直线参数方程化标准
直线的参数方程

直线的参数方程知识精讲:1.直线参数方程的标准式:(1)过点()000,P x y ,倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数).t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,)为直线上任意一点.(2)若12P P 、是直线上两点,所对应的参数分别为12t t 、,则122112P P t t P P t t==-∣,∣∣-∣. (3)若123P P P 、、是直线上的点,所对应的参数分别为123t t t 、、,则P 1P 2中点P 3的参数为1232t t t +=,12032t t P P +=∣∣. (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0.2.直线参数方程的一般式: 过点P 0(00,y x ),斜率为a b k =的直线的参数方程是⎩⎨⎧+=+=bty y at x x 00(t 为参数).一、参数的几何意义323.()______.112x t y t ⎧=+⎪⎪⎨⎪=+⎪⎩(二星)直线为参数的倾斜角是31:()1x t y t⎧=⎪⎨=-⎪⎩变改为直线为参数呢?答案:6π;变式:56π321.()(3,1)2_______.112x t M y t ⎧=-⎪⎪⎨⎪=+⎪⎩(二星)直线为参数上到点距离为的点的坐标是3()(3,1)2_______.1x t M y t⎧=+⎪⎨=-⎪⎩变式:直线为参数上到点距离为的点的坐标是答案:()()3;3;变式:()()3;31.(三星)已知直线l的参数方程为112x y t ⎧=--⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin()6πρθ=-.(1)求圆C 的直角坐标方程;(2)若P (x ,y )是直线l 与圆面4sin()6πρθ≤-y +的取值范围.备注:直线的参数方程的典型使用解:(1)因为圆C 的极坐标方程为ρ=4sin (θ﹣),所以ρ2=4ρ(sin θ﹣cos θ),所以圆C 的直角坐标方程为:x 2+y 2+2x ﹣2y=0.(2)方法一:直接使用直线的参数方程: 设z=x+y由圆C 的方程x 2+y 2+2x ﹣2y=0,可得(x+1)2+(y ﹣)2=4所以圆C 的圆心是(﹣1,),半径是2将代入z=x+y 得z=﹣t又直线l 过C (﹣1,),圆C 的半径是2, 由题意有:﹣2≤t ≤2 所以﹣2≤t ≤2即x+y 的取值范围是[﹣2,2].方法二:完全化为直角坐标方程来做,运算比较麻烦。
直线的参数方程(最全)

则 t 的几何意义:t=M0M
t>0
M 在 M0 的上方
t=0 M 与 M0 重合
t<0
M 在 M0 的下方
非标准形式 一般说来,t 不具有上述 几何意义
x x0 at
y
y0
bt
(t 为参数)
表示过定点(x0,y0),斜率
为 b 的直线的参数方程
a
例1
已知直线 L 过点 M0(4,0),倾为
(t为参数)
b ( a2 b2 t)
a2 b2
设: a = cos; b sin; a2 b2t t,则
a2 b2
a2 b2
x y
x0 y0
tcos(t为参数) tsin
当b 0时,t有上述的几何意义。
基础训练
1
直线
x y
2t 1
sin 200 t cos 200
直线的参数方程
2020/7/4
请同学们回忆:
直线的普通方程都有哪些?
点斜式: y y0 k(x x0) y kx b
两点式: y y1 x x1
y2 y1 x2 x1
x y 1 ab
一般式: Ax By C 0
法线式: Ax By C 0 (直线l的法向量(A,B))
t cos t sin
(t为参数)
思考
由M0M te,你能得到直线l的参数方程中
参数t的几何意义吗?
解: M0M te M0M te
y M
又 e是单位向量, e 1
M0M t e t
M0
所以,直线参数方程中
参数t的绝对值等于直
线上动点M到定点M0的 距离. |t|=|M0M|
直线的参数方程

直线的参数方程1.直线的参数方程经过点M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数).2.直线的参数方程中参数t 的几何意义(1)参数t 的绝对值表示参数t 所对应的点M 到定点M 0的距离.(2)当M 0M →与e (直线的单位方向向量)同向时,t 取正数.当M 0M →与e 反向时,t 取负数,当M 与M 0重合时,t =0.3.直线参数方程的其他形式对于同一条直线的普通方程,选取的参数不同,会得到不同的参数方程.我们把过点M 0(x 0,y 0),倾斜角为α的直线,选取参数t =M 0M 得到的参数方程⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数)称为直线参数方程的标准形式,此时的参数t 有明确的几何意义.一般地,过点M 0(x 0,y 0),斜率k =ba (a ,b 为常数)的直线,参数方程为⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt (t为参数),称为直线参数方程的一般形式,此时的参数t 不具有标准式中参数的几何意义.1.已知直线l 的方程⎩⎪⎨⎪⎧x =1-t sin 25°,y =2+t cos 25°(t 为参数),则直线l 的倾斜角为( )A .65°B .25°C .155°D .115°解析:选D.方程⎩⎪⎨⎪⎧x =1-t sin 25°,y =2+t cos 25°(t 为参数),化为标准形式⎩⎪⎨⎪⎧x =1+t cos 115°,y =2+t sin 115°(t为参数),倾斜角为115°.故选D.2.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1-22t ,y =2+22t (t 为参数),则直线l 的斜率为( )A .1B .-1 C.22D .-22解析:选B.直线l 的普通方程为x +y -1=0,斜率为-1.故选B.3.以t 为参数的方程⎩⎪⎨⎪⎧x =1-12t ,y =-2+32t表示( )A .过点(1,-2)且倾斜角为π3的直线B .过点(-1,2)且倾斜角为π3的直线C .过点(1,-2)且倾斜角为2π3的直线D .过点(-1,2)且倾斜角为2π3的直线解析:选C.化参数方程⎩⎪⎨⎪⎧x =1-12t ,y =-2+32t (t 为参数)为普通方程得y +2=-3(x -1).直线过定点(1,-2),斜率为-3,倾斜角为2π3,故选C.4.过抛物线y 2=4x 的焦点F 作倾斜角为π3的弦AB ,则弦AB 的长是________.解析:由已知焦点F (1,0),又倾斜角为π3,cos π3=12,sin π3=32.所以弦AB 所在直线的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t (t 为参数),代入抛物线的方程y 2=4x ,得⎝ ⎛⎭⎪⎫32t 2=4⎝ ⎛⎭⎪⎫1+12t .整理得3t 2-8t -16=0.设方程两根分别为t 1,t 2,则有⎩⎪⎨⎪⎧t 1+t 2=83,t 1·t 2=-163.由参数t 的几何意义得|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=⎝ ⎛⎭⎪⎫832+643=163.答案:163根据直线的参数方程求直线的倾斜角、斜率已知直线l 的参数方程是⎩⎪⎨⎪⎧x =1+t sin αy =-2+t cos α,(t 为参数),其中实数α的取值范围是⎝ ⎛⎭⎪⎫π2,π.求直线l 的倾斜角. [解] 设直线l 的倾斜角为θ,则由题意知tan θ=cos αsin α=1tan α=tan ⎝ ⎛⎭⎪⎫3π2-α,所以θ=3π2-α.所以直线l 的倾斜角为3π2-α.由直线的参数方程求倾斜角与斜率的方法已知直线l 的参数方程(1)若是标准式⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数),则可直接得出倾斜角即方程中的α,否则需化成标准式再求α.(2)若是一般式⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt ,则当a ≠0时,斜率k =b a ,再由tan α=ba 及0≤α<π求出α,当a =0时,显然直线与x 轴垂直,倾斜角为α=π2.(3)若是其他形式,则通过消参化成普通方程,再求斜率及倾斜角.1.若直线的参数方程为⎩⎪⎨⎪⎧x =3+12t y =3-32t,(t为参数),则此直线的斜率为( )A. 3 B .- 3 C .33D .-33解析:选B.直线的参数方程⎩⎪⎨⎪⎧x =3+12t y =3-32t,(t为参数)可化为标准形式⎩⎪⎨⎪⎧x =3+⎝ ⎛⎭⎪⎫-12(-t )y =3+32(-t ),(-t 为参数). 所以直线的斜率为- 3.2.若直线的参数方程为⎩⎪⎨⎪⎧x =2-3ty =1+t ,(t 为参数),求直线的斜率.解:法一:把直线的参数方程⎩⎪⎨⎪⎧x =2-3ty =1+t ,消去参数t 得x +3y -5=0, 所以其斜率k =-13.法二:由⎩⎪⎨⎪⎧x =2-3t y =1+t ,得⎩⎪⎨⎪⎧x -2=-3ty -1=t ,所以k =y -1x -2=t -3t =-13. 直线参数方程中参数几何意义的应用已知过点M (2,-1)的直线l :⎩⎪⎨⎪⎧x =2-t2,y =-1+t2(t 为参数),与圆x 2+y 2=4交于A ,B 两点,求|AB |及|AM |·|BM |.[解] l 的参数方程为⎩⎪⎨⎪⎧x =2-22⎝ ⎛⎭⎪⎫t 2,y =-1+22⎝ ⎛⎭⎪⎫t 2(t 为参数).令t ′=t2,则有⎩⎪⎨⎪⎧x =2-22t ′,y =-1+22t ′(t ′为参数).其中t ′是点M (2,-1)到直线l 上的一点P (x ,y )的有向线段的数量,代入圆的方程x 2+y 2=4,化简得t ′2-32t ′+1=0.因为Δ>0,可设t 1′,t 2′是方程的两根,由根与系数的关系得t 1′+t 2′=32,t 1′t 2′=1.由参数t ′的几何意义得|MA |=|t 1′|,|MB |=|t 2′|,所以|MA |·|MB |=|t 1′·t 2′|=1,|AB |=|t 1′-t 2′|=(t 1′+t 2′)2-4t 1′t 2′=14.(1)在直线参数方程的标准形式下,直线上两点之间的距离可用|t 1-t 2|来求.本题易错的地方是:将题目所给参数方程直接代入圆的方程求解,忽视了参数t 的几何意义.(2)根据直线的参数方程的标准式中t 的几何意义,有如下常用结论: ①直线与圆锥曲线相交,交点对应的参数分别为t 1,t 2,则弦长l =|t 1-t 2|; ②定点M 0是弦M 1M 2的中点⇒t 1+t 2=0;③设弦M 1M 2中点为M ,则点M 对应的参数值t M =t 1+t 22(由此可求|M 1M 2|及中点坐标).在极坐标系中,已知圆心C ⎝⎛⎭⎪⎫3,π6,半径r =1.(1)求圆的直角坐标方程;(2)若直线⎩⎪⎨⎪⎧x =-1+32t ,y =12t(t 为参数)与圆交于A ,B 两点,求弦AB 的长.解:(1)由已知得圆心C ⎝ ⎛⎭⎪⎫332,32,半径为1,圆的方程为⎝⎛⎭⎪⎫x -3322+⎝ ⎛⎭⎪⎫y -322=1,即x 2+y 2-33x -3y +8=0.(2)由⎩⎪⎨⎪⎧x =-1+32t ,y =12t (t 为参数)得直线的直角坐标方程x -3y +1=0,圆心到直线的距离d =⎪⎪⎪⎪⎪⎪332-332+12=12,所以⎝ ⎛⎭⎪⎫|AB |22+d 2=1,解得|AB |= 3. 直线参数方程的综合应用已知直线l 过定点P (3,2)且与x 轴和y 轴的正半轴分别交于A ,B 两点,求|PA |·|PB |的值为最小时的直线l 的方程.[解] 设直线的倾斜角为α,则它的方程为⎩⎪⎨⎪⎧x =3+t cos α,y =2+t sin α(t 为参数).由A ,B 是坐标轴上的点知y A =0,x B =0,所以0=2+t sin α, 即|PA |=|t |=2sin α,0=3+t cos α,即|PB |=|t |=-3cos α,故|PA |·|PB |=2sin α·⎝ ⎛⎭⎪⎫-3cos α=-12sin 2α. 因为90°<α<180°,所以当2α=270°,即α=135°时, |PA |·|PB |有最小值.所以直线方程为⎩⎪⎨⎪⎧x =3-22t ,y =2+22t (t 为参数),化为普通方程为x +y -5=0.利用直线的参数方程,可以求一些距离问题,特别是求直线上某一定点与曲线交点距离时使用参数的几何意义更为方便.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t (t 为参数).在极坐标系(与直角坐标系xOy 取相同长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ.(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B .若点P 的坐标为(3,5),求|PA |+|PB |. 解:(1)由ρ=25sin θ,得ρ2=25ρsin θ. 所以x 2+y 2-25y =0,即x 2+(y -5)2=5. (2)法一:直线l 的普通方程为y =-x +3+5,与圆C :x 2+(y -5)2=5联立,消去y ,得x 2-3x +2=0,解之得⎩⎨⎧x =1y =2+5或⎩⎨⎧x =2,y =1+ 5.不妨设A (1,2+5),B (2,1+5). 又点P 的坐标为(3,5), 故|PA |+|PB |=8+2=3 2.法二:将l 的参数方程代入x 2+(y -5)2=5,得⎝⎛⎭⎪⎫3-22t 2+⎝ ⎛⎭⎪⎫22t 2=5,即t 2-32t +4=0,① 由于Δ=(32)2-4×4=2>0. 故可设t 1,t 2是①式的两个实根. 所以t 1+t 2=32,且t 1t 2=4. 所以t 1>0,t 2>0.又直线l 过点P (3,5),所以由t 的几何意义,得|PA |+|PB |=|t 1|+|t 2|=3 2.1.对直线参数方程标准形式中参数t 的理解从参数方程推导的过程中可知参数t 应理解为直线l 上有向线段M 0M →的数量,它的几何意义可以与数轴上点A 的坐标的几何意义作类比,|t |=|M 0M →|代表有向线段M 0M →的长度.另外,将直线的点斜式方程y -y 0=k (x -x 0)改写成y -y 0sin α=x -x 0cos α,其中k =tan α,α为直线倾斜角,则t =y -y 0sin α=x -x 0cos α,则有⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α,从中不难看出直线的普通方程(点斜式)与参数方程(标准式)的联系.2.化直线的参数方程一般式⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt (t 为参数)为标准式⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数),由⎩⎪⎨⎪⎧x =x 0+aty =y 0+bt 变形为⎩⎪⎨⎪⎧x =x 0+a a 2+b 2·a 2+b 2ty =y 0+b a 2+b2·a 2+b 2t,令cos α=aa 2+b2,sin α=b a 2+b2,t ′=a 2+b 2 t ,则可得标准式⎩⎪⎨⎪⎧x =x 0+t ′cos αy =y 0+t ′sin α(t ′为参数),其中α为直线的倾斜角,k =tan α=ba 为直线的斜率.1.直线⎩⎪⎨⎪⎧x =1+t cos αy =-2+t sin α,(α为参数,0≤α<π)必过点( )A .(1,-2)B .(-1,2)C .(-2,1)D .(2,-1)解析:选A.由参数方程可知该直线是过定点(1,-2),倾斜角为α的直线.2.已知直线l 1:⎩⎪⎨⎪⎧x =1+3ty =2-4t ,(t 为参数)与直线l 2:2x -4y =5相交于点B ,且点A (1,2),则|AB |=________.解析:将⎩⎪⎨⎪⎧x =1+3t y =2-4t,代入2x -4y =5,得t =12,则B ⎝ ⎛⎭⎪⎫52,0.而A (1,2),得|AB |=52.答案:523.已知曲线C 的极坐标方程为ρ=1,以极点为平面直角坐标系的原点,极轴为x 轴正半轴,建立平面直角坐标系,直线l的参数方程是⎩⎪⎨⎪⎧x =-1+4ty =3t ,(t 为参数),则直线l与曲线C 相交所截得的弦长为________.解析:曲线C的直角坐标方程为x 2+y 2=1,将⎩⎪⎨⎪⎧x =-1+4ty =3t ,代入x 2+y 2=1中得25t 2-8t =0,解得t 1=0,t 2=825.故直线l 与曲线C 相交所截得的弦长l =42+32·|t 2-t 1|=5×825=85.答案:85[A 基础达标]1.直线⎩⎪⎨⎪⎧x =2+3ty =-1+t ,(t 为参数)上对应t =0,t =1两点间的距离是( )A .1B .10C .10D .2 2解析:选B.将t =0,t =1代入参数方程可得两点坐标为(2,-1)和(5,0), 所以d =(2-5)2+(-1-0)2=10.2.若⎩⎪⎨⎪⎧x =x 0-3λ,y =y 0+4λ(λ为参数)与⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)表示同一条直线,则λ与t 的关系是( )A .λ=5tB .λ=-5tC .t =5λD .t =-5λ解析:选C.由x -x 0,得-3λ=t cos α,由y -y 0,得4λ=t sin α,消去α的三角函数,得25λ2=t 2,得t =±5λ,借助于直线的斜率,可排除t =-5λ,所以t =5λ.3.经过点M (1,5)且倾斜角为π3的直线,以定点M 到动点P 的位移t 为参数的参数方程是( )A.⎩⎪⎨⎪⎧x =1+12t ,y =5-32t(t 为参数)B .⎩⎪⎨⎪⎧x =1-12t ,y =5+32t (t 为参数)C.⎩⎪⎨⎪⎧x =1-12t ,y =5-32t(t 为参数)D .⎩⎪⎨⎪⎧x =1+12t ,y =5+32t(t 为参数)解析:选D.该直线的参数方程为⎩⎪⎨⎪⎧x =1+t cos π3,y =5+t sin π3(t 为参数),即⎩⎪⎨⎪⎧x =1+12t ,y =5+32t(t 为参数),选D.4.若直线⎩⎪⎨⎪⎧x =-2t ,y =-12+at (t 为参数)与直线⎩⎪⎨⎪⎧x =1-s ,y =1+s (s 为参数)互相垂直,那么a 的值等于( )A .1B .-13C .-23D .-2解析:选D.直线⎩⎪⎨⎪⎧x =-2t ,y =-12+at (t 为参数)的斜率为y +12x =-a2,直线⎩⎪⎨⎪⎧x =1-s ,y =1+s (s 为参数)的斜率为y -1x -1=-1,由两直线垂直得-a2×(-1)=-1得a =-2.故选D. 5.对于参数方程⎩⎪⎨⎪⎧x =1-t cos 30°y =2+t sin 30°和⎩⎪⎨⎪⎧x =1+t cos 30°y =2-t sin 30°,下列结论正确的是( )A .是倾斜角为30°的两平行直线B .是倾斜角为150°的两重合直线C .是两条垂直相交于点(1,2)的直线D .是两条不垂直相交于点(1,2)的直线 解析:选B.因为参数方程⎩⎪⎨⎪⎧x =1-t cos 30°,y =2+t sin 30°可化为标准形式⎩⎪⎨⎪⎧x =1+t cos 150°,y =2+t sin 150°,所以其倾斜角为150°.同理,参数方程⎩⎪⎨⎪⎧x =1+t cos 30°,y =2-t sin 30°,可化为标准形式⎩⎪⎨⎪⎧x =1+(-t )cos 150°,y =2+(-t )sin 150°,所以其倾斜角也为150°.又因为两直线都过点(1,2),故两直线重合.6.若直线⎩⎪⎨⎪⎧x =1-2ty =2+3t ,(t 为参数)与直线4x +ky =1垂直,则常数k =________.解析:由直线的参数方程可得直线的斜率为-32,由题意得直线4x +ky =1的斜率为-4k ,故-32×⎝ ⎛⎭⎪⎫-4k =-1,解得k =-6.答案:-67.已知直线l 的斜率k =-1,经过点M 0(2,-1).点M 在直线上,以M 0M →的数量t 为参数,则直线l 的参数方程为____________.解析:因为直线的斜率为-1, 所以直线的倾斜角α=135°. 所以cos α=-22,sin α=22. 所以直线l 的参数方程为⎩⎪⎨⎪⎧x =2-22t y =-1+22t ,(t 为参数).答案:⎩⎪⎨⎪⎧x =2-22t y =-1+22t ,(t 为参数)8.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t ,y =1+t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ=4⎝ ⎛⎭⎪⎫ρ>0,3π4<θ<5π4,则直线l 与曲线C 的交点的极坐标为________.解析:直线l 的普通方程为y =x +2,曲线C 的直角坐标方程为x 2-y 2=4(x ≤-2),故直线l 与曲线C 的交点为(-2,0),对应极坐标为(2,π).答案:(2,π)9.已知曲线C :ρ=2cos θ,直线l :⎩⎪⎨⎪⎧x =2-t ,y =32+34t ,(t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任一点P 作与l 夹角为45°的直线,交l 于点A ,求|PA |的最大值与最小值.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α,(α是参数).直线l 的普通方程为3x +4y -12=0.(2)曲线C 上任意一点P (1+cos α,sin α)到l 的距离为d =15|3cos α+4sin α-9|,则|PA |=d sin 45°=2⎪⎪⎪⎪⎪⎪sin(α+φ)-95,且tan φ=34. 当sin(α+φ)=-1时,|PA |取得最大值1425; 当sin(α+φ)=1时,|PA |取得最小值425. 10.(2016·高考全国卷甲)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0.(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44. 由|AB |=10得cos 2α=38,tan α=±153. 所以l 的斜率为153或-153. [B 能力提升]11.在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为( )A .1B .2C .3D .4 解析:选C.直线l :⎩⎪⎨⎪⎧x =t ,y =t -a消去参数t 后得y =x -a . 椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ消去参数φ后得x 29+y 24=1. 又椭圆C 的右顶点为(3,0),代入y =x -a 得a =3.12.给出两条直线l 1和l 2,斜率存在且不为0,如果满足斜率互为相反数,且在y 轴上的截距相等,那么直线l 1和l 2叫做“孪生直线”.现在给出4条直线的参数方程如下:l 1:⎩⎪⎨⎪⎧x =2+2t ,y =-4-2t (t 为参数); l 2:⎩⎪⎨⎪⎧x =3-22t ,y =4-22t (t 为参数); l 3:⎩⎪⎨⎪⎧x =1+t ,y =1-t (t 为参数); l 4:⎩⎪⎨⎪⎧x =6+22t ,y =8+22t (t 为参数). 其中能构成“孪生直线”的是________.解析:根据条件,两条直线构成“孪生直线”意味着它们的斜率存在且不为0,且互为相反数,且在y 轴上的截距相等,也就是在y 轴上交于同一点.对于本题,首先可以判断出其斜率分别为-1,1,-1,1,斜率互为相反数条件很明显.再判断在y 轴上的截距,令x =0得出相应的t 值,代入y 可得只有直线l 3和直线l 4在y 轴上的截距相等,而其斜率又恰好互为相反数,可以构成“孪生直线”.答案:直线l 3和直线l 413.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C :ρsin 2θ=2a cos θ(a >0),过点P (-2,-4)的直线l 的参数方程为:⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,(t 为参数),直线l 与曲线C 分别交于M ,N 两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)若|PM |,|MN |,|PN |成等比数列,求a 的值.解:(1)曲线的极坐标方程变为ρ2sin 2θ=2aρcos θ,化为直角坐标方程为y 2=2ax ;直线⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,(t 为参数)化为普通方程为y =x -2. (2)将⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,代入y 2=2ax 得 t 2-22(4+a )t +8(4+a )=0.则有t 1+t 2=22(4+a ),t 1t 2=8(4+a ),因为|MN |2=|PM |·|PN |,所以(t 1-t 2)2=t 1·t 2,即(t 1+t 2)2-4t 1t 2=t 1t 2,(t 1+t 2)2-5t 1t 2=0,故8(4+a )2-40(4+a )=0,解得a =1或a =-4(舍去).故所求a 的值为1.14.(选做题)以直角坐标系原点O 为极点,x 轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =12+t cos αy =t sin α,(t 为参数,0<α<π),曲线C的极坐标方程ρ=2cos θsin 2θ. (1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于A ,B 两点,当α变化时,求|AB |的最小值.解:(1)由ρ=2cos θsin 2θ得ρ2sin 2θ=2ρcos θ,所以曲线C 的直角坐标方程为y 2=2x . (2)将直线l 的参数方程代入y 2=2x ,得t 2sin 2α-2t cos α-1=0,设A ,B 两点对应的参数分别为t 1,t 2,则t 1+t 2=2cos αsin 2α,t 1·t 2=-1sin 2α, 所以|AB |=|t 1-t 2| =(t 1+t 2)2-4t 1t 2 =4cos 2αsin 4α+4sin 2α=2sin 2α, 当α=π2时,|AB |取得最小值2.。
空间中直线的标准方程

空间中直线的标准方程在空间解析几何中,直线是一个非常基础且重要的概念,它在几何学、物理学、工程学等领域都有着广泛的应用。
而直线的标准方程是描述直线性质的一种重要方式,它可以帮助我们更好地理解直线的特性和性质。
在本文中,我们将详细介绍空间中直线的标准方程及其相关知识点。
首先,我们来看一下空间中直线的一般方程。
对于空间中的直线来说,一般可以用两点确定,假设直线上有两点A(x1, y1, z1)和B(x2, y2, z2),那么直线AB的一般方程可以表示为:(x x1)/(x2 x1) = (y y1)/(y2 y1) = (z z1)/(z2 z1)。
这就是空间中直线的一般方程,它可以帮助我们确定直线在空间中的位置和方向。
但是,这种形式并不够简洁和直观,因此我们需要将其转化为标准方程的形式。
下面我们将介绍如何将直线的一般方程转化为标准方程。
首先,我们可以将直线的一般方程化简为参数方程的形式。
假设直线上的任意一点为P(x, y, z),那么P点到A、B两点的距离分别为t和1-t(0≤t≤1),则P点的坐标可以表示为:x = x1 + (x2 x1)t。
y = y1 + (y2 y1)t。
z = z1 + (z2 z1)t。
这就是直线的参数方程形式,通过参数t的取值,我们可以得到直线上的任意一点的坐标。
接下来,我们将利用参数方程来推导直线的标准方程。
我们知道,直线上的任意一点P都满足直线的参数方程,即P(x, y, z) = (x1 + (x2 x1)t, y1 + (y2 y1)t, z1 + (z2 z1)t)。
我们可以将参数t表示为直线的标准方程的形式,即:(x x1)/(x2 x1) = (y y1)/(y2 y1) = (z z1)/(z2 z1)。
通过对比参数方程和标准方程的形式,我们可以得到直线的标准方程为:(x x1)/(x2 x1) = (y y1)/(y2 y1) = (z z1)/(z2 z1)。
高中数学《参数方程-直线的参数方程》课件

-1-
2.1
直线的参数方程
-2-
首 页
课程目标
1.掌握直线参数方程的标准形
式,理解参数 t 的几何意义.
2.能依据直线的几何性质,写出
它的两种形式的参数方程,体会
参数的几何意义.
3.能利用直线的参数方程解决
简单的实际问题.
学习脉络
J 基础知识 Z 重点难点
ICHU ZHISHI
3π
4
3π
= -1 + cos ,
4
3π (t
= 2 + sin
4
解:因为 l 过定点 M,且 l 的倾斜角为 ,
所以它的参数方程是
即
2
t,
2
(t
2
+ t
2
= -1=2
为参数).
为参数).①
把①代入抛物线方程,得 t2+ 2t-2=0.
解得 t1=
- 2+ 10
- 2- 10
,t2=
5
= 1 + t,
=
为参数).
因为 3×5-4×4+1=0,所以点 M 在直线 l 上.
4
5
由 1+ t=5,得 t=5,即点 P 到点 M 的距离为 5.
因为 3×(-2)-4×6+1≠0,所以点 N 不在直线 l 上.
由两点间距离公式得|PN|= (1 + 2)2 + (1-6)2 = 34.
π
6
即 α= 或
5π
3
时,|PA||PB|最小,其最小值为
1
6
2 1+4
6
直线的参数方程

1.运动(一般)式:
x y
x0 y0
vx vy
t t
(t为参数) (t为时间)
vy
M(x,y)
vx
M0(x0,y0)
2.数量(标准)式:
(t为参数) M0(x0,y0)
(t为数量)
M(x,y)
x
注1.区分: 运动特例数量式 非负为1平方和
运动(一般)式
x y
x0 y0
at bt
数量(标准)式 a2 b2 1
x y
1 2t at 2 .
,(t为为参参数
,aa∈ R
)) ,且点M(5,4)在C
则常数a=__1_____
(4)若曲线M:
x
y
sin cos 2
A.(2,7)
B. (1 , 1) 32
(θ为参数) ,则在M上的点是
C. (1 , 1) 22
【C】 D.(1,0)
二、直线的参数方程
一、以焦点F为极点,以对称轴为极轴的极坐标系:
建立如图所示的极坐标系,
则圆锥曲线有统一的极坐标方程
M(ρ,θ)
ep
F
x
1 e cos
注1:椭圆(双曲线)的焦参数 p b2c注2:若AB为焦源自弦,则|AB|
2ep
1 e2 cos2
;
1 1 2 | AF | | BF | ep
二、以直角坐标系的x正半轴为极轴的极坐标系:
cos 20
数形结合巧转化 类比三角辅助角
除以振幅正余弦 同+异-纵为正
(7)将直线的普通方程 x 3y 1 0 改写成参数方程
析①
:直线的参数方程为
x
y
x0 y0
t t
直线参数方程一般式与标准式

直线参数方程一般式与标准式
直线一般式方程适用于所有的二维空间直线。
它的基本形式是ax+by+c=0 (a,b不全为零)。
因为这样的特点特别适合在计算机领域直线相关计算中用来描述直线。
方程求解:
通常式方程在计算机领域的重要性
常用的直线方程有一般式点斜式截距式斜截式两点式等等。
除了一般式方程,它们要么不能支持所有情况下的直线(比如跟坐标轴垂直或者平行),要么不能支持所有情况下的点(比如x坐标相等,或者y坐标相等)。
所以一般式方程在用计算机处理二维图形数据时特别有用。
未知直线上两点谋直线的通常式方程 [2]
已知直线上的两点p1(x1,y1) p2(x2,y2), p1 p2两点不重合。
对于ax+by+c=0:
当x1=x2时,直线方程为x-x1=0
当y1=y2时,直线方程为y-y1=0
当x1≠x2,y1≠y2时,直线的斜率k=(y2-y1)/(x2-x1)
故直线方程为y-y1=(y2-y1)/(x2-x1)×(x-x1)
即x2y-x1y-x2y1+x1y1=(y2-y1)x-x1(y2-y1)
即为(y2-y1)x-(x2-x1)y-x1(y2-y1)+(x2-x1)y1=0
即(y2-y1)x+(x1-x2)y+x2y1-x1y2=0 ①
可以辨认出,当x1=x2或y1=y2时,①式仍然设立。
所以直线ax+by+c=0的通常式方程就是:
a = y2 - y1
b = x1 - x2
c = x2*y1 - x1*y2。
直线的参数方程怎么写

直线的参数方程怎么写直线是几何学中最基础的图形之一,它由无数个点组成,且这些点都在同一条直线上。
直线的方程是用来表示直线上的所有点的数学表达式。
在解析几何中,我们通常使用直线的一般方程、斜截式、点斜式和参数方程来描述和研究直线的性质。
本文将着重介绍直线的参数方程的基本概念和应用。
一、直线的一般定义直线是由无数个点组成的无穷集合,它是经过两个不同点的最短路径。
直线还有一些重要的性质,如无宽度、无曲率和无限延伸等。
二、直线的一般方程直线的一般方程通常表示为Ax + By + C = 0,其中A、B和C是实数常数,且A和B不同时为0。
一般方程是直线的一种常用形式,它可以描述直线上的所有点。
然而,一般方程不够直观,不能直接得到直线的斜率和截距等重要信息。
三、直线的斜截式直线的斜截式是直线的另一种常见表达形式,它是以直线与y轴的交点和直线的斜率来表示的。
斜截式的一般形式是y = mx + b,其中m是直线的斜率,b是直线与y轴的交点的纵坐标。
斜截式可以更直观地反映直线的性质,如斜率和截距等。
四、直线的点斜式直线的点斜式是一种更加灵活和简洁的表达方式,它是以直线上的一个已知点和直线的斜率来表示的。
点斜式的一般形式是y - y₁ = m(x - x₁),其中(x₁, y₁)是直线上的已知点,m是直线的斜率。
点斜式可以直接得到直线的方程,且适用于非垂直于坐标轴的直线。
五、直线的参数方程直线的参数方程是一种用参数表示直线上的点的表达形式。
参数方程的一般形式是x = x₁ + at,y= y₁ + bt,其中(x₁, y₁)是直线上的一个已知点,a和b是参数,t是参数的取值范围。
参数方程实际上是将直线上的每一个点转化成了一个参数化的形式,可以方便地进行计算和描述。
直线的参数方程可以通过以下步骤来确定:1. 选择任意两个不同的点来确定直线的斜率。
2. 使用斜率和一个已知点来确定直线的点斜式方程。
3. 将点斜式方程转化成参数方程形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将直线参数方程化标准型,需要将方程中的参数t消掉,得到直线的标准型参数
方程。
具体方法如下:
将参数方程中的参数t消掉,得到直线的标准型参数方程。
将标准型参数方程转化为普通方程。
示例:
将直线参数方程x=2+3t,y=5+4t化成标准型参数方程。
解:将x=2+3t,y=5+4t中的参数t消掉,得到直线的标准型参数方程为
x=2+3t,y=5+4t,其中t为参数。将其转化为普通方程为x-3y-6=0。