高中数学抽象函数专题含答案,教师版
必修一数学抽象函数习题精选含答案

必修一数学抽象函数习题精选含答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(必修一数学抽象函数习题精选含答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为必修一数学抽象函数习题精选含答案的全部内容。
抽象函数单调性和奇偶性1. 抽象函数的图像判断单调性例1.如果奇函数在区间上是增函数且有最小值为5,那么在区间上是( ) A 。
增函数且最小值为 B. 增函数且最大值为C 。
减函数且最小值为D 。
减函数且最大值为 分析:画出满足题意的示意图,易知选B. 2、抽象函数的图像求不等式的解集例2、已知定义在上的偶函数满足并且在上为增函数。
若,则实数的取值范围 。
二、抽象函数的单调性和奇偶性 1。
证明单调性例3.已知函数f(x)= ,且f (x),g(x)定义域都是R ,且g (x)〉0, g (1) =2,g (x ) 是增函数。
. 求证: f (x )是R 上的增函数.解:设x 1〉x 2因为,g (x )是R 上的增函数, 且g(x)>0。
故g(x 1) > g (x 2) >0。
g(x 1)+1 〉 g (x 2)+1 〉0,〉 >0— 〉0。
f (x 1)- f(x 2)=- =1—-(1—)=—>0。
可以推出:f(x 1) 〉f(x 2),所以f (x)是R 上的增函数。
例4.已知对一切,满足,且当时,,求证:(1)时,(2)在R 上为减函数。
证明:对一切有.且,令,得, 现设,则,,而f x ()[]37,f x ()[]--73,-5-5-5-5R f(x)f(2)0=f(x)(,0)-∞(1)(a )0a f ->a 1)(1)(+-x g x g (m )(n )(m n )(m ,n )ggg R =+∈⇒1)(22+x g 1)(21+x g ⇒1)(22+x g 1)(21+x g 1)(1)(11+-x g x g 1)(1)(22+-x g x g 1)(21+x g 1)(22+x g 1)(22+x g 1)(21+x g f x ()x y ,ff x y f x f y ()()()()00≠+=⋅,x <0f x ()>1x >001<<f x ();f x () xy R ,∈f x y f x fy ()()()+=⋅f ()00≠x y ==0f ()01=x >0-<x 0f x ()->1f f x f x ()()()01=⋅-=,设且, 则,即为减函数。
高中数学专题03含导函数的抽象函数的构造

培优点三 含导函数的抽象函数的构造1.对于()()'0f x a a >≠,可构造()()h x f x ax =-例1:函数()f x 的定义域为R ,()12f -=,对任意R x ∈,()2f x '>,则()24f x x >+的解集为( ) A .()1,1- B .()1-+∞, C .()1-∞-, D .()-∞+∞,【答案】B2.对于()()'0xf x f x +>,构造()()h x xf x =;对于()()'0xf x f x ->,构造()()f x h x x=例2:已知函数()y f x =的图象关于y 轴对称,且当(),0x ∈-∞,()()0f x xf x '+<成立,()0.20.222a f =,()log 3log 3b f ππ=,()33log 9log 9c f =,则a ,b ,c 的大小关系是( ) A .a b c >> B .a c b >>C .c b a >>D .b a c >>【答案】D3.对于'()()0f x f x +>,构造()()e x h x f x =;对于'()()f x f x >或'()()0f x f x ->,构造()()e xf x h x =例3:已知()f x 为R 上的可导函数,且R x ∀∈,均有()()f x f x '>,则有( ) A .2016e (2016)(0)f f -<,2016(2016)e (0)f f > B .2016e (2016)(0)f f -<,2016(2016)e (0)f f < C .2016e (2016)(0)f f ->,2016(2016)e (0)f f > D .2016e (2016)(0)f f ->,2016(2016)e (0)f f < 【答案】D4.()f x 与sin x ,cos x 构造例4:已知函数()y f x =对任意的,22x ππ⎛⎫∈- ⎪⎝⎭满足()()cos sin 0f x x f x x '+>,则( )A .()024f π⎛⎫> ⎪⎝⎭ B .()03f fπ⎛⎫<2- ⎪⎝⎭ C 234f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭ D .234f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭【答案】D一、选择题对点增分集训1.若函数()y f x =在R 上可导且满足不等式()()0xf x f x '+>恒成立,对任意正数a 、b ,若a b <,则必有( ) A .()()af b bf a < B .()()bf a af b < C .()()af a bf b < D .()()bf b af a <【答案】C2.已知函数()()R f x x ∈满足()11f =,且()12f x '<,则()122x f x <+的解集为( ) A .}{11x x |-<< B .}{1x x |<- C .}{11x x x |<->或 D .}{1x x |>【答案】D3.已知函数()f x 的定义域为R ,()f x '为()f x 的导函数,且()()()10f x x f x '+->,则( ) A .()10f = B .()0f x < C .()0f x > D .()()10x f x -<【答案】C4.设函数()f x '是函数()()R f x x ∈的导函数,已知()()f x f x '<,且()()4f x f x ''=-,()40f =,()21f =则使得()2e 0x f x -<成立的x 的取值范围是( ) A .()2-+∞,B .()0+∞,C .()1+∞,D .()4+∞,【答案】B5.已知函数()1y f x =-的图象关于点()1,0对称,函数()y f x =对于任意的()0,πx ∈满足()()sin cos f x x f x x >'(其中()f x '是函数()f x 的导函数),则下列不等式成立的是( )A .ππ336f ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭B 3ππ242f⎛⎫⎛⎫<-- ⎪ ⎪⎝⎭⎝⎭ C ππ3223f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭D 5π3π264f ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭【答案】C6.定义在R 上的函数()f x 的导函数为()f x ',若对任意实数x ,有()()f x f x >',且()2018f x +为奇函数,则不等式()2018e 0x f x +<的解集为( )A .(),0-∞B .()0,+∞C .1e ,⎛⎫-∞ ⎪⎝⎭D .1e ,⎛⎫+∞ ⎪⎝⎭7.已知函数()2f x +是偶函数,且当2x >时满足()()()2xf x f x f x ''>+,则( ) A .()()214f f < B .()3232f f ⎛⎫> ⎪⎝⎭ C .()5042f f⎛⎫< ⎪⎝⎭D .()()13f f < 【答案】A8.已知定义域为R 的奇函数()y f x =的导函数为()y f x =',当0x ≠时,()()0f x f x x+'>,若1133a f ⎛⎫=⎪⎝⎭,()33b f =--,11lnln 33c f ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系正确的是( )A .a b c <<B .b c a <<C .a c b <<D .c a b <<【答案】C9.已知定义在R 上的函数()f x 的导函数为()f x ',()()222e x f x f x --=(e 为自然对数的底数),且当1x ≠时,()()()10x f x f x -->⎡⎤⎣⎦',则( ) A .()()10f f < B .()()2e 0f f > C .()()33e 0f f >D .()()44e 0f f <【答案】C10.定义在R 上的函数()f x 的导函数为()'f x ,()00f =若对任意R x ∈,都有()()'1f x f x >+,则使得()e 1f x x +<成立的x 的取值范围为( )A .(),1∞-B .(),0∞-C .()1,+∞-D .0,+∞()【答案】D11.已知函数()f x 是定义在区间()0,+∞上的可导函数,满足()0f x >且()()'0f x f x +<(()'f x 为函数的导函数),若01a b <<<且1ab =,则下列不等式一定成立的是( ) A .()()()1f a a f b >+B .()()()1f b a f a >-C .()()af a bf b >D .()()af b bf a >【答案】C12.定义在R 上的奇函数()y f x =满足()30f =,且当0x >时,不等式()()'f x xf x >-恒成立,则函数()()lg 1g x xf x x =++的零点的个数为( ) A .1 B .2 C .3 D .4【答案】C13.设()f x 是R 上的可导函数,且'()()f x f x ≥-,(0)1f =,21(2)ef =.则(1)f 的值为________.【答案】1e14.已知,22x ⎛⎫∈- ⎪⎝π⎭π,()1y f x =-为奇函数,()()'tan 0f x f x x +>,则不等式()cos f x x>的解集为_________.【答案】0,2⎛⎫⎪⎝⎭π15.已知定义在实数集R 的函数()f x 满足()27f =,且()f x 导函数()3f x '<,则不等式()ln 3ln 1f x x >+的解集为__________.【答案】()20,e16.已知函数()f x 是定义在()(),00,-∞+∞U 上的奇函数,且()10f =.若0x <时,()()'0xf x f x ->,则不等式()0f x >的解集为__________.【答案】()(),10,1-∞-U。
抽象函数-题型大全(例题-含答案)之欧阳音创编

高考抽象函数技巧总结 时间:2021.03.11 创作:欧阳音由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。
现将常见解法及意义总结如下:一、求表达式:1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
例1:已知()211x f x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴2()1x f x x-=- 2.凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。
例2:已知3311()f x x x x +=+,求()f x解:∵22211111()()(1)()(()3)f x x x x x x x x x x+=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a a b c b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。
高中数学抽象函数题型汇编及答案

抽象函数常见题型汇编及答案抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。
由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。
本文就抽象函数常见题型及解法评析如下:一、定义域问题(一)已知的定义域,求的定义域,解法:若的定义域为,则中,从中解得的取值范围即为的定义域。
例题1:设函数的定义域为,则(1)函数的定义域为______;(2)函数的定义域为_______解析:(1)由已知有,解得,故的定义域为(2)由已知,得,解得,故的定义域为(二)已知的定义域,求的定义域。
解法:若的定义域为,则由确定的范围即为的定义域。
例题2:函数的定义域为,则的定义域为_____。
解析:由,得,所以,故填(三)已知的定义域,求的定义域。
解法:先由定义域求定义域,再由定义域求得定义域。
例题3:函数定义域是,则的定义域是_______ 解析:先求的定义域,的定义域是,,即的定义域是再求的定义域,,的定义域是(四)运算型的抽象函数求由有限个抽象函数经四则运算得到的函数的定义域,解法是:先求出各个函数的定义域,再求交集。
例题4:函数的定义域是,求的定义域。
解析:由已知,有,即函数的定义域由确定函数的定义域是【巩固1】已知函数的定义域是[1,2],求f(x)的定义域。
解析:的定义域是[1,2],是指,所以中的满足从而函数f(x)的定义域是[1,4]【巩固2】 已知函数的定义域是,求函数的定义域。
解析:的定义域是,意思是凡被f 作用的对象都在中,由此可得所以函数的定义域是【巩固3】f x ()定义域为(0),1,则y f x a f x a a =++-≤()()(||)12定义域是__。
解析:因为x a +及x a -均相当于f x ()中的x ,所以010111<+<<-<⎧⎨⎩⇒-<<-<<+⎧⎨⎩x a x a a x aa x a (1)当-≤≤120a 时,则x a a ∈-+(),1; (2)当012<≤a 时,则x a a ∈-(),1 二、解析式问题1. 换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
2019年抽象函数含答案.doc

抽象函数专练1、已知函数()(,0)y f x x R x =∈≠对任意的非零实数1,2x x ,恒有1212()()()f x x f x f x =+,试判断()f x 的奇偶性。
解:令121,x x x =-=,得()(1)()f x f f x -=-+;为了求(1)f -的值,令121,1x x =-=,则(1)(1)f f f -=-+,即(1)0f =,再令121x x ==-得(1)(1)(1)2(1)f f f f =-+-=-∴(1)0f -=代入()(1)()f x f f x -=-+得 ()()f x f x -=,可得()f x 是一个偶函数。
2、 已知定义在[-2,2]上的偶函数,()f x 在区间[0,2]上单调递减,(1)()f m f m -<,求实数m 的取值范围分析:根据函数的定义域,[]2,2m m -∈-,,但是1m -和m 分别在[20][02]-,和,的哪个区间内呢?如果就此讨论,将十分复杂,如果注意到偶函数,则f (x )有性质f (-x )= f (x )=f ( |x | ),就可避免一场大规模讨论。
解:∵f (x )是偶函数, f (1-m )<f (m ) 可得)()1(m f m f <-,∴f (x )在[0,2]上是单调递减的,于是 ⎪⎩⎪⎨⎧≤≤≤-≤>-202101m m m m ,即⎪⎩⎪⎨⎧≤≤-≤-≤->+-222122122m m m m m 化简得-1≤m <21。
3、设f(x)是R 上的奇函数,且f(x+3) =-f(x),求f(1998)的值。
解:因为f(x+3) =-f(x),所以f(x+6)=f((x+3)+3) =-f(x+3)=f(x), 故6是函数f(x)的一个周期。
又f(x)是奇函数,且在x =0处有定义,所以f(x)=0从而f(1998)=f(6×333)=f(0)=0。
高考数学常考压轴题及答案:抽象函数

高考数学常考压轴题及答案:抽象函数1500字高考数学常考的压轴题之一是关于抽象函数的题目。
抽象函数是高中数学中一个较为复杂的概念,但是在高考中,几乎每年都会出现与抽象函数相关的题目。
掌握了抽象函数的相关知识,对于解答这类问题将起到事半功倍的效果。
抽象函数是指以未知函数为自变量的函数。
在高考中,一般会给出具体的函数表达式,然后要求对其进行分析和求解。
下面是一道常见的抽象函数问题:已知函数 $f(x)$ 与 $g(x)$ 满足 $f(x)=2g(x)+1$ ,且 $g(x)$ 为奇函数,则函数$f(x)$ 的一个表达式是()A. $f(x)=x+1$B. $f(x)=2x$C. $f(x)=x-2$D. $f(x)=3x-1$解析:根据已知条件 $f(x)=2g(x)+1$ ,我们可以得到 $g(x)=\\frac{f(x)-1}{2}$ 。
由于 $g(x)$ 是奇函数,即 $g(-x)=-g(x)$ ,代入 $g(x)$ 的表达式可以得到 $\\frac{f(-x)-1}{2}=-\\frac{f(x)-1}{2}$ 。
将表达式化简可得 $f(-x)=-f(x)$ ,即函数 $f(x)$ 为奇函数。
根据题目所给选项,只有选项 A 和 C 是奇函数,可以进行进一步的判断。
将选项 A 带入到原式中,得到 $f(x)=x+1$ ,不满足已知条件,所以选项 A 不是正确的答案。
将选项C 带入到原式中,得到$f(x)=x-2$ ,满足已知条件,所以选项C 是正确的答案。
答案:C另外,还有一类与抽象函数相关的常考压轴题是根据已知条件求解未知函数表达式的题目。
下面是一道例题:已知函数 $f(x)$ 满足 $f(3x-2)=5-x$ ,求函数 $f(x)$ 的表达式。
解析:由已知条件得到 $f(3x-2)=5-x$ ,我们可以发现,当自变量取值为$x=\\frac{2}{3}$ 时,整个函数的表达式会发生变化。
因此,我们可以令 $3x-2=\\frac{2}{3}$ ,求解出 $x$ 的值为 $x=\\frac{8}{9}$ 。
高中数学专题:抽象函数常见题型解法
抽象函数常见题型解法综述抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。
由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。
一、定义域问题例1. 已知函数)(2x f 的定义域是[1,2],求f (x )的定义域。
例2. 已知函数)(x f 的定义域是]21[,-,求函数)]3([log 21x f -的定义域。
二、求值问题例 3. 已知定义域为+R 的函数f (x ),同时满足下列条件:①51)6(1)2(==f f ,;②)()()(y f x f y x f +=⋅,求f (3),f (9)的值。
三、值域问题例4. 设函数f (x )定义于实数集上,对于任意实数x 、y ,)()()(y f x f y x f =+总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数)(x f 的值域。
解:令0==y x ,得2)]0([)0(f f =,即有0)0(=f 或1)0(=f 。
若0)0(=f ,则0)0()()0()(==+=f x f x f x f ,对任意R x ∈均成立,这与存在实数21x x ≠,使得)()(21x f x f ≠成立矛盾,故0)0(≠f ,必有1)0(=f 。
由于)()()(y f x f y x f =+对任意R y x ∈、均成立,因此,对任意R x ∈,有)]2([)2()2()22()(2≥==+=xf x f x f x x f x f下面来证明,对任意0)(≠∈x f R x ,设存在Rx ∈0,使得)(0=x f ,则)()()()0(0000=-=-=x f x f x x f f这与上面已证的0)0(≠f 矛盾,因此,对任意0)(≠∈x f R x , 所以0)(>x f评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段。
四、解析式问题例5. 设对满足10≠≠x x ,的所有实数x ,函数)(x f 满足x x x f x f +=-+1)1()(,求f (x )的解析式。
抽象函数-题型大全(例题-含答案)之欧阳道创编
高考抽象函数技巧总结 时间:2021.03.06 创作:欧阳道由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。
现将常见解法及意义总结如下:一、求表达式:1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
例1:已知 ()211x f x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴2()1x f x x-=- 2.凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。
例2:已知3311()f x x x x +=+,求()f x 解:∵22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11||||1||x x x x +=+≥∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a a b c b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。
抽象函数-题型大全(例题-含答案)之欧阳语创编
高考抽象函数技巧总结时间:2021.03.01创作:欧阳语由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。
现将常见解法及意义总结如下:一、求表达式:1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
例1:已知 ()211x f x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴2()1x f x x-=- 2.凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。
例2:已知3311()f x x x x +=+,求()f x 解:∵22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a a b c b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。
抽象函数和复合函数的应用 解析版-高中数学
抽象函数与复合函数的应用①抽象函数的性质(定义域、单调性、奇偶性、周期性、对称性)②常见抽象函数模型①-一次函数、二次函数、反比例函数③常见抽象函数模型②-指对幂函数、三角函数④复合函数的应用一、必备知识整合一、抽象函数的性质1.周期性:f x +a =f x ⇒T =a ;f x +a =−f x ⇒T =2a ;f x +a =kf x⇒T =2a ;(k 为常数);f x +a =f x +b ⇒T =a −b 2.对称性:对称轴:f a −x =f a +x 或者f 2a −x =f x ⇒f x 关于x =a 对称;对称中心:f a −x +f a +x =2b 或者f 2a −x +f x =2b ⇒f x 关于a ,b 对称;3.如果f x 同时关于x =a 对称,又关于b ,c 对称,则f x 的周期T =a −b 4.单调性与对称性(或奇偶性)结合解不等式问题①f x 在R 上是奇函数,且f x 单调递增⇒若解不等式f x 1 +f x 2 >0,则有x 1+x 2>0;f x 在R 上是奇函数,且f x 单调递减⇒若解不等式f x 1 +f x 2 >0,则有x 1+x 2<0;②f x 在R 上是偶函数,且f x 在0,+∞ 单调递增⇒若解不等式f x 1 >f x 2 ,则有x 1 >x 2 (不变号加绝对值);f x 在R 上是偶函数,且f x 在0,+∞ 单调递减⇒若解不等式f x 1 >f x 2 ,则有x 1 <x 2 (变号加绝对值);③f x 关于a ,b 对称,且f x 单调递增⇒若解不等式f x 1 +f x 2 >2b ,则有x 1+x 2>2a ;f x 关于a ,b 对称,且f x 单调递减⇒若解不等式f x 1 +f x 2 >2b ,则有x 1+x 2<2a ;④f x 关于x =a 对称,且f x 在a ,+∞ 单调递增⇒若解不等式f x 1 >f x 2 ,则有x 1−a >x 2−a (不变号加绝对值);f x 关于x =a 对称,且f x 在a ,+∞ 单调递减⇒若解不等式f x 1 >f x 2 ,则有x 1−a <x 2−a (不变号加绝对值);5.常见的特殊函数性质一览①f x =log a 1+mx 2±mx 是奇函数②f x =log ak −x k +x f x =log a k +xk −x(k 为常数)是奇函数③f x =1−a x 1+a x 或者f x =1+a x 1−a x 或者f x =a x +1a x −1或者f x =a x −1a x +1是奇函数④f x =m a x+1关于0,m2 对称⑤f g x 复合函数的奇偶性:有偶为偶,全奇为奇二、抽象函数的模型【反比例函数模型】反比例函数:f (x +y )=f (x )f (y )f (x )+f (y ),则f (x )=f (1)x ,x ,f (x ),f (y ),f (x +y )均不为0【一次函数模型】模型1:若f (x ±y )=f (x )±f (y ),则f (x )=f (1)x ;模型2:若f (x ±y )=f (x )±f (y ),则f (x )为奇函数;模型3:若f (x +y )=f (x )+f (y )+m ,则f (x )=f 1 +m x -m ;模型4:若f (x -y )=f (x )-f (y )+m ,则f (x )=f 1 -m x +m ;【指数函数模型】模型1:若f (x +y )=f (x )f (y ),则f (x )=[f (1)]x ;f (x )>0模型2:若f (x -y )=f (x )f (y ),则f (x )=[f (1)]x ;f (x )>0模型3:若f (x +y )=f (x )f (y )m ,则f (x )=f 1 mxm;模型4:若f (x -y )=m f (x )f (y ),则f (x )=m f 1 m x ;【对数函数模型】模型1:若f (x n )=nf (x ),则f (x )=f a log a x a >0且≠1,x >0模型2:若f (xy )=f (x )+f (y ),则f (x )=f a log a x a >0且≠1,x ,y >0模型3:若fxy=f(x)-f(y),则f(x)=f a log a x a>0且≠1,x,y>0模型4:若f(xy)=f(x)+f(y)+m,则f(x)=f a +mlog a x-m a>0且≠1,x,y>0模型5:若fxy=f(x)-f(y)+m,则f(x)=f a -mlog a x+m a>0且≠1,x,y>0【幂函数模型】模型1:若f(xy)=f(x)f(y),则f x =f a log a x a>0且≠1模型2:若fxy=f(x)f(y),则f x =f a log a x a>0且≠1,y≠0,f y ≠0代入f a 则可化简为幂函数;【余弦函数模型】模型1:若f(x+y)+f(x-y)=2f(x)f(y)f(x)不恒为0,则f(x)=cos wx模型2:若f(x)+f(y)=2fx+y2f x-y2f(x)不恒为0,则f(x)=cos wx【正切函数模型】模型:若f(x±y)=f(x)±f(y)1∓f(x)f(y)f(x)f(y)≠1,则f(x)=tan wx模型3:若f(x+y)+f(x-y)=kf(x)f(y)f(x)不恒为0,则f(x)=2kcos wx三、复合函数1.复合函数定义:两个或两个以上的基本初等函数经过嵌套式复合成一个函数叫做复合函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弘知教育内部资料 中小学课外辅导专家 用心 爱心 专心 - 1 - 抽象函数周期性的探究(教师版)
抽象函数是指没有给出具体的函数解析式,只给出它的一些特征、性质或一些特殊关系式的函数,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力.而在教学中我发现同学们对于抽象函数周期性的判定和运用比较困难,所以特探究一下抽象函数的周期性问题. 利用周期函数的周期求解函数问题是基本的方法.此类问题的解决应注意到周期函数定义、紧扣函数图象特征,寻找函数的周期,从而解决问题.以下给出几个命题: 命题1:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1)函数y=f(x)满足f(x+a)=-f(x),则f(x)是周期函数,且2a是它的一个周期.
(2)函数y=f(x)满足f(x+a)=1()fx,则f(x)是周期函数,且2a是它的一个周期. (3)函数y=f(x)满足f(x+a)+f(x)=1,则f(x)是周期函数,且2a是它的一个周期. 命题2:若a、b(ab)是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1) 函数y=f(x)满足f(x+a)=f(x+b),则f(x)是周期函数,且|a-b|是它的一个周期. (2)函数图象关于两条直线x=a,x=b对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期. (3) 函数图象关于点M(a,0)和点N(b,0)对称,则函数y=f(x)是周期函数,且2|a-b|是它的一个周期. (4)函数图象关于直线x=a,及点M(b,0)对称,则函数y=f(x)是周期函数,且4|a-b|是它的一个周期. 命题3:若a是非零常数,对于函数y=f(x)定义域的一切x,满足下列条件之一,则函数y=f(x)是周期函数. (1)若f(x)是定义在R上的偶函数,其图象关于直线x=a对称,则f(x)是周期函数,且2a是它的一个周期. (2)若f(x)是定义在R上的奇函数,其图象关于直线x=a对称,则f(x)是周期函数,且4a是它的一个周期. 我们也可以把命题3看成命题2的特例,命题3中函数奇偶性、对称性与周期性中已知其中的任两个条件可推出剩余一个.下面证明命题3(1),其他命题的证明基本类似. 设条件A: 定义在R上的函数f(x)是一个偶函数. 条件B: f(x)关于x=a对称 条件C: f(x)是周期函数,且2a是其一个周期. 结论: 已知其中的任两个条件可推出剩余一个. 证明: ①已知A、B→ C (2001年全国高考第22题第二问) ∵f(x)是R上的偶函数∴f(-x)=f(x) 又∵f(x)关于x=a对称∴f(-x)=f(x+2a) ∴f(x)=f(x+2a)∴f(x)是周期函数,且2a是它的一个周期 ②已知A、C→B ∵定义在R上的函数f(x)是一个偶函数∴f(-x)=f(x) 又∵2a是f(x)一个周期∴f(x)=f(x+2a) 弘知教育内部资料 中小学课外辅导专家 用心 爱心 专心 - 2 - ∴f(-x)=f(x+2a) ∴ f(x)关于x=a对称 ③已知C、B→A ∵f(x)关于x=a对称∴f(-x)=f(x+2a) 又∵2a是f(x)一个周期∴f(x)=f(x+2a) ∴f(-x)=f(x) ∴f(x)是R上的偶函数
由命题3(2),我们还可以得到结论:f(x)是周期为T的奇函数,则f(2T)=0 基于上述命题阐述,可以发现,抽象函数具有某些关系.根据上述命题,我们易得函数周期,从而解决问题,以下探究上述命题在解决抽象函数问题中的运用. 1.求函数值 例1:f(x) 是R上的奇函数f(x)=- f(x+4) ,x∈[0,2]时f(x)=x,求f(2007) 的值 解:方法一 ∵f(x)=-f(x+4) ∴f(x+8) =-f(x+4) =f(x) ∴8是f(x)的一个周期 ∴f(2007)= f(251×8-1)=f(-1)=-f(1)=-1 方法二∵f(x)=-f(x+4),f(x)是奇函数 ∴f(-x)=f(x+4) ∴f(x)关于x=2对称 又∵f(x)是奇函数 ∴8是f(x)的一个周期,以下与方法一相同. 例2:已知f(x)是定义在R上的函数,且满足f(x+2)[1-f(x)]=1+f(x),f(1)=2,求f(2009) 的值
解:由条件知f(x)1,故1()(2)1()fxfxfx
1(2)1(4)1(2)()fxfxfxfx
类比命题1可知,函数f(x)的周期为8,故f(2009)= f(251×8+1)=f(1)=2 2. 求函数解析式
例3:已知f(x)是定义在R上的偶函数,f(x)= f(4-x),且当2,0x时,f(x)=-2x+1,
则当4,6x时求f(x)的解析式 解:当0,2x时[2,0]x∴f(-x)=2x+1 ∵f(x)是偶函数∴f(-x)=f(x) ∴f(x)=2x+1 当4,6x时4[0,2]x∴f(-4+x)=2(-4+x)+1=2x-7 又函数f(x)是定义在R上的偶函数,f(x)= f(4-x),类比命题3(1)知函数f(x)的周期为4 故f(-4+x)=f(x)
∴当4,6x时求f(x)=2x-7 3.判断函数的奇偶性
例4:已知f(x)是定义在R上的函数,且满足f(x+999)=1()fx,f(999+x)=f(999-x), 试弘知教育内部资料 中小学课外辅导专家 用心 爱心 专心 - 3 - 判断函数f(x)的奇偶性. 解:由f(x+999)=1()fx,类比命题1可知,函数f(x)的周期为1998即f(x+1998)=f(x);由f(999+x)=f(999-x)知f(x)关于x=999对称,即f(-x)=f(1998+x) 故f(x)=f(-x) f(x)是偶函数 4.判断函数的单调性
例5:已知f(x)是定义在R上的偶函数,f(x)= f(4-x),且当2,0x时,f(x)是减函数,
求证当4,6x时f(x)为增函数 解:设1246xx则212440xx ∵ f(x)在[-2,0]上是减函数∴ 21(4)(4)fxfx 又函数f(x)是定义在R上的偶函数,f(x)= f(4-x),类比命题3(1)知函数f(x)的周期为4
故f(x+4)=f(x) ∴21()()fxfx ∵ f(-x)=f(x) ∴ 21()()fxfx
故当4,6x时f(x)为增函数 例6:f(x)满足f(x) =-f(6-x),f(x)= f(2-x),若f(a) =-f(2000),a∈[5,9]且f(x)在[5,9]上单调.求a的值. 解:∵ f(x)=-f(6-x) ∴f(x)关于(3,0)对称 ∵ f(x)= f(2-x) ∴ f(x)关于x=1对称 ∴根据命题2(4)得8是f(x)的一个周期 ∴f(2000)= f(0) 又∵f(a) =-f(2000) ∴f(a)=-f(0) 又∵f(x) =-f(6-x) ∴f(0)=-f(6) ∴f(a)=f(6)∵a∈[5,9]且f(x)在[5,9]上单调∴a =6 5.确定方程根的个数 例7:已知f(x)是定义在R上的函数,f(x)= f(4-x),f(7+x)= f(7-x),f(0)=0, 求在区间[-1000,1000]上f(x)=0至少有几个根? 解:依题意f(x)关于x=2,x=7对称,类比命题2(2)可知f(x)的一个周期是10 故f(x+10)=f(x) ∴f(10)=f(0)=0 又f(4)=f(0)=0 即在区间(0,10]上,方程f(x)=0至少两个根 又f(x)是周期为10的函数,每个周期上至少有两个根,
因此方程f(x)=0在区间[-1000,1000]上至少有1+2200010=401个根.
两类易混淆的函数问题:对称性与周期性 刘云汉 弘知教育内部资料 中小学课外辅导专家 用心 爱心 专心 - 4 - 例1. 已知函数y= f(x)(x∈R)满足f(5+x)= f(5-x),问:y= f(x)是周期函数吗?它的图像是不是轴对称图形?
例2. 已知函数y= f(x)(x∈R)满足f(5+x)= f(5-x),问:y= f(x)是周期函数吗?它的图像是不是轴对称图形?
这两个问题的已知条件形似而质异。有的同学往往把它们混为一谈,从而得出错误的结论。为了准确地回答上述问题,必须掌握以下基本定理。
定理1:如果函数y= f(x)(x∈R)满足f(5+x)= f(5-x),那么y= f(x)的图像关于直线xa对称。
证明:设点Pxy00,是y= f(x)的图像上任一点,点P关于直线x=a的对称点为Q,易知,点Q的坐标为200axy,。
因为点Pxy00,在y= f(x)的图像上,所以fxy()00 于是faxfaaxfaaxfxy200000 所以点Qaxy200,也在y= f(x)的图像上。 由P点的任意性知,y= f(x)的图像关于直线x=a对称。
定理2:如果函数y= f(x)(x∈R)满足f(a+x)= f(b-x),那么y= f(x)的图像关于直线xab2的对称。
证明:(略)(证明同定理1)
定理3:如果函数y= f(x)(x∈R)满足f(x+a)= f(x-a),那么y= f(x)是以2a为周期的周期函数。
证明:令xax',则xxaxaxa'',2
代入已知条件fxafxa 得:fxafx''2 根据周期函数的定义知,y= f(x)是以2a为周期的周期函数。