充要条件课件
合集下载
中职生数学基础模块上册课件《充要条件》

04
作业:请尝试使用充要条件分析生活中的 实际问题,并尝试绘制文氏图。
作业布置
复习充要条件的 概念和性质
完成课后习题, 巩固知识点
思考充要条件在 实际生活中的应 用
预习下一节课的 内容,为后续学 习做好准备
感谢您的耐心观看
充要条件的判定方法
直接判定法
01
02
03
04
反例法
反例法的定义:通过 寻找一个不满足条件 的例子来否定一个命
题
反例法的步骤:
确定命题
寻找反例
验证反例
反例法的优点:简单 直观,易于理解
反例法的局限性:需 要找到合适的反例, 可能存在漏判的情况
应用举例
数学题目
证明:若A是B的 充分条件,B是C 的充分条件,则 A是C的充分条件。
添加副标题
充要条件课件
目录
CONTENTS
01 导入
02 新课导入
03 充要条件的判定方 法
04 应用举例
05 课堂活动
06 小结与作业
导入
温故知新
回顾已学知识:回顾与本节课相 关的旧知识,为学习新知识打下 基础
提出问题:针对旧知识提出新的 问题,激发学生的求知欲
引入新课:通过问题引入新课, 使学生更容易接受和理解新知识
证明:若A是B的 必要条件,B是C 的必要条件,则 A是C的必要条件。
证明:若A是B的 充要条件,B是C 的充要条件,则 A是C的充要条件。
证明:若A是B的 充分必要条件, B是C的充分必要 条件,则A是C的 充分必要条件。
物理题目
01
02
03
04
化学反应:判断反应 是否发生,并解释原 因
化学题目
作业:请尝试使用充要条件分析生活中的 实际问题,并尝试绘制文氏图。
作业布置
复习充要条件的 概念和性质
完成课后习题, 巩固知识点
思考充要条件在 实际生活中的应 用
预习下一节课的 内容,为后续学 习做好准备
感谢您的耐心观看
充要条件的判定方法
直接判定法
01
02
03
04
反例法
反例法的定义:通过 寻找一个不满足条件 的例子来否定一个命
题
反例法的步骤:
确定命题
寻找反例
验证反例
反例法的优点:简单 直观,易于理解
反例法的局限性:需 要找到合适的反例, 可能存在漏判的情况
应用举例
数学题目
证明:若A是B的 充分条件,B是C 的充分条件,则 A是C的充分条件。
添加副标题
充要条件课件
目录
CONTENTS
01 导入
02 新课导入
03 充要条件的判定方 法
04 应用举例
05 课堂活动
06 小结与作业
导入
温故知新
回顾已学知识:回顾与本节课相 关的旧知识,为学习新知识打下 基础
提出问题:针对旧知识提出新的 问题,激发学生的求知欲
引入新课:通过问题引入新课, 使学生更容易接受和理解新知识
证明:若A是B的 必要条件,B是C 的必要条件,则 A是C的必要条件。
证明:若A是B的 充要条件,B是C 的充要条件,则 A是C的充要条件。
证明:若A是B的 充分必要条件, B是C的充分必要 条件,则A是C的 充分必要条件。
物理题目
01
02
03
04
化学反应:判断反应 是否发生,并解释原 因
化学题目
高中数学(新人教A版)必修第一册:充要条件课件【精品课件】

例 1.
【解析】
对(1),ab=0指其中至少有一个为零,而 2 +2
=0指两个都为零,因此q⇒p,但p⇏q,p是q的必
要不充分条件;
对(2),|x+y|=|x|+|y|平方得: 2 +2xy+ 2 = 2
+2|xy|+ 2 ⇔xy=|xy|⇔xy≥0,所以p是q的充要
条件;
对(3),方程 2 -x-m=0有实根的充要条件是Δ=
第一章 集合与常用逻辑用语
1.4充分条件与必要条件
教材分析
本小节内容选自
第四节
《普通高中数学必修第一册》
人教A版(2019)
第一章《集合与常用逻辑用语》
第四节《充分条件与必要条件》
以下是
“常用逻辑用语”的课时安排:
课时内容
第五节
充分条件与必要条件(共2课时)
所在位置 教材第17页
全称量词与存在量词(共2课时)
条件” 的逻辑语句或事例吗?
(一)新知导入
探索交流,解决问题
【问题1】
已 知
【思考1】
p: 整数a是6的倍数,
通过判断,你发现了什么?
q: 整数a是2和3的倍数.
这种关系是否对任意一个“若p,则q”的命题
请判断: p是q的充分条件吗?
p是q的必要条件吗?
[答案]
p⇒q,故p是q的充分条件,又q⇒p,故p
的关系,学习充分条件、必要条件、 学内容。
充要条件这三个逻辑用语。
核心素养 通过观察实例,理解充分条件、必要 通过数学实例,使学生理解全称
培养
条件、充要条件的意义
量词、存在量词的意义,体现了
会辨析充分不必要条件、必要不充分 数学抽象的核心素养;会判定命
条件、充要条件、既不充分又不必要 题的真假,会写出命题的否定,
【解析】
对(1),ab=0指其中至少有一个为零,而 2 +2
=0指两个都为零,因此q⇒p,但p⇏q,p是q的必
要不充分条件;
对(2),|x+y|=|x|+|y|平方得: 2 +2xy+ 2 = 2
+2|xy|+ 2 ⇔xy=|xy|⇔xy≥0,所以p是q的充要
条件;
对(3),方程 2 -x-m=0有实根的充要条件是Δ=
第一章 集合与常用逻辑用语
1.4充分条件与必要条件
教材分析
本小节内容选自
第四节
《普通高中数学必修第一册》
人教A版(2019)
第一章《集合与常用逻辑用语》
第四节《充分条件与必要条件》
以下是
“常用逻辑用语”的课时安排:
课时内容
第五节
充分条件与必要条件(共2课时)
所在位置 教材第17页
全称量词与存在量词(共2课时)
条件” 的逻辑语句或事例吗?
(一)新知导入
探索交流,解决问题
【问题1】
已 知
【思考1】
p: 整数a是6的倍数,
通过判断,你发现了什么?
q: 整数a是2和3的倍数.
这种关系是否对任意一个“若p,则q”的命题
请判断: p是q的充分条件吗?
p是q的必要条件吗?
[答案]
p⇒q,故p是q的充分条件,又q⇒p,故p
的关系,学习充分条件、必要条件、 学内容。
充要条件这三个逻辑用语。
核心素养 通过观察实例,理解充分条件、必要 通过数学实例,使学生理解全称
培养
条件、充要条件的意义
量词、存在量词的意义,体现了
会辨析充分不必要条件、必要不充分 数学抽象的核心素养;会判定命
条件、充要条件、既不充分又不必要 题的真假,会写出命题的否定,
1.1《命题及其关系(三)充要条件》课件

ks5u精品课件
复习 1、充分条件,必要条件的定义:
若
充分 p q,则p是q成立的____条件 必要 q是p成立的____条件
ks5u精品课件
如果既有p q,又有q p就记做p q么q也是p的充要条件
p与q互为充要条件 (也可以说成”p与q等价”)
ks5u精品课件
判别步骤: ① 认清条件和结论。 ② 考察p 判别技巧: ① 可先简化命题。 q和q
判别充要条 件问题的
p的真假。
② 否定一个命题只要举出一个反例即可。 ③ 将命题转化为等价的逆否命题后再判断。 ④充要性包括:充分性p q和必要性q p两个方面。
ks5u精品课件
例1:两条不重合的直线l1、l2(共同前提). l1与l2的斜率分别为k1、k2,且k1=k2是l1∥l2 的什么条件?
ks5u精品课件
各种条件的可能情况 1、充分且必要条件 2、充分非必要条件 3、必要非充分条件 4、既不充分也不必要条件
ks5u精品课件
问题、探讨下列生活中名言名句的充要关系。
(1) 水滴石穿。 (2)有志者事竟成。 (3)春回大地,万物复苏。 (4)玉不琢,不成器。
ks5u精品课件
以下命题 的逆命题成立吗?
(1)若a是无理数,则a+5是无理数; (2)若a>b,则a+c>b+c; (3)若一元二次方程ax2+bx+c=0有两 个不等的实根,则判别式Δ>0.
ks5u精品课件
指出下列命题中,p是q的什么条 件,q是p的什么条件。
(1)p:x>2,q:x>1; (2)p:x>1,q:x>2; (3)p:x>0 ,y>0,q:x+y<0; (4)p:x=0,y=0,q:x2+y2=0.
复习 1、充分条件,必要条件的定义:
若
充分 p q,则p是q成立的____条件 必要 q是p成立的____条件
ks5u精品课件
如果既有p q,又有q p就记做p q么q也是p的充要条件
p与q互为充要条件 (也可以说成”p与q等价”)
ks5u精品课件
判别步骤: ① 认清条件和结论。 ② 考察p 判别技巧: ① 可先简化命题。 q和q
判别充要条 件问题的
p的真假。
② 否定一个命题只要举出一个反例即可。 ③ 将命题转化为等价的逆否命题后再判断。 ④充要性包括:充分性p q和必要性q p两个方面。
ks5u精品课件
例1:两条不重合的直线l1、l2(共同前提). l1与l2的斜率分别为k1、k2,且k1=k2是l1∥l2 的什么条件?
ks5u精品课件
各种条件的可能情况 1、充分且必要条件 2、充分非必要条件 3、必要非充分条件 4、既不充分也不必要条件
ks5u精品课件
问题、探讨下列生活中名言名句的充要关系。
(1) 水滴石穿。 (2)有志者事竟成。 (3)春回大地,万物复苏。 (4)玉不琢,不成器。
ks5u精品课件
以下命题 的逆命题成立吗?
(1)若a是无理数,则a+5是无理数; (2)若a>b,则a+c>b+c; (3)若一元二次方程ax2+bx+c=0有两 个不等的实根,则判别式Δ>0.
ks5u精品课件
指出下列命题中,p是q的什么条 件,q是p的什么条件。
(1)p:x>2,q:x>1; (2)p:x>1,q:x>2; (3)p:x>0 ,y>0,q:x+y<0; (4)p:x=0,y=0,q:x2+y2=0.
《充要条件》课件

结论
1. 充要条件在日常生活中的应用十分普遍。 2. 掌握充要条件,有助于提高逻辑推理和
分析能力。
通过混淆和对比的实例把握充分条件和必要条件的本质区别。
应用区别
充要条件区别,有助于您在实际问题中作出正确的分析。
充要条件在证明中的应用
直接证明
反证法
掌握直接证明时充要条件的应 用方法,帮助您轻松完成证明。
了解应用反证法时充要条件的 应用方法,对证明中应用反证 法有很好的指导作用。
数学归纳法
掌握数学归纳法时充要条件的 应用方法,帮助您更好地理解 证明和模型算法。
2 必要条件
通过实际问题,学习充分条件的定义和应 用。
通过实际问题,学习必要条件的定义和应 用。
举例:一个整数的平方是偶数,那么这个 整数一定是偶数。
举例:一个正整数是十位数,则其个位数 一定不是零。
充分条件与必要条件的区别
1
定义区别
深入剖析充分条件和必要条件的定义,更好地理解其区别及特征。
2
举例区别
《充要条件最新》PPT课 件
通过本次课程您将深入了解充要条件的定义和应用,让您在逻辑推理和证明 中游刃有余。
什么是充要条件?
定义
了解标准的充要条件定义,如何理解其本质及应 用。
充要条件是指,在某些条件下,某个条件恰当地 成立的必要条件是其恰当地成立的充分条件。
图示
通过实例图示,帮助您更好理解充要条件的定义 和特征。
举例:判断一个三角形是否为等腰三角形,充要 条件为两个角相等。
充要条件的性质
对称性
掌握充要条件对称性的概念 及应用,能更好地理解逻辑 推理。
传递性
更深入地探究充要条件传递 性的应用,帮助您更好的理 解证明。
充分必要条件课件ppt

在数学和逻辑推理中,充分必要条件通常用于证明某个结论或推理的正确性,确 保结论的可靠性和严密性。
表示方法
01
在数学公式中,充分必要条件通 常用等号(=)来表示,即A=B 。这意味着A和B同时成立,缺一 不可。
02
在逻辑推理中,充分必要条件可 以用“当且仅当”(iff)来表示 ,表明两个命题之间既是充分条 件又是必要条件的关系。
充分必要条件课件
目录
CONTENTS
• 充分必要条件的基本概念 • 充分条件的证明 • 必要条件的证明 • 充分必要条件的判定 • 充分必要条件的应用
01
CHAPTER
充分必要条件的基本概念
定义
充分必要条件在逻辑学中是指一个命题成立所必须同时满足的条件。如果这些条 件得到满足,则命题成立;反之,如果命题不成立,则这些条件一定不满足。
反证法
定义
适用范围
反证法是通过否定一个命题来推导其 充分必要条件的方法。
适用于难以直接判断真假的命题,特 别是含有量词、逻辑联结词等复合命 题。
步骤
首先假设一个命题不成立,然后根据 这个假设推导出与已知事实相矛盾的 结论,从而否定假设,得出原命题的 充分必要条件。
数学归纳法
定义
数学归纳法是通过数学 归纳原理来证明一个命 题的充分必要条件的方 法。
步骤
首先证明基础步骤,即 当$n=1$时命题成立; 然后假设当$n=k$时命 题成立,证明当 $n=k+1$时命题也成立 ;最后根据数学归纳原 理得出结论。
适用范围
适用于与自然数有关的 命题,特别是与数列、 组合数学等有关的命题 。
05
CHAPTER
充分必要条件的应用
在逻辑推理中的应用
表示方法
01
在数学公式中,充分必要条件通 常用等号(=)来表示,即A=B 。这意味着A和B同时成立,缺一 不可。
02
在逻辑推理中,充分必要条件可 以用“当且仅当”(iff)来表示 ,表明两个命题之间既是充分条 件又是必要条件的关系。
充分必要条件课件
目录
CONTENTS
• 充分必要条件的基本概念 • 充分条件的证明 • 必要条件的证明 • 充分必要条件的判定 • 充分必要条件的应用
01
CHAPTER
充分必要条件的基本概念
定义
充分必要条件在逻辑学中是指一个命题成立所必须同时满足的条件。如果这些条 件得到满足,则命题成立;反之,如果命题不成立,则这些条件一定不满足。
反证法
定义
适用范围
反证法是通过否定一个命题来推导其 充分必要条件的方法。
适用于难以直接判断真假的命题,特 别是含有量词、逻辑联结词等复合命 题。
步骤
首先假设一个命题不成立,然后根据 这个假设推导出与已知事实相矛盾的 结论,从而否定假设,得出原命题的 充分必要条件。
数学归纳法
定义
数学归纳法是通过数学 归纳原理来证明一个命 题的充分必要条件的方 法。
步骤
首先证明基础步骤,即 当$n=1$时命题成立; 然后假设当$n=k$时命 题成立,证明当 $n=k+1$时命题也成立 ;最后根据数学归纳原 理得出结论。
适用范围
适用于与自然数有关的 命题,特别是与数列、 组合数学等有关的命题 。
05
CHAPTER
充分必要条件的应用
在逻辑推理中的应用
电路中的“充要条件”课件

1.2 充要条件
新知应用
练习
1.2 充要条件
练习
1.2 充要条件
1.2 充要条件
1.书面作业:完成课后习题和《导学案》; 2.查漏补缺:根据个人情况对课堂学习复习与回顾; 3.拓展作业:阅读教材扩展延伸内容.
图1-4(1)所示电路中,闭合开关A或 闭合开关C,都可使灯B亮;反之,若要灯B 亮,不一定要闭合开关A,因此“开关A闭 合”是“灯B亮”的充分不必要条件。
1.2 充要条件
问题:“开关A闭合”是“灯 B亮”的什么条件?
图1-4(2)所示电路中,闭合开关A而 不闭合开关C,灯B不亮;反之,若要灯B亮, 开关A必须闭合,因此“开关A闭合”是 “灯B亮”的必要不充分条件。
1.2 充要条件
(3)
问题:“开关A闭合”是“灯 B亮”的什么条件?
图1-4(3)所示电路中,闭合开关A课 使灯B亮;而要灯B亮,开关A一定要闭合, 因此“开关A闭合”是“灯B亮”的充要条 件。
1.2 充要条件
问题:“开关A闭合”是“灯 B亮”的什么条件?
图1-4(4)所示电路中,闭合开关A但 不闭合开关C,灯B不亮;反之,若要灯B亮, 也不一定要闭合开关A,只要闭合开关C, 因此“开关A闭合”是“灯B亮”的既不充 分也不必要条件。
电路中的“充要条件”
1.2 充要条件 回顾导入
四种逻辑关系
1.2 充要条件
创设情境 电路中的“充要条件”
• 数学来源于生活,根植于生活,蕴藏在生活 的方方面面,图1-4所示四个电路(所有元器 件完好),“开关A闭合”是“灯B亮”的什题:“开关A闭合”是“灯 B亮”的什么条件?
高中数学同步教学课件 充要条件 (2)
还”,由此推断最后一句“攻破楼兰”是“返回家乡”的
B.必要不充分条件
√
A.充分不必要条件
C.充要条件
D.既不充分也不必要条件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
4.已知a,b是实数,则“a<0,且b<0”是“ab(a-b)>0”的
A.充分不必要条件
B.必要不充分条件
D.既不充分也不必要条件
①s是q的什么条件?
∵q是r的必要条件,∴r⇒q.
∵s是r的充分条件,∴s⇒r,
∴s⇒r⇒q,又∵q是s的充分条件,∴q⇒s.
∴s是q的充要条件.
②r是q的什么条件?
由r⇒q,q⇒s⇒r,知r是q的充要条件.
③p是q的什么条件?
∵p是r的必要条件,∴r⇒p,
∴q⇒r⇒p.又p⇏q,
∴p是q的必要不充分条件.
A.充分不必要条件
√
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
由m≥-1可以推出m≥-2,但反之不成立,故“m≥-1”是“m≥-2”的充
分不必要条件.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
2.已知a,b为实数,则“a+b>4”是“a,b中至少有一个数大于2”的
A.充分不必要条件
p1⇒p2⇒…⇒pn,可得p1⇒pn;充要条件也有传递性.
跟踪训练 1 (1)指出下列各题中,p是q的什么条件(“充分不必要条件”“必
B.必要不充分条件
√
A.充分不必要条件
C.充要条件
D.既不充分也不必要条件
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
4.已知a,b是实数,则“a<0,且b<0”是“ab(a-b)>0”的
A.充分不必要条件
B.必要不充分条件
D.既不充分也不必要条件
①s是q的什么条件?
∵q是r的必要条件,∴r⇒q.
∵s是r的充分条件,∴s⇒r,
∴s⇒r⇒q,又∵q是s的充分条件,∴q⇒s.
∴s是q的充要条件.
②r是q的什么条件?
由r⇒q,q⇒s⇒r,知r是q的充要条件.
③p是q的什么条件?
∵p是r的必要条件,∴r⇒p,
∴q⇒r⇒p.又p⇏q,
∴p是q的必要不充分条件.
A.充分不必要条件
√
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
由m≥-1可以推出m≥-2,但反之不成立,故“m≥-1”是“m≥-2”的充
分不必要条件.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
2.已知a,b为实数,则“a+b>4”是“a,b中至少有一个数大于2”的
A.充分不必要条件
p1⇒p2⇒…⇒pn,可得p1⇒pn;充要条件也有传递性.
跟踪训练 1 (1)指出下列各题中,p是q的什么条件(“充分不必要条件”“必
1.4 充分条件与必要条件 课件(21张)
导师点睛 (1)判断p是q的什么条件,主要是判断p⇒q及q⇒p两命题的正确性,若p ⇒q为真,则p是q的充分条件,若q⇒p为真,则p是q的必要条件. (2)当条件和结论是不等式时,可以利用集合间的关系判断充分性和必要性.
充分条件、必要条件的证明与探究
已知命题p:y=ax2-2x-1恒为负值.
问题
1.命题p的充要条件可以是
充分必要条件 ,简称为 充要条件 .显然,如果p是q的充要条件,那么q也 是p的充要条件.概括地说,如果p⇔q,那么p与q 互为充要条件 .
四种条件与命题真假的关系
如果原命题为“若p,则q”,逆命题为“若q,则p”,那么p与q的关系有以下四种 情形:
原命题
逆命题
p与q的关系
q与p的关系
真
真
p是q的充要条件
5.若p是q的充要条件,q是r的充要条件,则p是r的充要条件. ( √ ) 提示:若p是q的充要条件,q是r的充要条件,则p⇔q,且q⇔r,因此p⇔r,故p是r的充要 条件. 6.“A∩B是空集”是“A与B均是空集”的充要条件.( ✕ )
充分条件、必要条件和充要条件的判断 观察下面4个电路图.
问题 1.①中开关A闭合是灯泡B亮的什么条件? 提示:充分不必要. 2.②中开关A闭合是灯泡B亮的什么条件? 提示:必要不充分. 3.③中开关A闭合是灯泡B亮的什么条件? 提示:充要. 4.④中开关A闭合是灯泡B亮的什么条件? 提示:既不充分也不必要. 5.将①中开关A与灯泡B位置互换,开关C始终是断开状态,结论变吗? 提示:变为充要.
q是p的充要条件
真
假
p是q的充分不必要条 q是p的必要不充分条
件
件
假
真
p是q的必要不充分条 q是p的充分不必要条
充分条件、必要条件的证明与探究
已知命题p:y=ax2-2x-1恒为负值.
问题
1.命题p的充要条件可以是
充分必要条件 ,简称为 充要条件 .显然,如果p是q的充要条件,那么q也 是p的充要条件.概括地说,如果p⇔q,那么p与q 互为充要条件 .
四种条件与命题真假的关系
如果原命题为“若p,则q”,逆命题为“若q,则p”,那么p与q的关系有以下四种 情形:
原命题
逆命题
p与q的关系
q与p的关系
真
真
p是q的充要条件
5.若p是q的充要条件,q是r的充要条件,则p是r的充要条件. ( √ ) 提示:若p是q的充要条件,q是r的充要条件,则p⇔q,且q⇔r,因此p⇔r,故p是r的充要 条件. 6.“A∩B是空集”是“A与B均是空集”的充要条件.( ✕ )
充分条件、必要条件和充要条件的判断 观察下面4个电路图.
问题 1.①中开关A闭合是灯泡B亮的什么条件? 提示:充分不必要. 2.②中开关A闭合是灯泡B亮的什么条件? 提示:必要不充分. 3.③中开关A闭合是灯泡B亮的什么条件? 提示:充要. 4.④中开关A闭合是灯泡B亮的什么条件? 提示:既不充分也不必要. 5.将①中开关A与灯泡B位置互换,开关C始终是断开状态,结论变吗? 提示:变为充要.
q是p的充要条件
真
假
p是q的充分不必要条 q是p的必要不充分条
件
件
假
真
p是q的必要不充分条 q是p的充分不必要条
充要条件的应用 课件
2.①必要性:若ax2-ax+1>0对于一切实数x都成立,
由二次函数性质有
a
00,,即aa
0, 2 4a
0 0,
a
4.
②充分性:∵0<a<4,∴0< a<1,即0<1- a<1,
4
4
∴ax2-ax+1=a(x-1 )2+1- a>0,∴若0<a<4,则ax2-ax+1>0
2
4
对于一切实数x都成立.
2.充要条件的常用同义词 在解题时常常遇到与充要条件同义的词,如“当且仅当”“等 价于”等,准确地理解和使用数学语言,对理解和掌握数学知 识是十分重要的.
3.条件与结论的四种关系 通过学习,我们知道条件与结论有如下四种关系: (1)条件是结论的充分不必要条件.从命题的角度来说,就是由 条件能推出结论来,而由结论推不出条件来. (2)条件是结论的必要不充分条件.从命题的角度来说,就是由 结论能推出条件来,而由条件推不出结论来.
【解析】1.选A.因为函数f(x)=ax在R上是减函数,所以 0<a<1. 由函数g(x)=(2-a)x3在R上是增函数可得:2-a>0,即a<2. 所以若0<a<1,则a<2,而若a<2推不出0<a<1. 所以“函数f(x)=ax在R上是减函数”是“函数g(x)=(2-a)x3 在R上是增函数”的充分不必要条件.
充要条件的应用
1.推出符“⇔”的意义是什么? 提示:推出符“⇔”表示从两个方向均能推出,从命题的角度 来理解,推出符“⇔”表示连接的是两个命题,它们互为逆命 题且同真. 2.互为充要条件是指条件和结论是相对的,在充要条件问题的 证明中,条件是确定的吗? 提示:互为充要条件中,条件和结论是相对的,在充要条件问 题的证明中,条件是确定的.
人教版高中数学新教材必修第一册课件:1.4.2 充要条件(共14张PPT)
充分条件必要条件复习引入充分非必要条件必要非充分条件既不充分也不必要条件充分且必要条件22从逻辑推理关系看充分条件必要条件从逻辑推理关系看充分条件必要条件
1.4.2充要条件
复习引入
1、充分条件与必要条件 如果p⇒q,则p是q的 充分条件 ,q是p
的 必要条件 .
2、从逻辑推理关系看充分条件、必要条件:
讲
课
人
:
邢
启 强
10
提高练习
1.已知P: |2x-3|>1;q:1/(x2+x-6)>0,
则┐p是┐q的( A )
(A)充分不必要条件(B)必要不充分条件
(C)充要条件
(D)既不充分也不必要条件
2、已知p:|x+1|>2,q:x2<5x-6, 则非p是非q的( A)
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既非充分又非必要条件
所以直线 l 与⊙ O 相切。
讲
课
(2)必要性(q
p):
人
: 邢 启
若直线 l 与⊙O 相切,不妨设切点为P,则OP l
.d=OP=r.
强
7
当堂训练
1、已知p,q都是r的必要条件,
s是r的充分条件,q是s的充分条件,则
(1)s是q的什么条件? 充要条件
(2)r是q的什么条件? 充要条件
p
(3)P是q的什么条件?必要不充分条件 r
1、必要性:|x+y|=|x|+|y|→xy≥0
2、充分性: xy≥0→ |x+y|=|x|+|y|
讲
课
人 : 邢
3、点明结论
启 强
12
提高练习
练习:已知关于x的方程 (1-a)x2+(a+2)x-4=0(a∈R).
1.4.2充要条件
复习引入
1、充分条件与必要条件 如果p⇒q,则p是q的 充分条件 ,q是p
的 必要条件 .
2、从逻辑推理关系看充分条件、必要条件:
讲
课
人
:
邢
启 强
10
提高练习
1.已知P: |2x-3|>1;q:1/(x2+x-6)>0,
则┐p是┐q的( A )
(A)充分不必要条件(B)必要不充分条件
(C)充要条件
(D)既不充分也不必要条件
2、已知p:|x+1|>2,q:x2<5x-6, 则非p是非q的( A)
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既非充分又非必要条件
所以直线 l 与⊙ O 相切。
讲
课
(2)必要性(q
p):
人
: 邢 启
若直线 l 与⊙O 相切,不妨设切点为P,则OP l
.d=OP=r.
强
7
当堂训练
1、已知p,q都是r的必要条件,
s是r的充分条件,q是s的充分条件,则
(1)s是q的什么条件? 充要条件
(2)r是q的什么条件? 充要条件
p
(3)P是q的什么条件?必要不充分条件 r
1、必要性:|x+y|=|x|+|y|→xy≥0
2、充分性: xy≥0→ |x+y|=|x|+|y|
讲
课
人 : 邢
3、点明结论
启 强
12
提高练习
练习:已知关于x的方程 (1-a)x2+(a+2)x-4=0(a∈R).