八年级四边形动点问题
八年级数学四边形动点问题练习.doc

中考数学动点专题所谓“动点型问题”是指题设图形中存在一个或多个动点 , 它们在线段、射线或弧线上运动的一类开放性题目 . 解决这类问题的关键是动中求静 , 灵活运用有关数学知识解决问题 .关键 : 动中求静 .数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路 , 这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:( 1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.1、已知:等边三角形 ABC 的边长为 4 厘米,长为 1 厘米的线段 MN 在△ ABC 的边 AB 上沿 AB 方向以 1 厘米 / 秒的速度向 B 点运动(运动开始时,点 M 与点 A 重合,点 N 到达点 B 时运动终止),过点 M 、N 分别作 AB 边的垂线,与△ ABC 的其它边交于P、Q两点,线段 MN 运动的时间为 t 秒.(1)、线段 MN 在运动的过程中, t 为何值时,四边形MNQP恰为矩形并求出该矩形的面积;(2 )线段 MN 在运动的过程中,四边形MNQP 的面积为S,运动的时间为t.求四边形 MNQP 的面积 S 随运动时间 t 变化的函数关系式,并写出自变量t 的取值范围.CQPA M N B2.梯形 ABCD中, AD∥BC,∠ B=90°, AD=24cm, AB=8cm,BC=26cm,动点 P 从点 A 开始,沿AD边,以 1 厘米 / 秒的速度向点 D运动;动点 Q从点 C开始,沿 CB边,以 3 厘米 / 秒的速度向 B 点运动。
沪教版八年级数学 下册 四边形的动点问题-学生讲义

四边形的动点问题1、如图,已知线段AB∥CD,AD与BC相交于点K,E是线段AD上一动点.连接BE,若BE平分∠ABC,则当AE=12AD时,猜想线段AB、BC、CD三者之间有怎样的等量关系?请写出你的结论并予以证明.再探究:当AE=1nAD (2n),而其余条件不变时,线段AB、BC、CD三者之间又有怎样的等量关系?请直接写出你的结论,不必证明.2、正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),∠BPE=1 2∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.(1)当点P与点C重合时(如图①).求证:△BOG≌△POE;(2)通过观察、测量、猜想:BFPE= ▲ ,并结合图②证明你的猜想;3.如同,在正方形ABCD中,对角线AC与BD相交于点E,AF平分∠BAC,交BD于点F。
(1)EF+0.5AC =AB;(2)点C1从点C出发,沿着线段CB向点B运动(不与点B重合),同时点A1从点A出发,沿着BA的延长线运动,点C1与点A1运动速度相同,当动点C1停止运动时,另一动点A1也随之停止运动。
如图,AF1平分∠B A1 C1,交BD于F1,过F1作F1E1⊥A1 C1,垂足为E1,试猜想F1E1,0.5 A1 C1与AB之间的数量关系,并证明你的猜想。
(3)在(2)的条件下,当A1 C1=3,C1 E1=2时,求BD的长。
4.如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?证明你的结论.5、已知等腰△ABC中,AB=AC,AD平分∠BAC交BC于D点,在线段AD上任取一点P(A点除外),过P点作EF∥AB,分别交AC,BC于E,F点,作PM∥AC,交AB于M点,连接ME.(1)求证:四边形AEPM为菱形;(2)当P点在何处时,菱形AEPM的面积为四边形EFBM面积的一半?6、如图所示,四边形ABCD是直角梯形,∠B=90°,AB=8cm,AD=24cm,BC=26cm,点P从A出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向B运动,其中一个动点到达端点时,另一动点也随之停止运动,从运动开始,经过多少时间,四边形PQCD成为等腰梯形?。
八年级数学四边形动点问题

八年级数学四边形动点问题姓名:1.如图:已知正方形ABCD 的边长为8,M 在DC 上,且DM=2,N 是AC 上的一动点,求DN+MN 的最小值。
2.如图,在四边形ABCD 中,AD ∥BC,且AD>BC ,BC=6cm ,P 、Q 分别从A,C 同时出发,P 以1cm/s 的速度由A 向D 运动,Q 以2cm/s 的速度由C 向B 运动,几秒后四边形ABQP 是平行四边形?3.如图,梯形ABCD 中AD//BC , ∠B=90 °AB=14cm ,AD=15cm,BC=21cm ,点M 从A 点开始,沿AD 边向D 运动,速度为1cm/s ,点N 从点C 开始沿CB 边向点B 运动,速度为2cm/s ,设四边形MNCD 的面积为S 。
(1)写出面积S 与时间t 之间的函数关系式。
(2)t 为何值时,四边形MNCD 是平行四边形?(3) t 为何值时,四边形MNCD 是等腰梯形?A B CM N D A B D CPQ A B N C4.如图,菱形ABCD中,∠B=60°,AB=2,点E、F分别是AB、AD上的动点,且满足BE=AF,接连EF、EC、CF.(1)求证:△EFC是等边三角形;(2)试探究△AEF的周长是否存在最小值?如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.5.如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=16cm,BC=22cm,点P从点A 出发,以1cm/s的速度向点D运动,点Q从点C同时出发,以3cm/s的速度向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动.(1)经过多少时间,四边形ABQP成为矩形?(2)经过多少时间,四边形PQCD成为等腰梯形?(3)问四边形PBQD是否能成为菱形?若能,求出运动时间;若不能,请说明理由,并探究如何改变Q点的速度(匀速运动),使四边形PBQD在某一时刻为菱形,求点Q的速度.。
人教版初中数学八年级下册《平行四边形复习专题:动点问题》

B
C
A
P
D
方法总结 解决动点问题 先根据条件画出相应的特定图形,变运动为 静止来解决问题。 1、先确定特定图形中动点的位置 2、利用用已知条件,将动点的移动距离表示 出来。 3、在根据所需要的条件,利用动点的移动距 离将解决问题时所需要的条件用含t的代数式 表示出来 4、根据所求利用条件列出等式或函数关系式 来解决动点问题
动画点
A P
D
B
Q
C
练习2 如图,梯形ABCD中AD∥BC,∠B=90°。 AB=14cm,AD=15cm,BC=21cm,点M从A点开始, 沿AD边向D运动,速度为1cm/s,点N从点C开始沿 CB边向点B运动,速度为2cm/s当t为何值时,四边 形MNCD是平行四边形?
A M D
B
N
C
练习3 如图,在直角梯形ABCD中,∠ABC= 90° DC ∥ AB,BC=3,DC=4,AD=5.动点P从B 点出发,由B→C→D一A沿边运动,则则△ABP 的最大面积为() D C P A.10 B,12 A C.14 Bபைடு நூலகம்D.16
用s=vt表示所需要的线段长 ↓ 列出方程或函数表达式
变式1:如图:梯形ABCD中,AD∥ BC, AD=9cm,BC=6cm,梯形形的高为5cm.点 P从点A出发,沿着AD的方向向终点D以每秒 一个单位的速度运动,当点P在AD上运 动时,设运动时间为t,求当t为何值时三角形 PCD的面积为梯形ABCD面积的一半。
B C
A
P
D
变式2、如图:梯形ABCD中, AD∥ BC, AD=9cm,BC=6cm,点P、Q分别从点A、C同时出 发,点P以2cm/s的速度由点A向点D运动,点Q以 1cm/s的速度由点C向点B运动运动多少秒时,四边 形APQB是平行四边形?
八年级四边形动点问题及难题1

动点问题及四边形难题1如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式;(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);2.如图,已知ABC△中,10AB AC==厘米,8BC=厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA 上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,BPD△与CQP△是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使BPD△与CQP△全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC△三边运动,求经过多长时间点P与点Q第一次在ABC△的哪条边上相遇?3. 如图,已知AD与BC相交于E,∠1=∠2=∠3,BD=CD,∠ADB=90°,CH⊥AB于H,CH交AD于F.(1)求证:CD∥AB;(2)求证:△BDE≌△ACE;(3)若O为AB中点,求证:OF=12BE.AQCDBP4、如图1―4―2l,在边长为a的菱形ABCD中,∠DAB=60°,E是异于A、D两点的动点,F是CD上的动点,满足A E+CF=a,说明:不论E、F怎样移动,三角形BEF总是正三角形.5、在平行四边形ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:CFAB ;(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.6、如图l-4-80,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,过点A 作AG⊥EB,垂足为G,AG交BD于F,则OE=OF.(1)请证明0E=OF(2)解答(1)题后,某同学产生了如下猜测:对上述命题,若点E在AC的延长线上,AG ⊥EB,AG交 EB的延长线于 G,AG的延长线交DB的延长线于点F,其他条件不变,则仍有OE=OF.问:猜测所得结论是否成立?若成立,请给出证明;若不成立,请说明理由.FEDCBA7.已知:如图4-26所示,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,P为BC的延长线上一点,PE⊥直线AB于点E,PF⊥直线AC于点F.求证:DE⊥DF并且相等.8.已知:如图4-27,ABCD为矩形,CE⊥BD于点E,∠BAD的平分线与直线CE相交于点F.求证:CA=CF.9.已知:如图4-56,直线l通过正方形ABCD的顶点D平行于对角线AC,E为l上一点,EC=AC,并且EC与边AD相交于点F.求证:AE=AF.10.求证:矩形各内角平分线(对角的平分线不在一直线上)所围成的四边形EFGH是正方形.。
八年级数学四边形之动点问题(建等式一)(北师版)(含答案)

学生做题前请先回答以下问题问题1:动点问题的处理框架是什么?问题2:在分析运动过程时常借助运动状态分析图,需要关注哪几个要素?四边形之动点问题(建等式一)(北师版)一、单选题(共5道,每道20分)1.如图,直线与x轴、y轴分别交于A,B两点,直线BC与x轴交于点C,∠ABC=60°.动点P从点A出发以每秒1个单位的速度沿AC向点C运动(不与点A,C重合),同时动点Q从点C出发以每秒2个单位的速度沿折线CB-BA向点A运动(不与点C,A重合).设点P的运动时间为t秒,△APQ的面积为S,则S与t之间的函数关系式为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:动点问题2.如图,在梯形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间为( )秒时,以点P,Q,E,D为顶点的四边形是平行四边形.A. B.C.或D.或答案:D解题思路:试题难度:三颗星知识点:动点问题3.如图,在平行四边形OABC中,点A在x轴上,∠AOC=60°,OC=4cm,OA=8cm.动点P 从点O出发,以1cm/s的速度沿折线OA-AB运动;动点Q同时从点O出发,以相同的速度沿折线OC-CB运动.当其中一点到达终点B时,另一点也随之停止运动,设运动时间为t 秒.(1)设△OPQ的面积为S,要求S与t之间的函数关系式,根据表达的不同,t的分段应为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:动点问题4.(上接第3题)(2)S与t之间的函数关系式为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:动点问题5.(上接第4题)(3)当点P在OA上运动,且△OPQ的面积为平行四边形OABC的面积的一半时,t的值为( )A.,8B.4C. D.8答案:D解题思路:试题难度:三颗星知识点:动点问题学生做题后建议通过以下问题总结反思问题1:动点问题的处理框架中的第三步:分析几何特征、表达、设计方案求解,具体的操作动作有哪些?问题2:表达线段长时有哪些手段?。
八年级数学四边形之动点问题(隐含点建等式)(北师版)(含答案)
四边形之动点问题(隐含点建等式)(北师版)一、单选题(共6道,每道16分)1.如图,在Rt△ABC中,∠C=90°,∠B=60°,.动点P从点A出发以每秒2个单位的速度向点B匀速运动,同时动点Q从点B出发以每秒1个单位的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动,设运动的时间为t秒(),解答下列问题:(1)当t=( )时,PQ∥AC.A. B.2C. D.3答案:B解题思路:试题难度:三颗星知识点:动点问题2.(上接第1题)(2)当t=( )时,PQ=PC.A.1B.C. D.2答案:B解题思路:试题难度:三颗星知识点:动点问题3.如图,在Rt△ABC中,∠C=90°,AC=4,BC=6,点D在BC边上,且CD=4.动点P从点A 出发沿AC方向以每秒1个单位长度的速度向点C匀速运动,同时动点Q从点B出发沿BC 方向以每秒1.5个单位长度的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.过点P作PE∥BC交AD于点E,连接EQ,设点P,Q运动的时间为t秒,(1)△EDQ的面积S与t的函数关系式为( )A.B.C.D.答案:D解题思路:试题难度:三颗星知识点:动点问题4.(上接第3题)(2)当△EDQ为直角三角形时,t的值为( )A. B.3 C. D.答案:C解题思路:试题难度:三颗星知识点:动点问题5.如图,在平行四边形ABCD中,AB=5,AD=15,∠ABC=60°.点P从点B出发沿B→A→D以每秒2个单位长度的速度向点D匀速运动;同时点Q从点C出发沿C→B以每秒3个单位长度的速度向点B匀速运动,当点Q到达点B时,P,Q同时停止运动.设P,Q的运动时间为t秒.(1)点P在AD上运动过程中,当t=( )秒时,PQ∥AB.A.3B.4C.2D.2.5答案:B解题思路:试题难度:三颗星知识点:动点问题6.(上接第5题)(2)如图,过点Q作QE⊥BC交线段DA或AB于点E,设△BQE的面积为S,则S与t的函数关系式为( )A.B.C.D.答案:D解题思路:试题难度:三颗星知识点:动点问题。
浙教版八年级数学下册第5章专题十二 特殊四边形中的动点问题
专题
∴△ADE≌△CDG. ∴AE=CG. ∴AC=AE+CE=CG+CE. ∵AC= 2AB, ∴CE+CG= 2AB.
专题
∵EM⊥BC,EN⊥CD,∴∠EMC=∠ENC=90°, ∴∠NEC=45°,∴NE=NC, ∴四边形EMCN是正方形. ∴EM=EN,∠NEM=90°. ∴∠MEF+∠FEN=90°. ∵四边形DEFG是矩形,∴∠DEF=90°. ∴∠DEN+∠NEF=90°,∴∠DEN=∠MEF.
专题
在△DEN 和△FEM 中, ∠ END=NEEM=,∠FME, ∠DEN=∠FEM, ∴△DEN≌△FEM. ∴ED=EF, ∴矩形 DEFG 是正方形.
专题
又∵EF⊥AC, ∴四边形AFCE为菱形. ∴AF=CF. 设AF=CF=x cm,则BF=(8-x)cm. 在Rt△ABF中,由勾股定理,得AB2+BF2 =AF2,即42+(8-x)2=x2,解得x=5. ∴AF=5 cm.
专题
(2)动点P,Q分别从A,C两点同时出发 ,沿△AFB和 △CDE各边匀速运动一周,即点P自A→F→B→A停止, 点Q自C→D→E→C停止.在运动过程中,已知点P的 速度为5 cm/s,点Q的速度为4 cm/s,运动时间为t s, 当以A,C,P,Q四点为顶点的四边形是平行四边形 时,求t的值.
专题
若以A,C,P,Q四点为顶点的四边形是平行四边形, 则PC=QA. ∵四边形ABCD为矩形, ∴AB=CD=4 cm,AD=BC=8 cm. ∵AF=CF=5 cm,点P的速度为5 cm/s,点Q的速度 为4 cm/s,运动时间为t s,
专题
∴PC=PF+FC=PF+FA=5t cm,QA =(AD+CD)-(QD+CD)=(12-4t)cm. ∴5t=12-4t,解得 t=43. 故当以 A,C,P,Q 四点为顶点的四边 形是平行四边形时,t 的值为43.
八年级下册四边形动点问题和问题详解
八年级数学下册四边形动点问题专题1、如图,E 是正方形ABCD 对角线AC 上一点,EF ⊥AB ,EG ⊥BC ,F 、G 是垂足,若正方形ABCD 周长为a ,则EF +EG 等于 。
2、如图,P 是正方形ABCD 一点,将△ABP 绕点B 顺时针方向旋转能与△CBP′重合,若PB=3,则PP′=3、在Rt △ABC 中 ∠C=90° AC=3 BC=4 P 为AB 上任意一点 过点P 分别作PE ⊥AC 于E PE ⊥BC 于点F 线段EF 的最小值是4、如图,菱形ABCD 中,AB=4,∠BAD =60°,E 是AB 的中点,P 是对角线AC 上的一个动点,则PE+PB 的最小值是 。
5、如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD ,在对角线AC 上有一点P ,使PD PE 的和最小,则这个最小值为BF7、如图,在菱形ABCD中,对角线AC、BD相交于点O,且AC=12,BD=16,E为AD的中点,点P在BD上移动,若△POE为等腰三角形,则所有符合条件的点P共有个.8、已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为。
9、如图,在边长为10的菱形ABCD中,对角线BD=16.点E是AB的中点,P、Q是BD上的动点,且始终保持PQ=2.则四边形AEPQ周长的最小值为_________.(结果保留根号)10、如图所示,在△ABC中,分别以AB.AC.BC为边在BC的同侧作等边△ABD,等边△ACE.等边△BCF.(1)求证:四边形DAEF是平行四边形;(2)探究下列问题:(只填满足的条件图所示,在△ABC中,分别以AB.AC.BC为边在BC的同侧作等边△ABD,等边△ACE.等边△BCF.,不需证明)①当△ABC满足_________________________条件时,四边形DAEF是矩形;②当△ABC满足_________________________条件时,四边形DAEF是菱形;③当△ABC满足_________________________条件时,以D.A.E.F为顶点的四边形不存在.11、如图,矩形ABCD中,cm,cm,动点M从点D出发,按折线DCBAD方向以2 cm/s的速度运动,动点N从点D出发,按折线DABCD方向以1 cm/s的速度运动.(1)若动点M、N同时出发,经过几秒钟两点相遇?(2)若点E在线段BC上,且cm,若动点M、N同时出发,相遇时停止运动,经过几秒钟,点A、E、M、N组成平行四边形?12、如图,在矩形ABCD中,AB=16cm,AD=6cm,动点P、Q分别从A、C同时出发,点P以每秒3cm 的速度向B移动,一直达到B止,点Q以每秒2cm的速度向D移动.(1)P、Q两点出发后多少秒时,四边形PBCQ的面积为36cm2?(2)是否存在某一时刻,使PBCQ为正方形?若存在,求出该时刻;若不存在,说明理由.13、已知:如图,菱形ABCD中,∠BAD=120°,动点P在直线BC上运动,作∠APM=60°,且直线PM与直线CD 相交于点Q,Q点到直线BC的距离为QH.(1)若P在线段BC上运动,求证:CP=DQ.(2)若P在线段BC上运动,探求线段AC,CP,CH的一个数量关系,并证明你的结论.14、如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,AB=20 cm,BC=10 cm,DC=12 cm,点P和Q 同时从A、C出发,点P以4 cm/s的速度沿A-B一C-D运动,点Q从C开始沿CD边以1 cm/s的速度运动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动,设运动时间为t(s).(1)t为何值时,四边形APQD是矩形;(2)t为何值时,四边形BCQP是等腰梯形;(3)是否存在某一时刻t,使线段PQ恰好把梯形ABCD的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由.15、如图,已知ΔABC和ΔDEF是两个边长都为1cm的等边三角形,且B、D、C、E都在同一直线上,连接AD、CF.(1)求证:四边形ADFC是平行四边形;(2)若BD=0.3cm,ΔABC沿着BE的方向以每秒1cm的速度运动,设ΔABC运动时间为t秒,①当t为何值时,□ADFC是菱形?请说明你的理由;②□ADFC有可能是矩形吗?若可能,求出t的值及此矩形的面积;若不可能,请说明理由.16、在△ABC中,点O是AC上的一个动点,过点O作MN//BC,设MN交∠BCA的平分线于E,交∠BCA 的外角平分线于F。
八年级数学下册动点问题构成平行四边形解题技巧(一)
八年级数学下册动点问题构成平行四边形解题技巧(一)八年级数学下册动点问题构成平行四边形解题技巧什么是动点问题?动点问题是数学中经常遇到的一类问题,它通常涉及到平行四边形的性质和特点。
解决动点问题需要一定的技巧和方法。
动点问题解题技巧以下是一些解决八年级数学下册动点问题的技巧:•确定动点的位置和性质在解决动点问题时,首先要确定动点的位置和性质。
根据问题所给条件,我们可以确定动点在平行四边形内部、边界上还是延长线上。
这些信息有助于我们确定动点的坐标。
•确定平行四边形的特点平行四边形有一些独特的性质,利用这些性质可以解决动点问题。
例如,平行四边形的对角线相互平分,对角线长相等等。
通过确定平行四边形的特点,我们可以推断出关于动点的一些性质。
•运用向量法或坐标法求解在解决动点问题时,我们可以运用向量法或坐标法来求解。
向量法常用于证明或推导问题,而坐标法常用于具体计算。
具体选择使用哪种方法要根据问题的特点和要求来决定。
•画图辅助解题绘制图形是解决动点问题的重要步骤。
通过画图,我们可以更好地理解问题,并帮助我们找到解题的思路。
画图时,注意要准确绘制出平行四边形的形状和各个元素的位置关系。
•通过推理和运算得出答案在完成前面步骤后,我们可以通过推理和运算来得出最终的答案。
根据题目所要求的内容,进行逻辑推理和数学运算,得出问题的解答。
总结解决八年级数学下册动点问题需要我们熟悉平行四边形的性质和特点,并掌握相应的解题技巧。
通过确定动点的位置和性质、确定平行四边形的特点、运用向量法或坐标法、画图辅助解题以及通过推理和运算得出答案,我们可以有效地解决动点问题。
希望以上技巧能帮助到你解决八年级数学下册动点问题,在数学学习中取得更好的成绩!对于八年级数学下册动点问题构成平行四边形解题,下面给出了更具体的步骤和实例来帮助你更好地理解和应用这些技巧。
1.确定动点的位置和性质首先,从题目中找出关于动点的相关信息,然后根据这些信息来确定动点的位置和性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四边形动点型问题专题讲解
(一)动点求线段长的最小值
例1、如图,四边形ABCD是直角梯形,AB∥CD,AD⊥AB,点P是腰AD上的一个动点,要使PC+PB最小,则点P应该满足()
A、PB=PC
B、PA=PD
C、∠BPC=90°
D、∠APB=∠DPC
例2、如图,在等腰梯形ABCD中,AD∥BC,点E是BC的中点,点F是AC
上的一个动点.若四边形AECD是菱形,△ABE的周长为6cm,则BF+EF的
最小值是 cm.
例3、如图,四边形ABCD是菱形,且∠ADC=120°,点M、N分别是边AB、BC的中点,点P是对角线AC上的动点,若PM+PN的最小值是1,则菱形ABCD的面积是.
例4、已知:如图,四边形ABCD中,∠ABC=60°,AB=BC=2,对角线BD平分∠ABC,E是BC的中点,P是对角线BD上的一个动点,则PE+PC的最小值为()
(二)梯形中的动点问题
例1、如图所示,四边形ABCD是直角梯形,∠B=90°,AB=8cm,AD=24cm,BC=26cm,点P从A出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向B运动,其中一个动点到达
端点时,另一动点也随之停
止运动,从运动开始,经过
多少时间,四边形PQCD成
为等腰梯形?。