选修2-2第三章 复数

合集下载

2019版数学《学案导学与随堂笔记》人教A版浙江版选修2-2课件:第三章 数系的扩充与复数的引入章末复习课

2019版数学《学案导学与随堂笔记》人教A版浙江版选修2-2课件:第三章 数系的扩充与复数的引入章末复习课

得 z =1-3i.
1234 5
解析 答案
3.若复数z满足(3-4i)z=|4+3i|,则z的虚部为
A.-4B.-45 NhomakorabeaC.4
√D.45
解析 z=|43+-34ii|=3-5 4i=35+45i.
1234 5
解析 答案
4.计算:[(1+2i)i100+(11- +ii)5]2-(1+2i)20. 解 [(1+2i)·i100+(11- +ii)5]2-(1+2i)20 =[(1+2i)+(-i)5]2-22i1010
知识点二 复数的几何意义
(1)复数 z=a+bi←一――一―对――应→复平面内的点 Z(a,b)(a,b∈R). (2)复数 z=a+bi(a,b∈R)←一――一―对――应→平面向量O→Z.
知识点三 复数的运算
(1)复数的加、减、乘、除运算法则 设z1=a+bi,z2=c+di(a,b,c,d∈R),则 ①加法:z1+z2=(a+bi)+(c+di)= (a+c)+(b+d)i ; ②减法:z1-z2=(a+bi)-(c+di)= (a-c)+(b-d)i ; ③乘法:z1·z2=(a+bi)·(c+di)= (ac-bd)+(ad+bc)i ; ④除法:zz12=ac++dbii=ac++dbiicc--ddii=acc2++db2d+bcc2- +add2 i(c+di≠0).
解答
(2)若复数z对应的点P在直线y= 12 x上,求θ的值. 解 由(1)知,点P的坐标为(-1,-2sin2θ). 由点 P 在直线 y=12x 上,得-2sin2θ=-12, ∴sin2θ=14,又 θ∈(0,π),∴sin θ>0, 因此 sin θ=12,∴θ=π6或 θ=56π.

2019年高考数学(选修2-2) 第三章数系的扩充与复数的引入 本章提升测评

2019年高考数学(选修2-2) 第三章数系的扩充与复数的引入 本章提升测评

第三章本章提升测评一.选择题1.(2016课标全国Ⅱ(文),2,★☆☆)设复数z 满足z+i=3-i ,则= ( )A .- 1+2iB .1-2iC .3+2iD .3-2i2.(2016山东(理),1,★☆☆)若复数z 满足2z+=3- 2i ,其中i 为虚数单位,则z= ( )A .1+2iB .1-2iC.- 1+2i D .-1-2i3.(2016课标全国Ⅱ(理),1,★☆☆)已知z=(m+3)+(m-1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( )A .(-3,1)B .(-1,3)C .(1,+∞)D .(-∞,-3)4.(2016课标全国Ⅲ,2,★☆☆)若z= 1+2i ,则=( )A .1B .-1C.i D .-i5.(2016课标全国l (理),2,★☆☆)设(1+i)x =1+yi ,其中x ,y 是实数,则lx+yil=( )A .1B .2C .3 D.26.(2016山东(文),2,★☆☆)若复数z=i -12,其中i 为虚数单位,则z -=( )A.1+i B .1-iC.- 1+i D .-1-i7.(2015湖北,1,★★☆)i 为虚数单位,i ⁶ᵒ⁷的共轭复数为 ( )A .iB .-iC.l D .-18.(2015广东,2,★★☆)若复数z=i(3 - 2i)(i 是虚数单位),则z -= ( )A.2 -3iB.2+3iC.3+2iD.3 - 2i9.(2014山东,1,★☆☆)已知a ,b ∈R ,i 是虚数单位,若a-i 与2+bi 互为共轭复数,则(a+bi)²= ( )A.5 -4iB.5+4iC.3-4iD.3+4i10.(2014天津.1.★★☆)i 是虚数单位,复数=++i i 437 ( )A.1-i B .-1+i c .i 25312517+ D .i 725717+-11.(2013安徽,1,★★☆)设i 是虚数单位,是复数z 的共轭复数,若z .z -i+2=2z ,则z=( )A.1+iB.1-iC.- 1+iD.-1-i12.(2013浙江,1,★★☆)已知i 是虚数单位,则(- 1+i )(2-i )=( )A.- 3+iB.- 1+3iC.-3+3iD.- 1+i二.填空题13.(2017浙江,12,★★☆)已知a ,b ∈R ,( a+bi)²=3+4i (i 是虚数单位),则a ² +b ²=__________,ab=____.14.(2016天津(理),9,★☆☆)已知a ,b ∈R ,i 是虚数单位.若( 1+i)( 1-bi)=a ,则b a 的值为__________. 15.(2016江苏,2,★☆☆)复数z=(1+2i)(3-i ),其中i 为虚数单位,则z 的实部是___________.16.(2016天津,9,★☆☆)i 是虚数单位,复数。

2014-2015学年高中数学(人教版选修2-2)配套课件第三章 3.2 3.2.2 复数代数形式的乘除运算

2014-2015学年高中数学(人教版选修2-2)配套课件第三章 3.2 3.2.2 复数代数形式的乘除运算

z2 · z1 z1· z2=________ z1 ( z2 · z3 ) (z 1 · z2)· z3=________
1 z2 + z1 z3 z1(z2+z3)=z ________
栏 目 链 接
基 础 梳 理
例:(1) (2+i)i=__________________; (2)(1-2i)(3+i)=________________.
解析:(1)原式=1-i2+(-1+i)=2-1+i=1+i.
3 3 3 1 (2)原式=- - +4-4i(1+i) 4 4 3 1 =- + i(1+i) 2 2 3 1 1 3 =- - + - i 2 2 2 2
栏 目 链 接
1+ 3 1- 3 =- + i. 2 2
-2+3i -2+3i1-2i (3)原式= = 1+2i 1+2i1-2i -2+6+3+4i 4 7 = = + i. 5 5 12+22 5-29 5 i 5-29 5 i7+3 5 i (4)原式= = 7-3 5 i 7-3 5 i7+3 5 i 35+29×15+15 5-29×7 5i 470-188 5 i = = 2 2 94 7 +3 5 =5-2 5 i.
2 2 2 2
栏 目 链 接
基 础 梳 理
例:i+2 的共轭复数是( A.2+i C.-2+i
答案:B
)
B.2-i D.-2-i
栏 目 链 接
+ 2
4 . i
4n + 1
4n i - 1 - i 1 = ______________ , i

i -1 -i 1 , ____________
i -1 -i 1, i4n + 3 = ____________

高中数学人教a版选修2-2第三章3.2.1复数代数形式的加、减运算及其几何意义【练习】(学生版).docx

高中数学人教a版选修2-2第三章3.2.1复数代数形式的加、减运算及其几何意义【练习】(学生版).docx

马鸣风萧萧高中数学学习材料马鸣风萧萧*整理制作3.2.1复数代数形式的加减运算及其几何意义一、选择题1.设z 1=2+b i ,z 2=a +i ,当z 1+z 2=0时,复数a +b i 为( )A .1+iB .2+iC .3D .-2-i2.已知|z |=4,且z +2i 是实数,则复数z =( )A .23-2iB .-23-2iC .±23-2iD .23±2i 3.(2014·浙江台州中学期中)设x ∈R ,则“x =1”是“复数z =(x 2-1)+(x +1)i 为纯虚数”的( )A .充分必要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件4.若复数z 满足z +(3-4i)=1,则z 的虚部是( )A .-2B .4C .3D .-45.若z 1=2+i ,z 2=3+a i(a ∈R ),且z 1+z 2所对应的点在实轴上,则a 的值为( )A .3B .2C .1D .-16.▱ABCD 中,点A 、B 、C 分别对应复数4+i 、3+4i 、3-5i ,则点D 对应的复数是( )A .2-3iB .4+8iC .4-8iD .1+4i 二、填空题7.在复平面内,若OA →、OB →对应的复数分别为7+i 、3-2i ,则 |AB →|=________.8.(2014·揭阳一中期中)已知向量OA →和向量OC →对应的复数分别为3+4i 和2-i ,则向量AC →对应的复数为________.9.在复平面内,O 是原点,O A →、O C →、A B →对应的复数分别为-2+i 、3+2i 、1+5i , 那么B C →对应的复数为________________.15.若|z -1|=|z +1|,则|z -1|的最小值是________________.。

最新人教版高中数学选修2-2第三章《数系的扩充和复数的概念》课后训练1

最新人教版高中数学选修2-2第三章《数系的扩充和复数的概念》课后训练1

课后训练1.下面三个命题:(1)0比-i 大;(2)x +y i =1+i(x ,y ∈R )的充要条件为x =y =1;(3)a +b i 为纯虚数的充要条件是a =0,b ≠0.其中正确的命题个数是( )A .0B .1C .2D .32.若a ,b ∈R ,i 为虚数单位,且(a +i)i =b +i ,则( )A .a =1,b =1B .a =-1,b =1C .a =-1,b =-1D .a =1,b =-13.以2i 2的实部为虚部的新复数是( )A .2-2iB .2+iC . D4.若a -1+2a i =3+4i ,则实数a 的值为( )A .±2B .-2C .2D .05.已知集合M ={1,2,(m 2-3m -1)+(m 2-5m -6)i},N ={-1,3},且M ∩N ={3},则实数m 的值为( )A .4B .-1C .-1或4D .-1或66.复数z =x 2-2x -3+21122(log log 2)i x x --是虚部为正数的非纯虚数,则实数x 的取值范围是( )A .10,4⎛⎫⎪⎝⎭∪(2,3)B .10,4⎛⎫ ⎪⎝⎭∪(3,+∞)C .(2,3)∪(3,+∞)D .10,4⎛⎫ ⎪⎝⎭∪(2,3)∪(3,+∞)7.若复数z =2623m m m --++(m 2-2m -15)i 是实数,则实数m =__________. 8.已知m ∈R ,复数z =(2)1m m m +-+(m 2+2m -3)i ,当m 为何值时, (1)z ∈R ;(2)z 是虚数;(3)z 是纯虚数;9.若m 为实数,z 1=m 2+1+(m 3+3m 2+2m )i ,z 2=4m +2+(m 3-5m 2+4m )i ,那么使z 1>z 2的m 值的集合是什么?使z 1<z 2的m 值的集合又是什么?10.分别求满足下列条件的实数x ,y 的值.(1)2x -1+(y +1)i =x -y +(-x -y )i ; (2)226(23)i 01x x x x x --+--+=.参考答案1答案:B 解析:0与-i 不能比较大小,故(1)错;当a ,b ∈R 时(3)才正确,故(3)错;由复数相等的充要条件知(2)正确.2答案:D 解析:∵(a +i)i =b +i ,∴-1+a i =b +i .∴1,1,b a -=⎧⎨=⎩∴1,1.a b =⎧⎨=-⎩3答案:A解析:2i 222i +的实部为-2,故所求的复数为2-2i .4答案:C 解析:由复数相等的充要条件知a 2-1=3且2a =4,故a =2.5答案:B 解析:由于M ∩N ={3},故3∈M ,必有m 2-3m -1+(m 2-5m -6)i =3,所以22313,560,m m m m ⎧--=⎨--=⎩即41,61,m m =-⎧⎨=-⎩或或得m =-1.6答案:D 解析:由已知得221122230,log log 20,x x x x ⎧--≠⎪⎨-->⎪⎩ 即112213,log 1log 2x x x x ≠-≠⎧⎪⎨<->⎪⎩且或, 即131024x x x x ≠-≠⎧⎪⎨<<>⎪⎩且,或, ∴0<x <14或x >2且x ≠3. ∴实数x 的取值范围为104⎛⎫ ⎪⎝⎭,∪(2,3)∪(3,+∞).7答案:5 解析:根据题意得22150,230,m m m ⎧--=⎨+≠⎩解得m =5. 8答案:解:若z ∈R ,则m 须满足2230,10,m m m ⎧+-=⎨-≠⎩解得m =-3.答案:若z 是虚数,则m 须满足m 2+2m -3≠0且m -1≠0,解得m ≠1且m ≠-3.答案:若z 是纯虚数,则m 须满足2(2)0,1230,m m m m m +⎧=⎪-⎨⎪+-≠⎩解得m =0或m =-2. (4)14i 2z =+. 答案:若z =12+4i ,则m 须满足2(2)1,12234,m m m m m +⎧=⎪-⎨⎪+-=⎩解得m ∈∅.9答案:解:当z 1∈R 时,m 3+3m 2+2m =0, m =0,-1,-2,z 1=1或2或5.当z 2∈R 时,m 3-5m 2+4m =0,m =0,1,4,z 2=2或6或18.上面m 的公共值为m =0,此时z 1与z 2同时为实数,且z 1=1,z 2=2. ∴使z 1>z 2的m 值的集合为空集,使z 1<z 2的m 值的集合为{0}.10答案:解:∵x ,y ∈R ,∴由复数相等的定义得21,1,x x y y x y -=-⎧⎨+=--⎩解得x =3,y =-2.答案:∵x ∈R ,∴由复数相等的定义得2260,1230,x x x x x ⎧--=⎪+⎨⎪--=⎩即321,31x x x x x ==-≠-⎧⎨==-⎩或且或,∴x =3.。

2019-2020学年高二数学人教A版选修2-2教师用书:第3章 3.1.2 复数的几何意义 Word版含解析

2019-2020学年高二数学人教A版选修2-2教师用书:第3章 3.1.2 复数的几何意义 Word版含解析

3.1.2 复数的几何意义1.理解复平面、实轴、虚轴等概念.(易混点)2.掌握复数的几何意义,并能适当应用.(重点、易混点) 3.掌握复数模的定义及求模公式.[基础·初探]教材整理1 复平面与复数的几何意义 阅读教材P 104~P 105的内容,完成下列问题. 1.复平面建立了直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴,实轴上的点都表示实数,除了原点外,虚轴上的点都表示纯虚数.2.复数的几何意义(1)复数z =a +b i 一一对应←———→复平面内的点Z (a ,b ). (2)复数z =a +b i 一一对应←———→平面向量OZ →.在复平面内,复数z =1-i 对应的点的坐标为( ) A .(1,i) B .(1,-i) C .(1,1)D .(1,-1)【解析】 复数z =1-i 的实部为1,虚部为-1,故其对应的坐标为(1,-1). 【答案】 D教材整理2 复数的模阅读教材P 105“右侧”,完成下列问题. 复数z =a +b i(a ,b ∈R ),对应的向量为OZ→,则向量OZ →的模叫做复数a +b i 的模,记作|z |或|a +b i|.由模的定义可知|z |=|a +b i|=r =a2+b2(r ≥0,r ∈R ).判断(正确的打“√”,错误的打“×”)(1)在复平面内,对应于实数的点都在实轴上.( ) (2)在复平面内,虚轴上的点所对应的复数都是纯虚数.( ) (3)复数的模一定是正实数.( ) 【答案】 (1)√ (2)× (3)×[小组合作型]当实数m (1)位于第四象限; (2)位于x 轴负半轴上; (3)在上半平面(含实轴).【精彩点拨】 (1)根据实部大于0,虚部小于0,列不等式组求解 (2)根据实部小于0,虚部等于0求解. (3)根据虚部大于或等于0求解.【自主解答】 (1)要使点位于第四象限,需 ⎩⎨⎧ m2-8m +15>0,m2+3m -28<0,∴⎩⎨⎧m<3或m>5,-7<m<4,解得-7<m <3.∴当-7<m <3时复数z 对应的点在第四象限. (2)要使点位于x 轴负半轴上,需 ⎩⎨⎧m2-8m +15<0,m2+3m -28=0,∴⎩⎨⎧3<m<5,m =-7或m =4,得m =4.∴当m =4时复数z 对应的点在x 轴负半轴上. (3)要使点位于上半平面(含实轴),需 m 2+3m -28≥0, 解得m ≥4或m ≤-7.∴当m ≥4或m ≤-7时,复数z 对应的点在上半平面(含实轴).解答此类问题的一般思路:(1)首先确定复数的实部与虚部,从而确定复数对应点的横、纵坐标. (2)根据已知条件,确定实部与虚部满足的关系.[再练一题]1.实数x 取什么值时,复平面内表示复数z =x 2+x -6+(x 2-2x -15)i 的点Z : (1)位于第三象限;(2)位于第四象限;(3)位于直线x -y -3=0上. 【解】 因为x 是实数,所以x 2+x -6,x 2-2x -15也是实数. (1)当实数x 满足⎩⎨⎧ x2+x -6<0,x2-2x -15<0,即-3<x <2时,点Z 位于第三象限. (2)当实数x 满足⎩⎨⎧x2+x -6>0,x2-2x -15<0,即2<x <5时,点Z 位于第四象限,(3)当实数x 满足(x 2+x -6)-(x 2-2x -15)-3=0,即3x +6=0,x =-2时,点Z 位于直线x -y -3=0上.(1)向量OZ1对应的复数是5-4i ,向量OZ 2对应的复数是-5+4i ,则OZ →1+OZ→2对应的复数是()A .-10+8iB .10-8iC .0D .10+8i(2)复数4+3i 与-2-5i 分别表示向量OA →与OB →,则向量AB →表示的复数是________.【导学号:62952101】【精彩点拨】 (1)先写出向量OZ1→,OZ →2的坐标,再求出OZ →1+OZ →2的坐标. (2)利用AB →=OB →-OA →,求出向量AB →的坐标,从而确定AB →表示的复数.【自主解答】 (1)因为向量OZ1→对应的复数是5-4i ,向量OZ →2对应的复数是-5+4i ,所以OZ→1=(5,-4),OZ →2=(-5,4),所以OZ →1+OZ →2=(5,-4)+(-5,4)=(0,0),所以OZ →1+OZ →2对应的复数是0.(2)因为复数4+3i 与-2-5i 分别表示向量OA →与OB →,所以OA →=(4,3),OB →=(-2,-5),又AB →=OB →-OA →=(-2,-5)-(4,3)=(-6,-8),所以向量AB →表示的复数是-6-8i.【答案】 (1)C (2)-6-8i解答此类题目的一般思路是先写出向量或点的坐标,再根据向量的运算求出所求向量的坐标,从而求出向量所表示的复数.[再练一题]2.上例(2)中的条件不变,试求向量-12AB →表示的复数.【解】 由上例(2)的解析知AB →=(-6,-8), ∴-12AB →=(3,4),所以向量-12AB →表示的复数是3+4i.[探究共研型]探1若复数z 满足|z |=2,则复数z 的对应点的集合是什么图形?若|z |≤3,则复数z 的对应点的集合是什么图形.【提示】 若|z |=2,则复数z 的对应点的集合是以原点为圆心,2为半径的圆.若|z |≤3,则复数z 的对应点的集合是以原点为圆心,3为半径的圆及其内部.探究2 若z +|z |=1+2i ,那么如何求复数z .【提示】 设z =x +y i(x ,y ∈R ),则|z |=x2+y2, 从而x +y i +x2+y2=1+2i , ∴⎩⎨⎧x +x2+y2=1,y =2,解得⎩⎨⎧x =-32,y =2,∴z =-32+2i.(1)已知复数z 的实部为1,且|z |=2,则复数z 的虚部是( ) A .-3B.3iC .±3iD .±3(2)求复数z 1=6+8i 及z 2=-12-2i 的模,并比较它们模的大小.【精彩点拨】 (1)设出复数z 的虚部,由模的公式建立方程求解. (2)用求模的公式直接计算.【自主解答】 (1)设复数z 的虚部为b ,∵|z |=2,实部为1,∴1+b 2=4,∴b =±3,选D.【答案】 D(2)因为z 1=6+8i ,z 2=-12-2i ,所以|z 1|=62+82=10, |z 2|=错误!=错误!. 因为10>32,所以|z 1|>|z 2|.1.计算复数的模时,应先找出复数的实部和虚部,再利用复数模的公式进行计算. 2.两个复数不能比较大小,但它们的模可以比较大小.[再练一题]3.(1)复数z =x +1+(y -2)i(x ,y ∈R ),且|z |=3,则点Z (x ,y )的轨迹是________. (2)已知复数z =3+a i ,且|z |<4,求实数a 的取值范围.【导学号:62952102】【解析】 (1)∵|z |=3,∴错误!=3,即(x +1)2+(y -2)2=32.故点Z (x ,y )的轨迹是以(-1,2)为圆心,以3为半径的圆. 【答案】 以(-1,2)为圆心,以3为半径的圆 (2)∵z =3+a i(a ∈R ),|z |= 32+a2,由已知得32+a2<4, ∴a 2<7, ∴a ∈(-7,7).1.复数z =-1+2 017i(i 是虚数单位)在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限【解析】 由-1<0,2 017>0得复数z =-1+2 017i(i 是虚数单位)在复平面上对应的点位于第二象限.【答案】 B2.已知复数z =2-3i ,则复数的模|z |是( ) A .5 B .8 C .6D.11【解析】 |z |=错误!=错误!. 【答案】 D3.复数z =x -2+(3-x )i 在复平面内的对应点在第四象限,则实数x 的取值范围是________.【解析】 ∵复数z 在复平面内对应的点在第四象限, ∴⎩⎨⎧x -2>0,3-x <0,解得x >3.【答案】 (3,+∞)4.已知复数z =x -2+y i(x ,y ∈R )的模是22,则点(x ,y )的轨迹方程是________. 【解析】 ∵|z |=22, ∴错误!=2错误!, ∴(x -2)2+y 2=8. 【答案】 (x -2)2+y 2=85.已知复数z 满足z +|z |=2+8i ,求复数z .【解】 设z =a +b i(a ,b ∈R ),则|z |=a2+b2, 代入方程得,a +b i +a2+b2=2+8i , ∴⎩⎨⎧a +a2+b2=2,b =8,解得⎩⎨⎧a =-15,b =8,∴z =-15+8i.。

人教A版高中数学选修2-2作业:第3章 数系的扩充与复数的引入3.1.1 课后

第三章 3.1 3.1.1一、选择题1.以2i -5的虚部为实部,以5i +2i 2的实部为虚部的新复数是( A ) A .2-2iB .2+iC .-5+5iD .5+5i解析 ∵2i -5的虚部为2,5i +2i 2的实部为-2,∴新复数为2-2i.故选A . 2.若2+a i =b -i ,其中a ,b ∈R ,i 是虚数单位,则a 2+b 2=( D ) A .0B .2C .52D .5解析 ∵2+a i =b -i ,a ,b ∈R ,∴b =2,a =-1,∴a 2+b 2=5.故选D . 3.已知复数cos θ+isin θ和sin θ+icos θ相等,则θ的值为( D ) A .π4B .π4或5π4C .2k π+π4(k ∈Z )D .k π+π4(k ∈Z )解析 由复数相等的充要条件知⎩⎪⎨⎪⎧cos θ=sin θ,sin θ=cos θ,得θ=k π+π4(k ∈Z ),故选D .4.复数4-3a -a 2i 与复数a 2+4a i 相等,则实数a 的值为( C ) A .1B .1或-4C .-4D .0或-4解析 由复数相等的充要条件得⎩⎪⎨⎪⎧4-3a =a 2,-a 2=4a ,解得a =-4.5.已知a ,b ∈R ,则a =b 是(a -b )+(a +b )i 为纯虚数的( C ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析 (a -b )+(a +b )i 为纯虚数⇔⎩⎪⎨⎪⎧a +b ≠0,a -b =0⇔a =b ≠0,即a =b ≠0是该复数为纯虚数的充要条件,所以a =b 是该复数为纯虚数的必要不充分条件.6.已知M ={1,2,m 2-3m -1+(m 2-5m -6)i},N ={-1,3},M ∩N ={3},则实数m 的值为( B )A .-2B .-1C .1D .2解析 ∵M ∩N ={3},∴m 2-3m -1+(m 2-5m -6)i =3,∴⎩⎪⎨⎪⎧m 2-3m -1=3,m 2-5m -6=0,解得m =-1. 二、填空题7.复数1-i 的虚部的平方是__1__. 解析 1-i 的虚部为-1,虚部的平方为1.8.已知复数z =(m 2-m )+(m 2-1)i(m ∈R ),若z 是实数,则m 的值为__±1__;若z 是虚数,则m 的取值范围是__(-∞,-1)∪(-1,1)∪(1,+∞)__;若z 是纯虚数,则m 的值为__0__.解析 z =(m 2-m )+(m 2-1)i ,若z 是实数,则m 2-1=0,解得m =±1; 若z 是虚数,则m 2-1≠0,解得m ≠±1;若z 是纯虚数,则⎩⎪⎨⎪⎧m 2-m =0,m 2-1≠0,解得m =0.9.已知z 1=-4a +1+(2a 2+3a )i ,z 2=2a +(a 2+a )i ,其中a ∈R ,z 1>z 2,则a 的值为__0__.解析 由z 1>z 2,得⎩⎪⎨⎪⎧2a 2+3a =0,a 2+a =0,-4a +1>2a ,即⎩⎪⎨⎪⎧a =0或a =-32,a =0或a =-1,a <16,解得a =0.三、解答题10.若方程x 2+mx +2x i =-1-m i 有实根,求实数m 的值,并求出此实根.解析 设实根为x 0,代入方程,并由复数相等的充要条件,得⎩⎪⎨⎪⎧x 20+mx 0=-1,2x 0=-m ,消去m ,得x 0=±1,所以m =±2.因此,当m =-2时,原方程的实根为x =1; 当m =2时,原方程的实根为x =-1.11.实数m 分别为何值时,复数z =2m 2+m -3m +3+(m 2-3m -18)i 为(1)实数;(2)虚数;(3)纯虚数.解析 (1)若z 为实数,则⎩⎪⎨⎪⎧m 2-3m -18=0,m +3≠0,解得m =6.所以当m =6时,z 为实数.(2)若z 为虚数,则m 2-3m -18≠0,且m +3≠0, 所以当m ≠6且m ≠-3时,z 为虚数. (3)若z 为纯虚数,则⎩⎪⎨⎪⎧2m 2+m -3=0,m +3≠0,m 2-3m -18≠0,解得m =-32或m =1.所以当m =-32或m =1时,z 为纯虚数.12.如果log 2(m +n )-(m 2-3m )i<1,求自然数m ,n 的值. 解析 ∵log 2(m +n )-(m 2-3m )i<1,∴⎩⎪⎨⎪⎧ log 2(m +n )<1,m 2-3m =0,解得⎩⎪⎨⎪⎧0<m +n <2,m =0或m =3,∵m ,n 是自然数,∴m =0,n =1.由Ruize收集整理。

高中数学选修2-2章末检测3:第三章 数系的扩充与复数的引入

章末检测一、选择题1.i 是虚数单位,若集合S ={-1,0,1},则( ) A .i ∈S B .i 2∈S C .i 3∈SD.2i∈S 2.z 1=(m 2+m +1)+(m 2+m -4)i ,m ∈R ,z 2=3-2i ,则“m =1”是“z 1=z 2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件3.设z 1,z 2为复数,则下列四个结论中正确的是( )A .若z 21+z 22>0,则z 21>-z 22B .|z 1-z 2|=(z 1+z 2)2-4z 1z 2C .z 21+z 22=0⇔z 1=z 2=0D .z 1-z 1是纯虚数或零4.已知i 是虚数单位,m ,n ∈R ,且m +i =1+n i ,则m +n i m -n i 等于( )A .-1B .1C .-iD .i5.已知a 是实数,a -i1+i 是纯虚数,则a 等于( )A .1B .-1 C. 2D .-26.若(x -i)i =y +2i ,x ,y ∈R ,则复数x +y i 等于( ) A .-2+i B .2+i C .1-2iD .1+2i7.已知2+a i ,b +i 是实系数一元二次方程x 2+px +q =0的两根,则p ,q 的值为( ) A .p =-4,q =5 B .p =4,q =5 C .p =4,q =-5D .p =-4,q =-58.i 为虚数单位,设复数z 满足|z |=1,则⎪⎪⎪⎪⎪⎪z 2-2z +2z -1+i 的最大值为( ) A.2-1B .2-2C.2+1D .2+29.实数x ,y ,θ有以下关系:x +y i =3+5cos θ+i(-4+5sin θ)(其中i 是虚数单位),则x 2+y 2的最大值为( )A .30B .15C .25D .10010.设复数z 满足|z |<1且⎪⎪⎪⎪z +1z =52,则|z |等于( ) A.45 B.34 C.23 D.1211.如果关于x 的方程2x 2+3ax +a 2-a =0至少有一个模等于1的根,那么实数a 的值( ) A .不存在 B .有一个 C .有三个 D .有四个12.已知f (n )=i n -i -n (n ∈N *),则集合{f (n )}的元素个数是( ) A .2 B .3 C .4 D .无数个二、填空题13.复平面内,若z =m 2(1+i)-m (4+i)-6i 所对应的点在第二象限,则实数m 的取值范围是________.14.已知a ,b ∈R ,i 是虚数单位.若(a +i)(1+i)=b i ,则a +b i =________. 15.已知|z 1|=2,|z 2|=3,|z 1+z 2|=4,则z 1z 2=__________.16.复数|z |=1,若存在负数a 使得z 2-2az +a 2-a =0,则a =________. 三、解答题17.计算:(1)i 1+i ÷(1+3i)2;(2)⎝ ⎛⎭⎪⎫1+i 1-3i 3.18.设z 是虚数,m =z +1z 是实数,且-1<m <2.(1)求|z |的值及z 的实部的取值范围.(2)设u =1-z1+z ,求证:u 为纯虚数.(3)结合(2)求m -u 2的最小值.[答案]精析1.B2.A [因为z 1=z 2,所以⎩⎪⎨⎪⎧m 2+m +1=3,m 2+m -4=-2,解得m =1或m =-2,所以m =1是z 1=z 2的充分不必要条件.]3.D [举例说明:若z 1=4+i ,z 2=2-2i ,则z 21=15+8i ,z 22=-8i ,z 21+z 22>0,但z 21与-z 22都是虚数,不能比较大小,故A 错;因为|z 1-z 2|2不一定等于(z 1-z 2)2,故|z 1-z 2|与(z 1+z 2)2-4z 1z 2不一定相等,B 错;若z 1=2+i ,z 2=1-2i ,则z 21=3+4i ,z 22=-3-4i ,z 21+z 22=0,但z 1=z 2=0不成立,故C 错;设z 1=a +b i(a ,b ∈R ),则z 1=a -b i ,故z 1-z 1=2b i ,当b =0时是零,当b ≠0时,是纯虚数.故D 正确.]4.D [由m +i =1+n i(m ,n ∈R ),∴m =1且n =1.则m +n i m -n i =1+i 1-i=(1+i )22=i.]5.A [a -i 1+i =(a -i )(1-i )(1+i )(1-i )=(a -1)-(a +1)i2是纯虚数,则a -1=0,a +1≠0,解得a =1.]6.B [∵(x -i)i =y +2i ,x i -i 2=y +2i , ∴y =1,x =2,∴x +y i =2+i.]7.A [由条件知2+a i ,b +i 是共轭复数,则a =-1,b =2,即实系数一元二次方程x 2+px +q =0的两个根是2±i ,所以p =-[(2+i)+(2-i)]=-4,q =(2+i)(2-i)=5.]8.C [|z 2-2z +2z -1+i|=|z -(1+i)|,故只需求x 2+y 2=1上的点到(1,1)的最大距离,其值为1+ 2.]9.D [由复数相等知⎩⎪⎨⎪⎧x =3+5cos θ,y =-4+5sin θ,则x 2+y 2=50-50sin(θ-φ)≤100(其中φ为辅助角). ∴x 2+y 2的最大值为100.]10.D [因为⎪⎪⎪⎪z +1z =|z z +1||z |=52,即|z |2+1=52|z |,所以|z |=12.] 11.C [(1)当根为实数时,将x =1代入原方程得a 2+2a +2=0,此方程无实数解;将x =-1代入原方程得a 2-4a +2=0,解得a =2±2,都符合要求.(2)当根为虚数时,Δ=a (a +8)<0,∴-8<a <0.此时有x 1·x 2=|x 1|2=|x 2|2=1=a 2-a2,所以可得a 2-a -2=0,解得a =-1,或a =2(舍去).故共有三个.] 12.B [f (n )有三个值0,2i ,-2i.] 13.(3,4)[解析] ∵z =m 2-4m +(m 2-m -6)i 所对应的点在第二象限,∴⎩⎪⎨⎪⎧m 2-4m <0,m 2-m -6>0,解得3<m <4.14.1+2i[解析] 由(a +i)(1+i)=b i 得a -1+(a +1)i =b i ,即a -1=0,a +1=b ,解得a =1,b =2,所以a +b i =1+2i. 15.16±156i [解析] 由题意,z 1z 1=4,z 2z 2=9,(z 1+z 2)(z 1+z 2)=z 1z 1+z 2z 2+z 1z 2+z 2z 1=4+9+9z 1z 2+4z 2z 1=16,所以9z 1z 2+4z 2z 1=3,令z 1z 2=t ,则9t +4t =3,即9t 2-3t +4=0,所以t =16±15i 6,即z 1z 2=16±15i 6. 16.1-52[解析] 由z 2-2az +a 2-a =0,得(z -a )2=a . 又a 为负数,所以z -a 为纯虚数.设z -a =b i ,则z =a +b i ,所以(b i)2=a ,故a =-b 2. 又|z |=1,所以a 2+b 2=1,所以a 2-a -1=0.故a =1±52.由a 为负数,所以a =1-52.17.解 (1)i1+i ÷(1+3i)2=i (1-i )(1+i )(1-i )÷[(1+3i)(1+3i)] =i -i 22÷(1+3i 2+23i)=1+i 2÷(-2+23i)=(1+i )(-4-43i )(-4+43i )(-4-43i ) =-4-43i -4i -43i 264=4(-1+3)-4(1+3)i 64=-1+316-1+316i.(2)方法一 ⎝ ⎛⎭⎪⎫1+i 1-3i 3=⎣⎢⎡⎦⎥⎤(1+i )(1+3i )(1-3i )(1+3i )3=⎝ ⎛⎭⎪⎫1+3i +i +3i 243=[(1-3)+(1+3)i]343= (1-3)3+3(1-3)2(1+3)i +3(1-3)(1+3)2i 2+(1+3)3i 364=16-16i 64=1-i 4.方法二 ⎝ ⎛⎭⎪⎫ 1+i 1-3i 3=(1+i )3(1-3i )3=1+3i +3i 2+i 31-33i -9+33i =-2+2i -8=1-i 4.18.(1)解 ∵z 是虚数,∴可设z =x +y i ,x ,y ∈R ,且y ≠0, ∴m =z +1z =x +y i +1x +y i =x +y i +x -y i x 2+y2=x +x x 2+y 2+⎝ ⎛⎭⎪⎫y -y x 2+y 2i.∵m 是实数,且y ≠0, ∴y -yx 2+y2=0,∴x 2+y 2=1,∴|z |=1,此时m =2x . ∵-1<m <2,∴-1<2x <2,从而有-12<x <1.∴|z |=1,z 的实部的取值范围是⎝⎛⎭⎫-12,1. (2)证明 结合(1)可知u =1-z 1+z =1-(x +y i )1+(x +y i )=(1-x -y i )(1+x -y i )(1+x )2+y 2=-y(1+x )i. 又∵x ∈⎝⎛⎭⎫-12,1,y ≠0, ∴-y1+x≠0,∴u 为纯虚数.(3)解 m -u 2=2x -⎝ ⎛⎭⎪⎫-y 1+x i 2=2x +⎝ ⎛⎭⎪⎫y 1+x 2=2x +1-x 2(1+x )2=2x +1-x 1+x =2x -1+21+x=2(x +1)+21+x-3.∵-12<x <1,∴1+x >0,∴2(x +1)+21+x-3≥22(x +1)·21+x-3=1.当且仅当2(x +1)=21+x ,即x =0(x =-2舍去)时,等号成立.故m -u 2的最小值为1,此时z =±i.。

贵州省盘县第三中学高中数学(人教A版)选修2-2教案:第三章 数系的扩充与复数的进入3.1.1 数系的扩充

课 题27:数系的扩充教学目标(1)了解数的概念发展和数系扩充的过程,了解引进虚数单位i 的必要性和作用,体会数学发现和创造的过程,以及数学发生、发展的客观需求;(2)理解复数的基本概念以及复数相等的充要条件.教学重点,难点:复数的基本概念以及复数相等的充要条件. 教学过程一.问题情境1.情境:1)数的概念的发展从正整数扩充到整数,从整数扩充到有理数,从有理数扩充到实数,数的概念是不断发展的,其发展的动力来自两个方面.①解决实际问题的需要.由于计数的需要产生了自然数;为了刻画具有相反意义的量的需要产生了负数;由于测量等需要产生了分数;为了解决度量正方形对角线长的问题产生了无理数(即无限不循环小数).②解方程的需要.为了使方程40x +=有解,就引进了负数,数系扩充到了整数集;为了使方程320x -=有解,就要引进分数,数系扩充到了有理数集;为了使方程22x =有解,就要引进无理数,数系扩充到了实数集.引进无理数以后,我们已经能使方程2x a =(0)a >永远有解.但是,这并没有彻底解决问题,当0a <时,方程2x a =在实数范围内无解.为了使方程2x a =(0)a <有解,就必须把实数概念进一步扩大,这就必须引进新的数.(可以以分解因式:44x -为例)2.问题:实数集应怎样扩充呢?二.建构数学1.为了使方程2x a =(0)a <有解,使实数的开方运算总可以实施,实数集的扩充就从引入平方等于1-的“新数”开始.为此,我们引入一个新数i ,叫做虚数单位(imaginary unit ).并作如下规定:①21i =-;②实数可以与i 进行四则运算,进行四则运算时,原有的加法、乘法运算律仍然成立.在这种规定下,i 可以与实数b 相乘,再同实数a 相加得i b a ⋅+.由于满足乘法交换律和加法交换律,上述结果可以写成a bi + (,a b R ∈)的形式.2.复数概念及复数集C形如a bi +(,a b R ∈)的数叫做复数(complex number ).全体复数构成的集合叫做复数集(set of complex numbers ),一般用字母C 来表示, 即{},,C z z a bi a b R ==+∈.显然有N*N Z Q R C .3.复数的有关概念1) 复数的表示:通常用字母z 表示,即z a bi =+(,a b R ∈),其中,a b 分别叫做复数的实部(real part )与虚部(imaginary part );2)虚数和纯虚数①复数z a bi =+(,a b R ∈),当0b =时,z 就是实数a .②复数z a bi =+(,a b R ∈),当0b ≠时,z 叫做虚数(imaginary number ). 特别的,当0a =,0b ≠时,z bi =叫做纯虚数(pure imaginary number ).3)复数集的分类分类要求不重复、不遗漏,同一级分类标准要统一.根据上述原则,复数集的分类如下:4)两复数相等如果两个复数a bi +与c di +(,,,a b c d R ∈)的实部与虚部分别相等,我们就说这两个复数相等.即a c a bi c di b d =⎧+=+⇔⎨=⎩,(复数相等的充要条件),特别地:000a a bi b =⎧+=⇔⎨=⎩(复数为0的充要条件).复数相等的充要条件,提供了将复数问题化归为实数问题来解决的途径.5)两个复数不能比较大小:两个实数可以比较大小,但两个复数,如果不全是实数,只有相等与不等关系,不能比较它们的大小.三.数学运用1.例题:例1.写出下列复数的实部与虚部,并指出哪些是实数, 哪些是虚数,哪些是纯虚数.144,23,0,,5,623i i i --+解: 144,23,0,,5,623i i i --++的实部分别是14,2,0,,5,02-;虚部分别是40,3,0,3-.4,0是实数;1423,,523i i i --+是虚数,其中6i 是纯虚数.例2.实数m 取什么值时,复数(1)(1)z m m m i =-+-是(1)实数? (2)虚数? (3)纯虚数?分析:由m R ∈可知1m -,(1)m m -都是实数,根据复数a bi +是实数、虚数和纯虚数的条件可以分别确定m 的值.解:(1)当10m -=,即1m =时,复数z 是实数;(2)当10m -≠,即1m ≠时,复数z 是虚数;(3)当(1)0m m -=,且10m -≠,即0m =时复数z 是纯虚数. (变式引申):已知m R ∈,复数2(2)(21)1m m z m m i m +=++--,当m 为何值时:(1)z R ∈;(2)z 是虚数;(3)z 是纯虚数.解:(1)当2210m m +-=且10m -≠,即1m =-时,z 是实数;(2)当2210m m +-≠且10m -≠,即1m ≠-1m ≠时,z 是虚数; (3)当(2)01m m m +=-且2210m m +-≠,即0m =或2-时,z 为纯虚数.思考:0a =是复数z a bi =+为纯虚数的充分条件吗?答:不是,因为当0a =且0b ≠时,z a bi =+才是纯虚数,所以0a =是复数z a bi =+为纯虚数的必要而非充分条件.例3.已知()(2)(25)(3)x y x y i x x y i ++-=-++,求实数,x y 的值.解:根据两个复数相等的充要条件,可得:2523x y x x y x y +=-⎧⎨-=+⎩,解得:32x y =⎧⎨=-⎩.(变式引申):已知1244a ai i -+=-+,求复数a .解:设(,)a x yi x y R =+∈,则12()44x yi x yi i i +-++=-+,(21)(2)44x y x y i i ∴--++=-+, 由复数相等的条件214,24,x y x y --=-⎧⎨+=⎩1,2,12x y a i ∴==∴=+.2.练习:(1)已知复数223(56)()z k k k k i k R =-+-+∈,且0z <,则k = .解:0z <Q ,则z R ∈.故虚部2560,(2)(3)0k k k k -+=--=2k ∴=或3.但3k =时,0z =,不合题意,故舍去,故2k =.四.回顾小结:1.能够识别复数,并能说出复数在什么条件下是实数、虚数、纯虚数;2.复数相等的充要条件.教后反思:。

2014-2015学年高中数学(人教版选修2-2)配套课件第三章 3.1 3.1.1 数系的扩充和复数的相关概念

算时,原有加、乘运算律仍然成立.
a+bi(a,b∈R) 的数叫做复数,a 叫做 2.复数的定义:形如_________________
实部 ,b 叫做复数的________ 虚部 .全体复数所成的集合叫做 复数的________ 复数集 b= 0 ________, 用字母 C 表示. 对于复数 a+bi(a, b∈R), 当且仅当______ b≠0 时,复数 z=a+bi 时,复数 z=a+bi(a,b∈R)是实数 a;当________ a=0且b≠0 时,z=bi 叫做纯虚数;当且仅当________ a=b=0 叫做虚数;当____________
第三章
数系的扩充与复数的引入
3.1 数系的扩充和复数的概念 3.1.1 数系的扩充和复数的相关概念
栏 目 链 接
1.理解复数的基本概念. 2.理解复数相等的充要条件.
栏 目 链 接
栏 目 链 接
基 础 梳 理
1.虚数单位 i.
-1 ; (2)实数可以与它进行四则运算.进行四则运 (1)i2=________
)
D.既不充分也不必要条件
栏 目 链 接
解析:若 a+bi(a,b∈R)为纯虚数,则 a=0,b≠0. ∴a+bi(a, b∈R)为纯虚数是 a=0 的充分不必要条件. 答案:A
自 测 自 评
2.下列说法正确的是( ) A.如果两个复数的实部的差和虚部的差都等于 0, 那么这两个复数相等 B.若 a,b∈R 且 a>b,则 ai>bi C.如果复数 x+yi 是实数,则 x=0,y=0 D.复数 a+bi 不是实数
解得 x≠-3 且 x≠5.
2 x -x-6 x+3 =0, (3) 要使该复数是纯虚数,需满足 x2-2x-15≠0.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3.1.1 数系的扩充与复数的概念.6062复习1:实数系、数系的扩充脉络是: → → → , 用集合符号表示为: ⊆ ⊆ ⊆复习2:判断下列方程在实数集中的解的个数(引导学生回顾根的个数与∆的关系): (1)2340x x --= (2)2450x x ++= (3)2210x x ++= (4)210x +=二、新课导学※ 学习探究探究任务一:复数的定义问题:方程210x +=的解是什么?为了解决此问题,我们定义21i i i ⋅==-,把新数添进实数集中去,得到一个新的数集,那么此方程在这个数集中就有解为 .新知:形如a bi +的数叫做复数,通常记为z a bi =+(复数的代数形式),其中i 叫虚数单位,a 叫实部,b 叫虚部,数集{}|,C a bi a b R =+∈叫做复数集.试试:下列数是否是复数,试找出它们各自的实部和虚部。

23i +,84i -,83i +,6,i ,29i --,7i ,0反思:形如 的数叫做复数,其中 和 都是实数,其中 叫做复数z 的实部, 叫做复数z 的虚部.对于复数(,)a bi a b R +∈当且仅当 时,它是实数;当 时,它是虚数;当 时,它是纯虚数; 探究任务二:复数的相等若两个复数a bi +与c di +的实部与虚部分别 ,即: , .则说这两个复数相等. a bi +=c di + ⇔ ; a bi +=0 ⇔ .注意:两复数 比较大小.※ 典型例题例1 实数m 取什么值时,复数1(1)z m m i =++-是(1)实数?(2)虚数?(3)纯虚数?变式:已知复数22276(56)()1a a z a a i a R a -+=+--∈-,试求实数a 分别取什么值时,分别为(1)实数?(2)虚数?(3)纯虚数?小结:数集的关系:0,0)0)0,0)a a ⎧⎪≠≠⎧⎨≠⎨⎪≠=⎩⎩实数 (b=0)复数z 一般虚数(b 虚数 (b 纯虚数(b例2已知复数a bi +与3(4)k i +-相等,且a bi +的实部、虚部分别是方程2430x x --=的两根,试求:,,a b k 的值.变式:设复数(,)z a bi a b R =+∈,则z 为纯虚数的必要不充分条件是( )A .0a =B .0a =且0b ≠C .0a ≠且0b =D .0a ≠且0b ≠小结:复数、虚数、纯虚数的概念及它们之间的关系及两复数相等的充要条件.※ 动手试试练1. 若(32)(5)172x y x y i i ++-=-,求,x y 的值.练2. 已知i 是虚数单位,复数2(1)(23)4(2)z m i m i i =+-+-+, 当m 取何实数时,z 是:(1)实数;(2) 虚数;(3)纯虚数;(4)零.三、总结提升※ 学习小结1. 复数的有关概念;2. 两复数相等的充要条件;3. 数集的扩充.※ 当堂检测(时量:5分钟 满分:10分)计分:1. 实数m 取什么数值时,复数1(1)z m m i =-++是实数( ) A .0 B .1- C . 2- D .3-2. 如果复数a bi +与c di +的和是纯虚数,则有( )A .0b d +=且0a c +≠B .0b d +≠且0a c +=C .0a d +=且0b d +≠D .0b c +=且0b d +≠3. 如果222(32)z a a a a i =+-+-+为实数,那么实数a 的值为( ) A .1或2- B .1-或2 C .1或2 D .1-或2-4.若22(1)(32)x x x i -+++是纯虚数,则实数x 的值是5. 若()(1)(23)(21)x y y i x y y i ++-=+++,则实数x = ;y = .§3.1.2 复数的几何意义.6264复习1:复数(4)(3)z x y i =++-,当,x y 取何值时z 为实数、虚数、纯虚数?复习2:若(4)(3)2x y i i ++-=-,试求,x y 的值,((4)(3)2x y i ++-≥呢?)二、新课导学※ 学习探究探究任务一:复平面 问题:我们知道,实数与数轴上的点一一对应,因此,实数可用数轴上的点来表示.类比实数的几何意义,复数的几何意义是什么呢?分析复数的代数形式,因为它是由实部a 和虚部b 同时确定,即有顺序的两实数,不难想到有序实数对或点的坐标.结论:复数与平面内的点或序实数一一对应. 新知:1.复平面:以x 轴为实轴, y 轴为虚轴建立直角坐标系,得到的平面叫复平面. 复数与复平面内的点一一对应.显然,实轴上的点都表示实数;除原点外,虚轴上的点都表示纯虚数. 1. 复数的几何意义:复数z a bi =+←−−−→一一对应复平面内的点(,)Z a b ; 复数z a bi =+←−−−→一一对应平面向量OZ ; 复平面内的点(,)Z a b ←−−−→一一对应平面向量OZ . 注意:人们常将复数z a bi =+说成点Z 或向量OZ ,规定相等的向量表示同一复数.2. 复数的模向量OZ 的模叫做复数z a bi =+的模,记作||z 或||a bi +.如果0b =,那么z a bi =+是一个实数a ,它的模等于||a (就是a 的绝对值),由模的定义知:||||0,)z a bi r r r R =+=≥∈试试:复平面内的原点(0,0)表示 ,实轴上的点(2,0)表示 ,虚轴上的点(0,1)-表示 ,点(2,3)-表示复数反思:复数集C 和复平面内所有的点所成的集合是一一对应的.※ 典型例题例1在复平面内描出复数23i +,84i -,83i +,6,i ,29i --,7i ,0分别对应的点.变式:说出图中复平面内各点所表示的复数(每个小正方格的边长为1).小结:复数z a bi =+←−−−→一一对应复平面内的点(,)Z a b . 例2已知复数22276(56)()1a a z a a i a R a -+=+--∈-,试求实数a 分别取什么值时,对应的点 (1)在实轴上;(2)位于复平面第一象限;(3)在直线0x y +=上;(4)在上半平面(含实轴)变式:若复数22(34)(56)z m m m m i =--+--表示的点(1)在虚轴上,求实数m 的取值;(2)在右半平面呢?※ 动手试试练1. 在复平面内画出23,42,13,4,30i i i i i +--+--所对应的向量.三、总结提升 1. 复平面的定义; 2. 复数的几何意义; 3.复数的模.※ 当堂检测(时量:5分钟 满分:10分)计分:1. 下列命题(1)复平面内,纵坐标轴上的单位是i (2)任何两个复数都不能比较大小(3)任何数的平方都不小于0(4)虚轴上的点表示的都是纯虚数(5)实数是复数(6)虚数是复数(7)实轴上的点表示的数都是实数.其中正确的个数是( ) A .3 B .4 C .5 D .62. 对于实数,a b ,下列结论正确的是( )A .a bi +是实数B .a bi +是虚数C .a bi +是复数D .0a bi +≠3. 复平面上有点A ,B 其对应的复数分别为3i -+和13i --,O 为原点,那么是AOB ∆是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .正三角形4. 若1z =,则||z =5. 实数取什么值时,复平面内表示复数22(815)(514)z m m m m i =-++--的点 (1)位于第四象限?(2)位于第一、三象限?(3)位于直线y x =上?§3.2.1 复数代数形式的加减运算及其几何意义掌握复数的代数形式的加、减运算及其几何意义.6667复习1:试判断下列复数14,72,6,,20,7,03i i i i i i +----在复平面中落在哪象限?并画出其对应的向量.复习2:求复数2log 3z i =的模二、新课导学※ 学习探究探究任务一:复数代数形式的加减运算 规定:复数的加法法则如下:设12,z a bi z c di =+=+,是任意两个复数,那么()()()()a bi c di a c b d i +++=+++ 很明显,两个复数的和仍然是 . 问题:复数的加法满足交换律、结合律吗?新知:对于任意123,,z z z C ∈,有 1221z z z z +=+ ; 123123()()z z z z z z ++=++探究任务二:复数加法的几何意义问题:复数与复平面内的向量有一一对应的关系.我们讨论过向量加法的几何意义,你能由此出发讨论复数加法的几何意义吗?由平面向量的坐标运算,有OZ =12OZ OZ +=( ) 新知:复数加法的几何意义:复数的加法可以按照向量的加法来进行(满足平行四边形、三角形法则) 试试:计算(1)(14)(72)i i +-+= (2) (72)(14)i i -++= (3)[(32)(43)](5)i i i --++++= (4) (32)(43)(5)]i i i --++++[= 反思:复数的加法运算即是:探究任务三:复数减法的几何意义问题:复数是否有减法?如何理解复数的减法?类比实数集中减法的意义,我们规定,复数的减法是加法的逆运算. 新知:复数的减法法则为:()()()()a bi c di a c b d i +-+=-+-由此可见,两个复数的差是一个确定的复数.复数减法的几何意义:复数的减法运算也可以按向量的减法来进行.※ 典型例题例1 计算 (56)(2)(34)i i i -+---+变式:计算(1)()845i -+(2)()543i i--(3())29i i +---小结:两复数相加减,结果是实部、虚部分别相加减.例2 已知平行四边形OABC 的三个顶点O 、A 、C 对应的复数分别为0,32i +,24i -+,试求: (1)AO 表示的复数;(2)CA 表示的复数;(3)B 点对应的复数.变式:ABCD 是复平面内的平行四边形,A ,B ,C 三点对应的复数分别是13,,2i i i +-+,求点D 对应的复数.小结:减法运算的实质为终点复数减去起点复数,即:B A AB z z =-※ 动手试试 练1. 计算:(1)(24)(34)i i ++-;(2)5(32)i -+;(3)(34)(2)(15)i i i --++--; (4)(2)(23)4i i i --++三、总结提升※ 学习小结两复数相加减,结果是实部、虚部分别相加减,复数的加减运算都可以按照向量的加减法进行. ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 0a =是复数(,)a bi a b R +∈为纯虚数的( )A .充分非必要条件B .必要非充分条件C .充分必要条件D .既非充分也非必要条件 2. 设O 是原点,向量OA ,OB 对应的复数分别为23i -,32i -+,那么向量BA 对应的复数是( ) A .55i -+ B .55i -- C .55i + D .55i - 3. 当213m <<时,复数(3)(2)m i i +-+在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 4. 2i i +在复平面内表示的点在第 象限.5. 已知134z i =+,点2z 和点1z 关于实轴对称,点3z 和点2z 关于虚轴对称,点4z 和点2z 关于原点对称,则2z = ;3z = ;4z =§3.2.2 复数代数形式的乘除运算1. 理解共轭复数的概念;2. 掌握复数的代数形式的乘、除运算.6870 复习1:计算(1)(14)(72)i i +-+ (2)(52)(14)(23)i i i --+--+ (3)(32)(43)(5)]i i i --+-+-[ 复习2:计算:2()a b ±=(32)(32)a b a b +-= (32)(3)a b a b +--=二、新课导学※ 学习探究探究任务一:复数代数形式的乘法运算 规定,复数的乘法法则如下:设12,z a bi z c di =+=+,是任意两个复数,那么2()()a bi c di ac bci adi bdi ++=+++ =()()ac bd ad bc i -++即:两个复数相乘,类似于两个多项式相乘,只要在所得的结果中把2i 换成1-,并且把实部与虚部分别合并即可.问题:复数的乘法是否满足交换律、结合律以及乘法对加法的分配律?试试:计算(1)(14)(72)i i +⨯- (2)(72)(14)i i -⨯+(3)[(32)(43)](5)i i i -⨯-+⨯+ (4)(32)(43)(5)]i i i -⨯-+⨯+[新知:对于任意123,,z z z C ∈,有 1221z z z z ⋅=⋅ 123123()()z z z z z z ⋅⋅=⋅⋅ 1231213())z z z z z z z +=+反思:复数的四则运算类似于多项式的四则运算,也满足其在实数集上的运算律.探究任务二:共轭复数新知:当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数。

相关文档
最新文档