长为x,CD的长为y.

(1)求y关于x的函数关系式;当以BC为直径的圆与AC相切时,求y的值;

(2)在点B运动的过程中,以CD为直径的圆与⊙O有几种位置关系,并求出不同位置时y 的取值范围;

(3)在点B运动的过程中,如果过B作BE⊥AC于E,那么以BE为直径的圆与⊙O能内切吗?若不能,说明理由;若能,求出BE的长.

7.如图,已知A为∠POQ的边OQ上一点,以A为顶点的∠MAN的两边分别交射线OP 于M、N两点,且∠MAN=∠POQ=α(α为锐角).当∠MAN以点A为旋转中心,AM边从与AO重合的位置开始,按逆时针方向旋转(∠MAN保持不变)时,M、N两点在射线OP上同时以不同的速度向右平移移动.设OM=x,ON= (y>x≥0),ΔAOM的面积为S,若cosα、OA是方程0

-z

z的两个根.

+

2

5

22=

(1)当∠MAN旋转30°(即∠OAM=30°)时,求点N移动的距离;

(2)求证:AN2=ON·MN;

(3)求y与x之间的函数关系式及自变量x的取值范围;

(4)试写出S随x变化的函数关系式,并确定S的取值范围.

8.已知:如图,梯形ABCD中,AD∥BC,AB=CD=3cm,∠C=60°,BD⊥CD.

(1)求BC、AD的长度;

(2)若点P从点B开始沿BC边向点C以2cm/s的速度运动,点Q从点C开始沿CD 边向点D以1cm/s的速度运动,当P、Q分别从B、C同时出发时,写出五边形ABPQD 的面积S与运动时间t之间的函数关系式,并写出自变量t的取值范围(不包含点P在B、C 两点的情况);

(3)在(2)的前提下,是否存在某一时刻t,使线段PQ把梯形ABCD分成两部分的面积比为1:5?若存在,求出t的值;若不存在,请说明理由.

9.已知:如图①,E 、F 、G 、H 按照AE=CG ,BF=DH ,BF =nAE(n 是正整数)的关系,分别在两邻边长a 、na 的矩形ABCD 各边上运动. 设AE=x ,四边形EFGH 的面积为S .

(1)当n=l 、2时,如图②、③,观察运动情况,写出四边形EFGH 各顶点运动到何位置,使?

(2)当n=3时,如图④,求S 与x 之间的函数关系式(写出自变量x 的取值范围),探索S 随x 增大而变化的规律;猜想四边形EFGH 各顶点运动到何位置,使ABCD S S 矩形2

1

; (3)当n=k (k ≥1)时,你所得到的规律和猜想是否成立?请说明理由.

10.如图1,在直角坐标系中,点E 从O 点出发,以1个单位/秒的速度沿x 轴正方向运动,点F 从O 点出发,以2个单位/秒的速度沿y 轴正方向运动,B(4,2),以BE 为直径作⊙

O 1.

(1)若点E 、F 同时出发,设线段EF 与线段OB 交于点G ,试判断点G 与⊙O 1的位置关系,并证明你的结论;

(2)在(1)的条件下,连结FB ,几秒时FB 与⊙O 1相切?

(3)如图2,若E 点提前2秒出发,点F 再出发,当点F 出发后,E 点在A 点左侧时,设BA ⊥x 轴于A 点,连结AF 交⊙O 1于点P ,试问PA ·FA 的值是否会发生变化?若不变,请说明理由,并求其值;若变化,请求其值的变化范围.

参考答案

温馨提示

After writing the test paper, you must remember to check Oh, I wish you all can achieve good results!

可以编辑的试卷(可以删除)

初中数学竞赛辅导几何变换(旋转)

第2讲几何变换——旋转 典型例题 【例1】C是线段AE上的点,以AC、CE为边在线段AE的同侧作等边三角形ABC、CDE, △是等设AD的中点是M,BE的中点是N,连结MN、MC、NC,求证:CMN 边三角形.Array【例2】如图,两个正方形ABCD和AKLM有一个公共点A.求证:这两个正方形的中心以 及线段BM,DK的中点是某正方形的顶点. L

【例3】 已知:如图,ABC △、CDE △、EHK △都在等边三角形,且A 、D 、K 共线, AD DK =.求证:HBD △也是等边三角形. 【例4】 ABC △是等边三角形,P 是AB 边的中点,Q 是AC 边的中点,R 为BC 边的中点, M 为RC 上任意一点,且PMS △是等边三角形,S 与Q 在PM 的同侧,求证: RM QS =. E C H D B A Q ? S M P C B A R

【例5】 ABCD 是正方形,P 是ABCD 内一点,1PA =,3PB = ,PD =求正方形ABCD 的面积. 【例6】 P 是等边三角形ABC 内的一点,6PA =,8PB =,10PC =.求ABC △的边长. D

【例7】 设O 是等边ABC △内一点,已知115AOB ?∠=,125BOC ?∠=,求以线段OA 、OB 、 OC 为边所构成的三角形的各内角大小. 【例8】 如图,在ABC △中,90ACB ?∠=,AC BC =,P 是ABC △内一点,3PA =,1PB =, 2PC =,求BPC ∠. A P C

如图,已知ABC △中,90A =,AB AC =,D 为BC 上一点,求证:2222BD DC AD +=. 【例9】 如图,在等腰直角ABC △中,90ACB ?∠=,CA CB =,P 、Q 在斜边AB 上,且 45PCQ ?∠=,求证:222PQ AP BQ =+. A D C B A Q B C P

2020年初中数学竞赛讲义:第11讲-双曲线

第十一讲 双曲线 形如x k y =(0≠k )的函数叫做反比例函数,它的图象是由两条曲线组成的双曲线,与双曲线相关的知识有: 1. 双曲线解析式x k y =中的系数k 决定图象的大致位置及y 随x 变化的状况. 2.双曲线图象上的点是关于原点O 成中心对称,在k >0时函数的图象关于直线x y =轴对称;在k <0时函数的图象关于直线x y -=轴对称. 3.自变量的取值是不等于零的全体实数,双曲线向坐标轴无限延伸但不能接近坐标轴. 【例题求解】 【例1】 已知反比例函数x k y =的图象与直线x y 2=和1+=x y 过同一点,则当0>x 时,这个反比例函数的函数值y 随x 的增大而 (填增大或减小). 思路点拨 确定k 的值,只需求出双曲线上一点的坐标即可. 注:(1)解与反比函数相关问题时,充分考虑它的对称性(关于原点O 中心称,关于x y ±=轴对称),这样既能从整上思考问题,又能提高思维的周密性. (2)一个常用命题:

如图,设点A 是反比例函数x k y =(0≠k )的图象上一点,过A 作AB ⊥x 轴于B ,过A 作AC ⊥y 轴于C ,则 ①S △AOB =k 2 1; ②S 矩形OBAC =k . 【例2】 如图,正比例函数kx y = (0>k )与反比例函数x y 1=的图象相交于A 、C 两点,过A 作AB ⊥x 轴于B ,连结BC ,若S △ABC 的面积为S ,则( ) A .S=1 B .S =2 C .S=k D .S=2k 思路点拨 运用双曲线的对称性,导出S △AOB 与S △OBC 的关系. 【例3】 如图,已知一次函数8+-=x y 和反比例函数x k y =(0≠k )的图象在第一象限内有两个不同的公共点A 、B . (1)求实数k 的取值范围; (2)若△AOB 面积S =24,求k 的值. 思路点拨 (1)两图象有两个不同的公共点,即联立方程组有两组不同实数解; (2)S △AOB= S △COB S- S △COA ,建立k 的方程.

初中数学竞赛辅导讲义及习题解答 第21讲 从三角形的内切圆谈起

第二十一讲 从三角形的内切圆谈起 和多边形的各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形.三角形的内切圆的圆心叫做这个三角形的内心,圆外切三角形、圆外切四边形有下列重要性质: 1.三角形的内心是三角形的三内角平分线交点,它到三角形的三边距离相等; 2.圆外切四边形的两组对边之和相等,其逆亦真,是判定四边形是否有外切圆的主要方法. 当圆外切三角形、四边形是特殊三角形时,就得到隐含丰富结论的下列图形: 注:设Rt △ABC 的各边长分别为a 、b 、c (斜边),运用切线长定理、面积等知识可得到其内切圆半径的不同表示式: (1)2 c b a r -+=; (2)c b a ab r ++= . 请读者给出证 【例题求解】 【例1】 如图,在Rt △ABC 中,∠C=90°°,BC=5,⊙O 与Rt △ABC 的三边AB 、

BC、AC分相切于点D、E、F,若⊙O的半径r=2,则Rt△ABC的周长为.思路点拨AF=AD,BE=BD,连OE、OF,则OECF为正方形,只需求出AF(或AD)即可. 【例2】如图,以定线段AB为直径作半圆O,P为半圆上任意一点(异于A、B),过点P作半圆O的切线分别交过A、B两点的切线于D、C,AC、BD相交于N点,连结ON,NP,下列结论:①四边形ANPD是梯形;②ON=NP:③DP·P C为定值; ④FA为∠NPD的平分线,其中一定成立的是( ) A.①②③ B.②③④ C.①③④ D.①④ 思路点拨本例综合了切线的性质、切线长定理、相似三角形,判定性质等重要几何知识,注意基本辅助线的添出、基本图形识别、等线段代换,推导出NP∥AD∥BC是解本例的关键. 【例3】如图,已知∠ACP=∠CDE=90°,点B在CE上,CA=CB=CD,过A、C、D 三点的圆交AB于F,求证:F为△CDE的内心.

初中数学竞赛第二轮专题复习(4)几何

初中数学竞赛第二轮专题复习(4) 几何 1、如图,D ,E 分别为?AB C的边AB ,AC 上的点,且不与?A BC 的顶点重合.已知AE 的长为m,AC 的长为n,A D,AB的长是关于x 的方程2140x x mn -+=的两个根. (Ⅰ)证明:C ,B,D,E 四点共圆; (Ⅱ)若∠A=90°,且m=4, n=6,求C,B ,D,E 所在圆的半径. 解:(Ⅰ)连接DE,根据题意在△ADE 和△ACB 中,A D×A B=mn=A E×A C,即AD AE AC AB =. 又∠DAE=∠CAB ,从而△ADE ∽△ACB 因此∠AD E=∠A CB ,所以C , B, D, E 四点共圆. (Ⅱ)m=4, n =6时,方程x2-14x +mn=0的两根为x1=2,x 2=12. 故AD =2,AB =12. 取CE 的中点G ,DB 的中点F,分别过G,F 作AC ,AB 的垂线,两垂线相交于H点,连接DH . 因为C , B , D, E 四点共圆,所以C, B , D, E 四点所在圆的圆 心为H,半径为DH. 由于∠A=90°,故GH∥AB,H F∥AC .H F=AG=5,D F=12 (12-2)=5. 故C,B,D,E四点所在圆的半径为 . 2、在等腰?AB C中,顶角∠AC B=80°,过A , B引两直线在?ABC 内交于一点O.若∠O AB=10°, ∠OBA=20°,求∠ACO 的大小,并证明你的结论. 解:60ACO ∠=?(4分) 以OA 为轴翻转OAB ?到OAB '?,连接,CB BB '',由10OAB ∠=?知20BAB '∠=?且AB AB '=,ABB '为等 腰三角形,故80AB B ACB '∠=?=∠,从而知,,,A B B C '四点共圆,再由20ABO ∠=?知60OBB '∠=?,BB O '?为 等边三角形.由四点共圆知100ACB '∠=?,又 30OBC B BC '∠=∠=?,OB B B '=,BC 公共,故OBC B BC '???. 再由100ACB '∠=?,80ACB ∠=?,故20OCB ∠=?,从而得证:60ACO ∠=?. 答题要点:60ACO ∠=? 以OA 为轴翻转OAB ?到OAB '?,连接,CB BB '' ①OBB '?为正三角形;

初中数学竞赛辅导资料

初中数学竞赛专题选讲 识图 一、内容提要 1.几何学是研究物体形状、大小、位置的学科。 2.几何图形就是点,线,面,体的集合。点是组成几何图形的基本元素。《平面几何学》只研究在同一平面内的图形的形状、大小和相互位置。 3.几何里的点、线、面、体实际上是不能脱离物体而单独存在的。因此单独研究点、线、面、体,要靠正确的想像 点:只表示位置,没有大小,不可再分。 线:只有长短,没有粗细。线是由无数多点组成的,即“点动成线”。面:只有长、宽,没有厚薄。面是由无数多线组成的,“线动成面”。4.因为任何复杂的图形,都是由若干基本图形组合而成的,所以识别图形的组合关系是学好几何的重要基础。 识别图形包括静止状态的数一数,量一量,比一比,算一算;运动状态中的位置、数量的变化,图形的旋转,摺叠,割补,并合,比较等。还要注意一般图形和特殊图形的差别。 二、例题 例1.数一数甲图中有几个角(小于平角)?乙图中有几个等腰三角形?丙图中有几全等三角形?丁图中有几对等边三角形? E 解:甲图中有10个角:∠AOB, ∠AOC,∠BOC,∠BOD,∠COD, ∠COE,∠DOE,∠DOA,∠EOA,∠EOB.如果OA和OC成一直线,则少一个∠AOC,余类推。 乙图中有5个等腰三角形:△ABC,△ABD,△BDC,△BDE,△DEC 丙图中有全等三角形4对:(设AC和DB相交于O) △AOB≌△COD,△AOD≌△BOC,△ABC≌△CDA,△BCD≌△DAB。

丁图中共有等边三角形48个: 边长1个单位:顶点在上▲的个数有 1+2+3+4+5=15 顶点在下▼的个数有 1+2+3+4=10 边长2个单位:顶点在上▲的个数有 1+2+3+4=10 顶点在下▼的个数有 1+2=3 边长3个单位:顶点在上▲的个数有 1+2+3=6 边长4个单位:顶点在上▲的个数有 1+2=3 边长5个单位:顶点在上▲的个数有 1 以上要注意数一数的规律 例2.设平面内有6个点A 1,A 2,A 3,A 4,A 5,A 6,其中任意3个点都不在同 一直线上,如果每两点都连成一条线,那么共有线段几条?如果要使图形不 出现有4个点的两两连线,那么最多可连成几条线段?试画出图形。 (1989年全国初中数学联赛题) 解:从点A 1与其他5点连线有5条,从点A 2与其他4点(A 1除外)连线 有4条,从A 3与其他3点连线有3条(A 1,A 2除外)……以此类推,6个 点两两连线共有线段1+2+3+4+5=15(条),或用每点都与其他5点 连线共5×6再除以2(因重复计算)。 要使图形不出现有4个点的两两连线,那么每点只能与其他4个点连线, 共有(6×4)÷2=12(条)如下图:其中有3对点不连线:A 1A 4,A 2A 5, A 3A 6 A 3 1 2 例3.如图水平线与铅垂线相交于O ,某甲沿水平线,某乙铅垂线同时匀速 前进,当甲在O 点时,乙离点O 为500米,2分钟后,甲、乙离点O 相 等;又过8分钟,甲、乙再次离点O 相等。求甲和乙的速度比。 解:如图设甲0,乙0为开始位置,甲1,乙1为前进2分钟后位置,甲2,乙2 乙2 为再前进8分钟的位置。再设甲,乙的速度分别为每分钟x,y 米,根据题意得 ? ??-=-=500101025002y x y x 甲 O 甲1 甲2 解得12x=8y 乙1 ∴x ∶y=2∶3

初中数学竞赛辅导讲义及习题解答第14讲图第14讲图表信息问题51

第十四讲图表信息问题 21世纪是一个信息化的社会,从纷繁的信息中,捕捉搜集、处理、加工所需的信息,是新世纪对一个合格公民提出的基本要求. 图表信息问题是近年中考涌现的新问题,即运用图象、表格及一定的文字说明提供问题情境的一类试题. 图象信息题是把需要解决的问题借助图象的特征表现出来,解题时要通过对图象的解读、分析和判断,确定图象对应的函数解析式中字母系数符号特征和隐含的数量关系,然后运用数形结合、待定系数法等方法解决问题. 表格信息题是运用二维表格提供数据关系信息,解题中需通过对表中的数据信息的分析、比较、判断和归纳,弄清表中各数据所表示的含义及它们之间的内在联系,然后运用所学的方程(组)、不等式(组)及函数知识等解决问题. 【例题求解】 【例1】一慢车和一快车沿相同的路线从A到B地,所行的路程与时间的函数图象如图所示,试根据图象,回答下列问题: (1)慢车比快车早出发小时,快车追上慢车时行驶了千米,快车比慢车 早小时到达6地; (2)快车追上慢车需小时,慢车、快车的速度分别为千米/时; (3)A、B两地间的路程是. 思路点拨对于(2),设快车追上慢车需t小时,利用快车、慢车所走的路程相等,建立t的方程. 注:股市行情走势图、期货市场趋势图、工厂产值利润表、甚而电子仪器自动记录的地震波等,它们广泛出现在电视、报刊、广告中,渗透到现实生活的每一角落,这些图表、图象中蕴涵着丰富的信息,我们应学会收集、整理与获取. 【例2】已知二次函数c + =2的图象如图,并设M=b y+ ax bx + + - + 2, +2 - - + a a- a c b b b c a 则( ) A.M>0 B.M=0 C.M<0 D.不能确定M为正、为负或为0 思路点拨由抛物线的位置判定a、b、c的符号,并由1 x,推出相应y值的正负性. = ±

数学初中竞赛大题训练:几何专题(含答案)

数学初中竞赛大题训练:几何专题 1.阅读理解: 如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”.证明“四点共圆”判定定理有:1、若线段同侧两点到线段两端点连线夹角相等,那么这两点和线段两端点四点共圆;2、若平面上四点连成的四边形对角互补,那么这四点共圆.例:如图1,若∠ADB=∠ACB,则A,B,C,D四点共圆;或若∠ADC+∠ABC=180°,则A,B,C,D四点共圆. (1)如图1,已知∠ADB=∠ACB=60°,∠BAD=65°,则∠ACD=55°; (2)如图2,若D为等腰Rt△ABC的边BC上一点,且DE⊥AD,BE⊥AB,AD=2,求AE 的长; (3)如图3,正方形ABCD的边长为4,等边△EFG内接于此正方形,且E,F,G分别在边AB,AD,BC上,若AE=3,求EF的长. 解:(1)∵∠ADB=∠ACB=60°, ∴A,B,C,D四点共圆, ∴∠ACD=∠ABD=180°﹣∠ADB﹣∠BAD=180°﹣60°﹣65°=55°, 故答案为:55°; (2)在线段CA取一点F,使得CF=CD,如图2所示: ∵∠C=90°,CF=CD,AC=CB, ∴AF=DB,∠CFD=∠CDF=45°, ∴∠AFD=135°, ∵BE⊥AB,∠ABC=45°, ∴∠ABE=90°,∠DBE=135°, ∴∠AFD=∠DBE, ∵AD⊥DE,

∴∠ADE=90°, ∵∠FAD+∠ADC=90°,∠ADC+∠BDE=90°, ∴∠FAD=∠BDE, 在△ADF和△DEB中,, ∴△ADF≌△DEB(ASA), ∴AD=DE, ∵∠ADE=90°, ∴△ADE是等腰直角三角形, ∴AE=AD=2; (3)作EK⊥FG于K,则K是FG的中点,连接AK,BK,如图3所示:∴∠EKG=∠EBG=∠EKF=∠EAF=90°, ∴E、K、G、B和E、K、F、A分别四点共圆, ∴∠KBE=∠EGK=60°,∠EAK=∠EFK=60°, ∴△ABK是等边三角形, ∴AB=AK=KB=4,作KM⊥AB,则M为AB的中点, ∴KM=AK?sin60°=2, ∵AE=3,AM=AB=2, ∴ME=3﹣2=1, ∴EK===, ∴EF===.

南开中学初中数学竞赛辅导资料

初中数学竞赛辅导资料 第一讲数的整除 一、容提要: 如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除. 能被7整除的数的特征: ①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除。 如 1001 100-2=98(能被7整除) 又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征: ①抹去个位数 ②减去原个位数 ③其差能被11整除 如 1001 100-1=99(能11整除) 又如10285 1028-5=1023 102-3=99(能11整除) 二、例题 例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。 求x,y 解:x,y 都是0到9的整数,∵75y 能被9整除,∴y=6. ∵328+92x =567,∴x=3 例2已知五位数x 1234能被12整除,求x 解:∵五位数能被12整除,必然同时能被3和4整除, 当1+2+3+4+x 能被3整除时,x=2,5,8

当末两位4x能被4整除时,x=0,4,8 ∴x=8 例3求能被11整除且各位字都不相同的最小五位数 解:五位数字都不相同的最小五位数是10234, 但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行 调整末两位数为30,41,52,63,均可, ∴五位数字都不相同的最小五位数是10263。 练习一 1、分解质因数:(写成质因数为底的幂的连乘积) ①756②1859 ③1287 ④3276 ⑤10101 ⑥10296 987能被3整除,那么 a=_______________ 2、若四位数a x能被11整除,那么x=__________ 3、若五位数1234 35m能被25整除 4、当m=_________时,5 9610能被7整除 5、当n=__________时,n 6、能被11整除的最小五位数是________,最大五位数是_________ 7、能被4整除的最大四位数是____________,能被8整除的最大四位数是_________。 8、8个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152,⑧70972 中,能被下列各数整除的有(填上编号): 6________,8__________,9_________,11__________ 9、从1到100这100个自然数中,能同时被2和3整除的共_____个,能被3整除 但不是5的倍数的共______个。 10、由1,2,3,4,5这五个自然数,任意调换位置而组成的五位数中,不能被3 整除的数共有几个?为什么?

初中数学竞赛辅导讲义及习题解答 第15讲 统计的思想方法

第十五讲 统计的思想方法 20世纪90年代,美国麻省理工学院教授尼葛洛庞帝写过一本畅销全球的《数字化生存》一书.事实上,我们的生活、工作离不开数据,要做到心中有数、用数据说话是信息社会对人的基本要求. 统计学是一门研究如何收集、整理、分析数据,并在此基础上作出推断的科学. 随机抽样与统计推断是统计中最重要的思想方法,也是认识客观世界的事物和现象的方法之一.即用样本的某种特征去估计总体的相应特征,用样本的平均水平、波动情况、分布规律等特征估计总体的平均水平、波动情况和分布规律. 【例题求解】 【例1】 现有A ,B 两个班级,每个班级各有45名学生参加一次测验.每名参加者可获得0,1,2,3,4,5,6,7,8,9分这几种不同的分值中的一种.测试结果A 班的成绩如下表所示,B 班的成绩如图所示. (1)由观察所得, 班的标准差较大; (2)若两班合计共有60人及格,问参加者最少获 分才可以及格. 思路点拨 对于(2),数一数两班在某一分数以上的人数即可,凭直觉与估计得出答案. 注: 平均数、中位数、众数都是反映一组数据集中趋势的特征数,但是它们描述集中趋势的侧重点是不同的: (1)平均数易受数据中少数异常值的影响,有时难以真正反映“平均”; (2)若一组数据有数据多次重复出现,则常用众数来刻画这组数据的集中趋势. 【例2】 已知数据1x 、2x 、3x 的平均数为a ,1y 、2y 、3y 的平均数为b ,则数据1132y x +、2232y x +、3332y x +的平均数为( ) A .2a+3b B .b a +3 2 C .6a+9b D .2a+b 思路点拨 运用平均数计算公式并结合已知条件导出新数据的平均数.

初中数学竞赛辅导讲义及习题解答 第8讲 由常量数学到变量数学

第八讲由常量数学到变量数学 数学漫长的发展历史大致历经四个时期:以自然数、分数体系形成的萌芽期;以代数符号体系形成的常量数学时期;以函数概念产生的变量数学时期;以集合论为标志的现代数学时期. 函数是数学中最重要的概念之一,它是变量数学的标志,“函数”是从量的侧面去描述客观世界的运动变化、相互联系,从量的侧面反映了客观世界的动态和它们的相互制约性.函数的基本知识有:与平面直角坐标系相关的概念、函数概念、函数的表示法、函数图象概念及画法. 在坐标平面内,由点的坐标找点和由点求坐标是“数”与“形”相互转换的最基本形式.点的坐标是解决函数问题的基础,函数解析式是解决函数问题的关键,所以,求点的坐标、探求函数解析式是研究函数的两大重要课题. 【例题求解】 【例1】在平面直角坐标系内,已知点A(2,2),B(2,-3),点P在y轴上,且△APB为直角三角形,则点P的个数为. 思路点拨先在直角坐标平面内描出A、B两点,连结AB,因题设中未指明△APB的哪个角是直角,故应分别就∠A、∠B、∠C为直角来讨论,设点P(0,x),运用几何知识建立x 的方程. 注:点的坐标是数与形结合的桥梁,求点的坐标的基本方法有: (1)利用几何计算求; (2)通过解析式求; (3)解由解析式联立的方程组求. 【例2】如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后, 继续注水,直至注满水槽.水槽中水面上升高度h与注水时间t之间的 函数关系,大致是下列图象中的() 思路点拨向烧杯注水需要时间,并且水槽中水面上升高0 h. 注:实际生活中量与量之间的关系可以形象地通过图象直观地表现出来,如心电图、,股市行情走势图等,图象中包含着丰富的图象信息,要善于从图象的形状、位置、发展变化趋势等有关信息中获得启示.

初中数学竞赛 几何专题:点共线问题(含答案)

初中数学竞赛 几何专题:点共线问题(含答案) 1. 锐角三角形ABC 中,45BAC ∠=?,BE 、CF 是两条高,H 为ABC △的垂心,M 、K 分别是BC 、 AH 的中点.证明:MK 、EF 和OH 共点,这里O 为ABC △的外心. 解析 如图,由条件45BAE ∠=?,可知AEB △和AFC △都是等腰直角三角形,而O 为AB 、BC 的中垂线上的点,故EO AB ⊥,FO AC ⊥,于是EO CF ∥,FO BE ∥,从而四边形EOFH 为平行四边形.故EF 与OH 的交点为EF 的中点. 另一方面,M 、K 为BC 、AH 的中点,结合直角三角形斜边上的中线等于斜边的一半,可知 12EM MF BC ==,1 2 EK KF AH ==.即四边形EKFM 为菱形,所以EF 与KM 的交点亦是EF 的中点. 从而命题获证. 2. 四边形SPNM 与PFET 都是正方形,且点S 、P 、T 共线,点N 、P 、F 共线,连结MT 、SE , 点S 在MT 上的射影是点A ,点T 在SE 上的射影是点B ,求证:点A 、P 、B 共线. 解析 设AB 与ST 交于点P ',又设ATS α∠=,TSE β∠=.于是由180ASB ATB ∠+∠=?,有 tan cot ASB ATB S SP AS BS P T S AT BT αβ'?===?'?△△ MS ST MS SP ST TE TE PT = ?== , 即点P 与点P '重合. 3. 在矩形ABCD 的边AB 、BC 、CD 、DA 上分别取异于顶点的K 、L 、M 、N ,已知KL MN ∥.证明KM 与LN 的交点O 在矩形的对角线BD 上. 解析 连结OB 、OD . B M N A S P T F E D M C N O L A K B

初中数学竞赛辅导讲义全

专业资料 初中数学竞赛辅导讲义(初三) 第一讲 分式的运算 [知识点击] 1、 分部分式:真分式化为另几个真分式的和,一般先将分母分解因式,后用待定系数法进行。 2、 综合除法:多项式除以多项式可类似于是有理数的除法运算,可列竖式来进行。 3、 分式运算:实质就是分式的通分与约分。 [例题选讲] 例1.化简 2312++x x + 6512++x x + 12 712++x x 解:原式= )2)(1(1++x x + )3)(2(1++x x + ) 4)(3(1++x x = 11+x - 21+x + 21+x - 31+x + 31+x - 4 1+x =) 4)(1(3++x x 例2. 已知 z z y x -+ = y z y x +- = x z y x ++- ,且xyz ≠0,求分式xyz x z z y y x ))()((+-+的值。

专业资料 解:易知:z y x + = y z x + = x z y + =k 则?? ???=+=+=+)3()2()1(kx z y ky z x kz y x (1)+(2)+(3)得:(k-2)(x+y+z)=0 k=2 或 x+y+z=0 若k=2则原式= k 3 = 8 若 x+y+z=0,则原式= k 3 =-1 例3.设 1 2+-mx x x =1,求 12242+-x m x x 的值。 解:显然X 0≠,由已知x mx x 12+- =1 ,则 x +x 1 = m + 1 ∴ 22241x x m x +- = x2 + 21x - m2= (x +x 1)2-2 –m2 =( m +1)2-2- m2= 2m -1 ∴原式=1 21-m 例4.已知多项式3x 3 +ax 2 +3x +1 能被x 2 +1整除,求a的值。 解:

【重磅】初中数学竞赛辅导讲座19讲(全套)

第一讲有理数 一、有理数的概念及分类。 二、有理数的计算: 1、 善于观察数字特征; 2、灵活运用运算法则; 3、掌握常用运算技巧(凑整法、分拆 法等)。 三、例题示范 1、数轴与大小 例1、 已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3, 那么满足条件的点B 与原点O 的距离之和等于多少?满足条件的点B 有多少 个? 例2、 将99 98 ,19991998,9897,19981997----这四个数按由小到大的顺序,用“<”连结起来。 提示1:四个数都加上1不改变大小顺序; 提示2:先考虑其相反数的大小顺序; 提示3:考虑其倒数的大小顺序。 例3、 观察图中的数轴,用字母a 、b 、c 依次表示点A 、B 、C 对应的数。试确定三个 数c a b ab 1,1,1-的大小关系。 分析:由点B 在A 右边,知b-a >0,而A 、B 都在原点左边,故ab >0,又c >1>0,故要比较c a b ab 1,1,1-的大小关系,只要比较分母的大小关系。 例4、 在有理数a 与b(b >a)之间找出无数个有理数。 提示:P=n a b a -+(n 为大于是的自然数) 注:P 的表示方法不是唯一的。 2、 符号和括号 在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。 例5、 在数1、2、3、…、1990前添上“+”和“—”并依次运算,所得可能的最小非 负数是多少?

提示:造零:n-(n+1)-(n+2)+(n+3)=0 注:造零的基本技巧:两个相反数的代数和为零。 3、算对与算巧 例6、 计算-1-2-3-…-20KK -20KK -20KK 提示:1、逆序相加法。2、求和公式:S=(首项+末项)?项数÷2。 例7、 计算1+2-3-4+5+6-7-8+9+…-20KK+20KK+20KK 提示:仿例5,造零。结论:20KK 。 例8、 计算 9 9 9 9991999999个个个n n n +? 提示1:凑整法,并运用技巧:199…9=10n +99…9,99…9=10n -1。 例9、 计算 -+++?----)20021 3121()2001131211( )2001 13121()2002131211(+++?---- 提示:字母代数,整体化:令2001 1 3121,2001131211+ ++=----= B A ,则 例10、 计算 (1)100991 321211?++?+? ;(2)100981421311?+ +?+? 提示:裂项相消。 常用裂项关系式: (1)n m mn n m 1 1+=+; (2)111)1(1+-=+n n n n ; (3))11(1)(1m n n m m n n +-=+;(4) ]) 2)(1(1 )1(1[21)2)(1(1++-+=++n n n n n n n 。 例11计算n +++++ ++++++ 3211 32112111(n 为自然数) 例12、计算1+2+22+23+…+220KK 提示:1、裂项相消:2n =2n+1-2n ;2、错项相减:令S=1+2+22+23+…+220KK ,则S=2S -S=220KK -1。 例13、比较20002 2000 164834221+++++= S 与2的大小。 提示:错项相减:计算S 2 1 。 第二讲绝对值 一、知识要点

初中数学竞赛辅导讲义及习题解答大全 (含竞赛答题技巧)

(共30套)初中数学竞赛辅导讲义及习题解答大全适合中学教师作为辅导教材使用

第一讲 走进追问求根公式 形如02=++c bx ax (0≠a )的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法. 而公式法是解一元二次方程的最普遍、最具有一般性的方法. 求根公式a ac b b x 2422 ,1-±-= 内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美. 降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决. 解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法. 【例题求解】 【例1】满足1)1(22=--+n n n 的整数n 有 个. 思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程. 【例2】设1x 、2x 是二次方程032=-+x x 的两个根,那么1942231+-x x 的值等于( ) A 、一4 B 、8 C 、6 D 、0 思路点拨:求出1x 、2x 的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如1213x x -=,2223x x -=. 【例3】 解关于x 的方程02)1(2=+--a ax x a . 思路点拨:因不知晓原方程的类型,故需分01=-a 及01≠-a 两种情况讨论. 【例4】 设方程04122=---x x ,求满足该方程的所有根之和. 思路点拨:通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解. 【例5】 已知实数a 、b 、c 、d 互不相等,且x a d d c c b b a =+=+=+=+ 1 111, 试求x 的值. 思路点拨:运用连等式,通过迭代把b 、c 、d 用a 的代数式表示,由解方程求得x 的值. 注:一元二次方程常见的变形形式有: (1)把方程02=++c bx ax (0≠a )直接作零值多项式代换; (2)把方程02=++c bx ax (0≠a )变形为c bx ax --=2,代换后降次; (3)把方程02=++c bx ax (0≠a )变形为c bx ax -=+2或bx c ax -=+2,代换后使之转化关系或整体地消去x . 解合字母系数方程02=++c bx ax 时,在未指明方程类型时,应分0=a 及0≠a 两种情况讨论;解绝对值方程需脱去绝对值符号,并用到绝对值一些性质,如222 x x x ==.

初中数学竞赛几何证明题综合训练

几何证明题综合训练 1. 线段或角相等的证明 (1) 利用全等△或相似多边形; (2) 利用等腰△; (3) 利用平行四边形; (4) 利用等量代换; (5) 利用平行线的性质或利用比例关系 (6) 利用圆中的等量关系等。 2. 线段或角的和差倍分的证明 (1) 转化为相等问题。如要证明a=b±c ,可以先作出线段p=b±c ,再去证明a=p , 即所谓“截长补短”,角的问题仿此进行。 (2) 直接用已知的定理。例如:中位线定理,Rt △斜边上的中线等于斜边的一半; △的外角等于不相邻的内角之和;圆周角等于同弧所对圆心角的一半等等。 3. 两线平行与垂直的证明 (1) 利用两线平行与垂直的判定定理。 (2) 利用平行四边形的性质可证明平行;利用等腰△的“三线合一”可证明垂直。 (3) 利用比例关系可证明平行;利用勾股定理的逆定理可证明垂直等。 【竞赛例题剖析】 【例1】从⊙O 外一点P 向圆引两条切线PA 、PB 和割线PCD 。从A 点作弦AE 平行于CD ,连结BE 交CD 于F 。求证:BE 平分CD 。 【分析1】构造两个全等△。 连结ED 、AC 、AF 。 CF=DF ←△ACF ≌△EDF ← ←? ?? ?? ?????←←∠=∠∠=∠=∠←∠=∠←??? ∠=∠=四点共圆、、、P B F A ABP AFC ABP AEF EFD EFD AFC CD //AE EDF ACF ED AC ←∠PAB=∠AEB=∠PFB 【分析2】利用圆中的等量关系。连结OF 、?? ?? ?=∠←=∠←=、、、P B F O 90 OBP 90OFP DF CF 0 ←∠PFB=∠POB ← ←? ??←∠=∠←∠=∠是切线、PB PA AEB POB CD //AE AEB PFB

初中数学竞赛平面几何常用公式及例题讲解

面积公式A bc B ac C ab S ABC sin 2 1sin 21sin 21===? ))()((c p b p a p p S ABC ---=? 2/)(c b a p ++= 和角公式 A B B A B A cos sin cos sin )sin(+=+ A B B A B A sin sin cos cos )cos(-=+ B A B A B A tan tan 1tan tan )tan(-+=+ 差角公式 A B B A B A cos sin cos sin )sin(-=- A B B A B A sin sin cos cos )cos(+=- B A B A B A tan tan 1tan tan )tan(+-=-

常用角度的三角比

相关练习题: 1.已知ABC ?中,,75 =∠B ,60 =∠C ,10=BC 求AB 与AC 的长及三角形的面积 2.求证面积公式A bc B ac C ab S ABC sin 2 1sin 21sin 21===? 3.求证海伦公式 ))()((c p b p a p p S ABC ---=? 2/)(c b a p ++= 4. 已知ABC ?中,,7=AB ,8=BC ,9=AC 求sinA , sinB , sinC 5.在等腰三角形ABC 中,AB=1,∠A=900,点E 为腰AC 中点,点F 在底边BC 上,且FE ⊥BE ,求△CEF 的面积。 6.已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点是P ,AB=BD ,且PC=0.6,求四边形ABCD 的周长. 7.在△ABC 中,∠ABC =600,点P 是△ABC 内的一点,使得∠APB =∠BPC =∠CPA ,且PA =8,PC =6,则PB = 。 A B C E F A B C P

初中数学竞赛辅导资料

第一篇 一元一次方程的讨论 第一部分 基本方法 1. 方程的解的定义:能使方程左右两边的值相等的未知数的值叫做方程的解。一元方程的解也叫做根。 例如:方程 2x +6=0, x (x -1)=0, |x |=6, 0x =0, 0x =2的解 分别是: x =-3, x =0或x =1, x =±6, 所有的数,无解。 2. 关于x 的一元一次方程的解(根)的情况:化为最简方程ax =b 后, 讨论它的解:当a ≠0时,有唯一的解 x =a b ; 当a =0且b ≠0时,无解; 当a =0且b =0时,有无数多解。(∵不论x 取什么值,0x =0都成立) 3. 求方程ax =b (a ≠0)的整数解、正整数解、正数解 当a |b 时,方程有整数解; 当a |b ,且a 、b 同号时,方程有正整数解; 当a 、b 同号时,方程的解是正数。 综上所述,讨论一元一次方程的解,一般应先化为最简方程ax =b 第二部分 典例精析 例1 a 取什么值时,方程a (a -2)x =4(a -2) ①有唯一的解?②无解? ③有无数多解?④是正数解?

例2 k取什么整数值时,方程①k(x+1)=k-2(x-2)的解是整数?②(1-x)k=6的解是负整数? 例3己知方程a(x-2)=b(x+1)-2a无解。问a和b应满足什么关系? 例4a、b取什么值时,方程(3x-2)a+(2x-3)b=8x-7有无数多解? 第三部分典题精练

1. 根据方程的解的定义,写出下列方程的解: ① (x +1)=0, ②x 2 =9, ③|x |=9, ④|x |=-3, ⑤3x +1=3x -1, ⑥x +2=2+x 2. 关于x 的方程ax =x +2无解,那么a __________ 3. 在方程a (a -3)x =a 中, 当a 取值为____时,有唯一的解; 当a ___时无解; 当a _____时,有无数多解; 当a ____时,解是负数。 4. k 取什么整数值时,下列等式中的x 是整数? ① x = k 4 ②x =16-k ③x =k k 32+ ④x =123+-k k 5. k 取什么值时,方程x -k =6x 的解是 ①正数? ②是非负数? 6. m 取什么值时,方程3(m +x )=2m -1的解 ①是零? ②是正数? 7. 己知方程 2 2 1463+= +-a x 的根是正数,那么a 、b 应满足什么关系?

2018-2019初中数学竞赛专题复习 极限几何100题

1. 如图,在△ABC 中,AB =2AC ,AD 是角平分线,E 是 BC 边的中点,EF ⊥AD 于点 F ,CG ⊥AD 于点 G , 3 若 tan ∠CAD= 4 ,AB =20,则线段 EF 的长为 C F 2. 如图,在△ABC 中,tan ∠ACB=3,点D 、E 在 BC 边上,∠DAE = 1 ∠BAC ,∠ACB =∠DAE +∠B ,点 2 F 在线段 AE 的延长线上,AF =AD ,若 CD =4,CF =2,则 AC 边的长为 3. 如图,在△ABC 中,∠A=30°,点 D 、E 分别在 AB 、AC 边上,BD=CE=BC ,点 F 在 BC 边上,DF 与 BE 1 交于点 G 。若 BG=1,∠BDF= 2 ∠ACB ,则线段 EG 的长为

4. 如图,在△ABC 中,∠A =60°,角平分线 BD 、CE 交于点 F ,若 BC =3CD ,BF =2,则 BC 边的长为 E B 5. 如图,在△ABC 中,AB =AC ,∠ACD =45°,点 E 在射线 BD 上,AE//CD ,AE =DE ,若 BD =1,CD = 5,则 AE 的长为 6. 如图,△ABC 中,∠AB =90°,CD 是 AB 边上的中线,点 F 在线段 AD 上,点 F 在 CD 延长线上,AE = DF ,连接 CE 、BF ,若∠AEC =∠DFB ,AC = 2 3 ,DF = 1,则线段 CE 的长为 A B 7. 如图,在等边△ABC 中,D 为 AB 边上一点,连接 CD ,在 CD 上取一点E ,连接BE ,∠BED =60°,若 3

全国通用初中数学竞赛培优辅导讲义(28—33)讲

全国初中数学竟赛辅导讲义修订(2) 三角形的边角性质 内容提要 三角形边角性质主要的有: 1. 边与边的关系是:任意两边和大于第三边,任意两边差小于第三边,反过来要使三条线 段能组成一个三角形,必须任意两条线段的和都大于第三条线段,即最长边必须小于其 他两边和。用式子表示如下: a,b,c 是△ABC 的边长b a c b a b a c a c b c b a +<-??? ????????>+>+>+?< 推广到任意多边形:任意一边都小于其他各边的和 2. 角与角的关系是:三角形三个内角和等于180 ;任意一个外角等于和它不相邻的两个 内角和。 推广到任意多边形:四边形内角和=2×180 , 五边形内角和=3×180 六边形内角和=4×180 n 边形内角和=(n -2) 180 3. 边与角的关系 ① 在一个三角形中,等边对等角,等角对等边; 大边对大角,大角对大边。 ② 在直角三角形中, △ABC 中∠C=Rt ∠2 22c b a =+?(勾股定理及逆定理) △ABC 中?? ??=∠∠=∠ 30A Rt C a :b :c=1:3:2 △ABC 中?? ??=∠∠=∠ 45A Rt C a :b :c=1:1:2 例题 例1.要使三条线段3a -1,4a+1,12-a 能组成一个三角形求a 的取值范围。 (1988年泉州市初二数 学双基赛题) 解:根据三角形任意两边和大于第三边,得不等式组 ?????+>-+-->-++->++-141312131214121413a a a a a a a a a 解得?? ???<->>51135.1a a ∴1.5

初中数学竞赛辅导讲义:从创新构造入手

初中数学竞赛辅导讲义:从创新构造入手 有些数学问题直接求解比较困难,可通过创造性构造转化问题而使问题获解. 所谓构造法,就是综合运用各种知识和方法,依据问题的条件和结论给出的信息,把问题作适当的加工处理.构造与问题相关的数学模式,揭示问题的本质,从而沟通解题思路的方法.构造法是一种创造性思维,是建立在对问题结构特点的深刻认识基础上的. 构造法的基本形式是以已知条件为“原料”,以所求结论为“方向”,构造一种新的数学形式,初中阶段常用的构造解题的基本方法有: 1.构造方程; 2.构造函数; 3.构造图形; 4.对于存在性问题,构造实例; 5.对于错误的命题,构造反例; 6.构造等价命题等. 【例题求解】 【例1】 设1a 、2a 、1b 、2b 都为实数,21a a ≠,满足))(())((22122111b a b a b a b a ++=++,求证:1))(())((22211211-=++=++b a b a b a b a . 思路点拨 可以从展开已知等式、按比例性质变形已知等式等角度尝试.仔细观察已知等式特点,1a 、2a 可看作方程1))((21=++b x b x 的两根,则))((1))((2121a x a x b x b x --=-++,通过构造方程揭示题设条件与结论的内在规律,解题思路新颖而深刻. 注:一般说来,构造法包含下述两层意思:利用抽象的普遍性,把实际问题转化为数学模型;利用具体问题的特殊性,给所解决的问题设计一个框架,强调数学应用的数学建模是前一层意思的代表,而后一层意思的“框架”含义更为广泛,如方程、函数、图形、“抽屉”等. 【例2】 求代数式1342222+-+++x x x x 的最小值.

相关文档
最新文档