循环流化床锅炉料层差压及炉膛差压的控制1

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通过对某热电公司一台高倍率循环流化床锅炉在调试运行中发现的几个问题的分析和讨论,试图摸索出高倍率循环流化床锅炉运行过程中的一些内在规律,并提出相应的处理措施,以指导实际运行操作。

1.锅炉运行情况概述:

1.1.该锅炉是由XX锅炉厂生产的XG-130/3.82-M13型中温中压、单汽包、单炉膛、自然循环、全悬吊全钢架“M”型布置的循环流化床锅炉,物料分离和回送装置采用蜗壳式汽冷旋风分离器和“U”型返料器,锅炉采用DCS系统进行控制、操作。

1.2.主要设计参数为:额定蒸发量变 130t/h,主汽压力 3.82Mpa,主汽温度 450℃,

锅炉热效率 90.37%,物料循环倍率 25~30,脱硫效率(Ca/s 为2.0时) ≥80%,

燃用设计煤种燃料消耗量 20.06t/h,石灰石消耗量 0.51t/h,密、稀相区燃烧份额 6∶4

1.3.设计燃煤特性:

收到基全水份(My): 8.22%收到基挥发份(Vy): 26.67%收到基碳(Cy): 47.56%

收到基灰份(Ay): 32.11%收到基氢(Hy): 2.5%收到基氧(Oy): 8.34%

收到基氮(Ny): 0.77%收到基全硫(Sy): 0.4%入炉煤粒度范围:0~10mm,50%切割粒径d50=1.5mm。

1.4。锅炉调试运行情况:该循环流化床锅炉在调试运行过程中表现出良好的性能,主要表现在运行稳定、带负荷能力强,在最高负荷143t/h时和最低30t/h时仍能保持良好的运行性能。从整个运行情况看,该炉物料分离器分离效率高,因而确保了锅炉物料循环量达到设计要求,从燃烧效果看,该炉燃烧效率很高,飞灰含碳量、底渣含碳分别在5%和1.5%以内,实际燃料消耗量16-18t/h左右。但是,该炉在调试运行中也发生了诸如床层结焦、物料将床层和返料器压死、床层或返料器物料消失、床层返料器结焦等不正常情况,这些不稳定因素严重影响了锅炉运行安全,也造成了较大的直接和间接经济损失。

2.异常情况原因分析:

2.1.从发生异常运行情况时的工况统计数字来看,大多数都处于升、停炉或加、减负荷的变工况过程中,正常运行过程中发生异常情况也是在锅炉负荷较高或较低时但次数较少。也就是说大多数异常情况是发生在锅炉处于一种不稳定工作状态之中。2.2.高倍率循环流化床锅炉运行特点:因异常情况主要发生在升停炉或变负荷过程中,在对一、二次风量、返料量和给煤量进行调整时发生的,因而对高倍率循环流化床锅炉运行特点的把握至关重要。由于该循环流化床锅炉属高倍率循环炉,锅炉厂根据设计煤种属高挥发分、高热值、低灰分的特点选用高倍率循环的燃烧方式是完全正确、合理的,该炉表现出很高的燃烧效率也证明了这一点。然而,25--30的物料循环倍率意味着在以16-18t/h的给煤量加入炉膛的同时,约有400-480t/h或更高的循环灰量在炉膛和主循环回路中循环,其中炉膛中的循环灰量份额占绝对优势,即炉膛中的颗粒浓度极高(是一般循环流化床锅炉颗粒浓度的2.5-3.0倍),而炉膛上、下部(即密、稀相区)颗粒浓度分配(即燃烧份额)主要是由一、二次风量比例及返料量大小决定的(给煤量的变化

也有影响但较弱)。因而如果在变负荷操作过程中,对一、二次风量及比例、返料灰量及给煤量的调整未能把握高倍率循环炉的特点而造成调整失当,势必引起炉膛内上下部颗粒浓度大幅度波动,当这种波动影响力达到使炉膛上下部颗粒浓度比例严重失调时,就会出现:或下部颗粒浓度过大物料将床层压死;或物料大部或全部集中于上部空间床层物料消失。

同时,炉膛内颗粒浓度的大幅波动也使炉膛出口的颗粒浓度发生大幅波动,而这种浓度波动也引起炉膛出口含尘烟气温度和烟气速度(当炉膛出口负压值保持不变)的大幅度变化,进而对分离器的分离效率产生重大影响。或因炉膛出口颗粒浓度、温度、速度(此三者的变化方向是一致的,且三者变化值分别都与分离器效率变化值成正比例关系)大幅上升,分离器效率也大幅度提高(此上升幅度以近三次方速度进行),亦即分离器下来的返料量可大幅增加,造成返料器松动床所受到的压力大幅增加,如此压力增加是瞬间进行的,松动床将无法承受而被压死;反之,当炉膛出口颗粒浓度、温度、速度大幅下降时,分离器效率也大幅下降,返料量也随之减少。如发生床层压死等极端情况时,返料进入立管中的量几乎为零,而返料风如未被及时停用,则立管中仅存不多的返料仍将被送入炉膛,当立管中存料料位重力不足以抵消返料风压时,立管料层就会被击穿,造成返料器空床。由于引风机的抽吸力和分离器阻力的共同影响,炉膛床层中极细颗粒有可能沿返料通道反窜到尾部烟道。

2.3.运行操作的影响分析:由于使用了DCS系统这种较先进的控制手段,运行操作人员可以更方便、更快捷地完成各种监视和操作任务。DCS系统不但可让运行人员利用点击鼠标的方式操作所有开关量,而且在进行各风门档板、阀门开度、辅机转数等开关量调节时可由运行人员根据需要直接设定好目标值,经确认后由微机自动快速跟进调节电动操作机构执行,执行完毕后微机还将执行情况以反馈信号的方式予以反馈。此种控制方式被掌握后不但大大减轻了运行人员工作量,而且操作准确率极高,省时省力。经一段时间磨合,运行人员均能熟练运用此项操作技能。

这种操作手段不但被熟练地运用于锅炉正常运行中,而且在升停炉、加减负荷等变工况中,运行人员也根据运行经验使用该手段,以期用较快速度完成各项操作。

根据该循环流化床锅炉以往发生的一些异常情况大多发生在升停炉和加减负荷等变工况过程中的事实,我们对运行人员在变工况时的一些操作进行了详细的分析和研究,经对各种变工况下的一次风量和风压、二次风量和风压、返料风量和风压、点火风室压力、床层压力等操作曲线,并结合高倍率循环流化床锅炉的运行特点进行了认真分析研究,认为各种异常情况的发生除了煤质(含粒度)变化、设备结构设计存在着的一些不足等客观原因外,与运行人员在变工况时的操作不当有很大的关系。现将各种异常情况发生的原因和现象分析、讨论如下:

2.3.1.一次风量增加或二次风量减小操作幅度过大、过快,炉内一、二次风量比例失衡:在升炉和加负荷过程中,运行人员往往依运行经验在进行一、二次风量调整时采用预先设置目标值,后由微机带动电动机构执行快速达到目标值的方法进行操作的。这种操作方法带来的后果是,依据循环流化床加负荷先加风、后加煤的操作原则,司炉在升炉和加负荷过程中,也是先加风后加煤,而在风量调整时又按先加一次风后加二次风的顺序进行。如此,当一次风量的增加是通过微机操作快速完成的(此时间只须几秒至十几秒),而且风量调整幅度达几万立方米时的极端情况下,在此瞬间炉内工况可能发生根本性的改变,即当一次风量增加时二次风量、给煤量并未增加跟进,此时炉内一、二次风比例中一次风占绝对优势,炉内颗粒浓度份额(燃烧份额)随之发生根本性改变。大量原本停留在炉下部密相区内的颗粒,因一次风速随风量迅速加大而超过颗粒终端速度,

相关文档
最新文档