碳化硅粉体清洗工艺

合集下载

碳化硅生产新工艺碳化硅制备加工配方设计碳化硅技术专利全集

碳化硅生产新工艺碳化硅制备加工配方设计碳化硅技术专利全集

碳化硅生产新工艺碳化硅制备加工配方设计碳化硅技术专利全集碳化硅是一种耐高温、耐腐蚀、硬度高的陶瓷材料,广泛应用于电力、冶金、化工、机械制造等行业。

为了提高碳化硅的生产效率和产品质量,不断开发出新的工艺和配方设计,并申请专利保护。

下面介绍碳化硅生产新工艺、碳化硅制备加工配方设计和碳化硅技术专利全集。

一、碳化硅生产新工艺1.气相法气相法是目前常用的碳化硅生产工艺。

该工艺通过将硅烷气体与高温炉中的碳源反应,生成固态碳化硅颗粒。

在这个工艺中,关键是控制硅烷气体的流量、温度和压力。

通过调整这些参数,可以控制碳化硅颗粒的尺寸、形状和晶体结构,从而得到所需的碳化硅产品。

2.溶胶凝胶法溶胶凝胶法是一种将硅源和碳源溶解在溶剂中,然后通过溶胶-凝胶-热处理过程得到碳化硅的工艺。

该工艺可以控制碳化硅材料的微观结构、孔隙结构和导热性能。

通过调整溶胶凝胶的配方、热处理温度和时间,可以得到具有不同性能的碳化硅材料。

3.电解碳化法电解碳化法是一种使用电解能量将硅源和碳源直接转化为碳化硅的工艺。

该工艺通过调整电解液的成分和电解条件,可以控制碳化硅的结构和晶粒尺寸。

与传统工艺相比,电解碳化法具有低成本、高效率和环保的优势。

二、碳化硅制备加工配方设计碳化硅制备加工配方设计是通过选择合适的原料比例和添加剂,以及优化工艺参数,得到所需性能的碳化硅产品。

以下是一些常用的碳化硅制备加工配方设计的要点:1.原料选择:根据碳化硅产品的要求,选用适当的硅源和碳源。

常用的硅源包括硅烷、二氯二硅烷等,碳源包括甲烷、乙烷等。

2.添加剂选择:根据碳化硅产品的性能要求,选择适当的添加剂。

常用的添加剂有氧化铝、氧化锆等,可以改善碳化硅的导热性能和机械强度。

3.工艺参数优化:通过调整工艺参数,如温度、压力、反应时间等,控制碳化硅材料的微观结构和性能。

例如,提高温度和压力可以得到颗粒较大、晶体完整的碳化硅。

由于碳化硅具有独特的性能和广泛的应用前景,相关的技术专利也十分丰富。

碳化硅工艺过程

碳化硅工艺过程

生产技术一、生产工艺1.碳化硅原理:通过石英砂、石油胶和木屑为原料通过电阻炉高温冶炼而成,主要反应机理是SiO2+3C----SiC+2CO。

碳化硅电阻炉制炼工艺:炉料装在间歇式电阻炉内,电阻炉两端端墙,近中心处是石墨电极。

炉芯体连接于两电极之间。

炉芯周围装的是参加反应的炉料,外部则是保温料。

冶炼时,给电炉供电,炉芯温度上升,达到2600~2700℃。

电热通过炉芯表面传给炉料,使之逐渐加热,达到1450℃以上时,即发尘化学反应,生成碳化硅,并逸出一氧化碳。

随着时间的推移,炉料高温范围不断扩大,形成碳化硅愈来愈多。

碳化硅在炉内不断形成,蒸发移动,晶体长大,聚集成为—个圆筒形的结晶筒。

结晶筒的内壁因受高温,超过2600℃的部分就开始分解。

分解出的硅又与炉料中的碳结合而成为新的碳化硅。

破碎:把碳化硅砂破碎为微粉,国内目前采用两种方法,一种是间歇的湿式球磨机破碎,一种是用气流粉末磨粉机破碎。

我公司已由气流粉末磨碎机代替湿式球磨机破碎。

湿式球磨机破碎时用是用湿式球磨机将碳化硅砂磨成微粉原料,每次需磨6-8小时。

所磨出的微粉原料中,微粉约占60%左右。

磨的时间越长,则微粉所占的比例越大。

但过粉碎也越严重,回收率就会下降。

具体的时间,应该与球磨比、球径给配、料浆浓度等工艺参数一起经实验优选确定。

该方法最大的优点就是设备简单,缺点是破碎效率较低,后续工序较复杂。

雷蒙磨粉机工作原理是:颚式破碎机将大块物料破碎到所需的粒度后,由提升机将物料输送到储料仓,然后由电磁振动给料机均匀连续地送到主机的磨腔内,由于旋转时离心力作用,磨辊向外摆动,紧压于磨环,铲刀与磨辊同转过程中把物料铲起抛入磨辊与辊环之间,形成填料层,物料在磨辊与磨环之间进行研磨。

粉磨后的粉子随风机气流带到分级机进行分选,不合要求的粉子被叶片抛向外壁与气流脱离,粗大颗粒在重力的作用F落入磨腔进行重磨,达到细度要求的细粉随气流经管道进入大旋风收集器,进行分离收集,再经卸料器排出即为成品粉子,气流由大旋风收集器上端回风管吸入鼓风机。

碳化硅烧结工艺技术

碳化硅烧结工艺技术

碳化硅烧结工艺技术简介碳化硅是一种重要的无机非金属材料,具有优异的高温、高硬度、高强度、高导热性和耐腐蚀性能。

碳化硅烧结工艺技术是将粉末形式的碳化硅材料在高温下进行烧结,使其形成致密的块状材料。

这种工艺技术广泛应用于高温、耐腐蚀等领域。

工艺步骤1. 原料制备碳化硅烧结工艺的第一步是制备碳化硅粉末。

一般采用高纯度的硅和石墨粉作为原料,在高温下进行反应生成碳化硅。

得到的碳化硅粉末需要进行粒度分级,以保证烧结后的坯体质量。

2. 造粒将得到的碳化硅粉末进行造粒,目的是提高粉末的流动性和绿坯的成型性。

造粒方法包括湿法造粒和干法造粒两种。

湿法造粒一般采用喷雾干燥法,将碳化硅粉末悬浮在溶液中,通过喷雾干燥使其形成颗粒状。

干法造粒则采用机械化方法,通过辊压或压片等方式将碳化硅粉末压制成颗粒。

3. 成型将造粒得到的碳化硅粉末进行成型。

常用的成型方法有压制成型、注浆成型和挤出成型等。

其中,最常用的是压制成型。

将碳化硅粉末放入模具中,在一定的温度和压力下进行压制,使其成型成绿坯。

4. 烧结将成型的绿坯进行烧结。

碳化硅烧结工艺中一般采用高温烧结的方法,常用的烧结设备有电炉和高频炉。

烧结过程中,绿坯在高温下进行结晶和致密化,使其形成致密块状的碳化硅材料。

烧结温度和时间根据需求进行调控,以获得理想的材料性能。

5. 加工和表面处理经过烧结的碳化硅块材料需要进行加工和表面处理,以满足特定的工程要求。

加工包括切割、研磨、钻孔等,表面处理包括抛光、涂层等。

这些步骤的目的是给碳化硅材料提供最终的形状和表面质量,以便于后续的应用。

工艺优势1.高温性能优异:碳化硅具有高熔点和高热导率,能够在高温下长时间稳定工作,因此在高温领域有广泛的应用,如高温炉、轻质隔热材料等。

2.高硬度和高强度:碳化硅具有极高的硬度和强度,能够耐受大部分物理和化学侵蚀,因此在耐磨、耐腐蚀的工作环境中具有广泛的应用,如磨具、切削工具等。

3.优良的导热性:碳化硅具有高导热性能,能够快速传导和散热,因此在散热器等应用中具有重要作用。

不同高纯碳化硅粉体合成工艺

不同高纯碳化硅粉体合成工艺

不同高纯碳化硅粉体合成工艺主要包括以下几种:1. 固相法:固相法是利用固态原料通过化学反应合成高纯碳化硅粉体的一种方法。

其中具有代表性的有碳热还原法、自蔓延高温合成法和机械粉碎法。

碳热还原法:这种方法使用碳作为还原剂,将硅石与碳混合后,在高温条件下进行反应,生成碳化硅。

该方法具有原料成本低、来源广泛等优点,但合成的碳化硅粉体杂质含量较高,质量相对较低。

自蔓延高温合成法:这种方法利用高温给予反应物初始热,引发化学反应。

然后利用自身的化学反应热,使未发生反应的物质继续完成化学反应。

为了维持反应进行,通常需要添加其他添加剂。

机械粉碎法:机械粉碎法是将硅石和碳原料进行机械研磨,混合均匀后,在高温高压条件下进行合成。

这种方法可以获得较细的碳化硅粉体,但杂质含量较高。

2. 液相法:液相法是利用溶胶-凝胶法和聚合物热分解法等液态原料合成高纯碳化硅粉体的一种方法。

溶胶-凝胶法:这种方法是将硅酸盐溶液与碳源溶液混合,通过水解、凝胶化等过程,得到碳化硅凝胶。

随后,将凝胶在高温条件下煅烧,得到高纯碳化硅粉体。

聚合物热分解法:这种方法是将硅酸盐聚合物与碳源聚合物混合,加热至高温,使聚合物分解,释放出碳化硅。

然后对分解产物进行煅烧,得到高纯碳化硅粉体。

3. 气相法:气相法是通过化学气相沉积法、等离子体法和激光诱导法等气体反应合成高纯碳化硅粉体的一种方法。

化学气相沉积法(CVD):这种方法是将硅气体和碳气体在高温条件下反应,生成碳化硅薄膜。

该方法可以获得高纯度的碳化硅粉体,但制备过程较为复杂。

等离子体法:这种方法利用等离子体放电,将硅气体和碳气体混合,生成碳化硅粉体。

该方法具有反应速度快、纯度高等优点。

激光诱导法:这种方法是通过激光束对硅靶材进行照射,使其蒸发,与碳源气体反应,生成碳化硅粉体。

该方法可以获得高纯度的碳化硅粉体,但设备成本较高。

总之,不同高纯碳化硅粉体合成工艺各有优缺点,根据实际需求和应用领域选择合适的合成方法至关重要。

碳化硅镜面抛光工艺

碳化硅镜面抛光工艺

碳化硅镜面抛光工艺
碳化硅(SiC)镜面抛光工艺一般包括以下步骤:
1. 初步研磨:使用砂纸或研磨片对碳化硅材料进行初步研磨,以去除表面的粗糙度和缺陷。

2. 磨削:在平面磨削机上使用钻石砂轮进行精细磨削,以达到更高的表面平整度。

3. 抛光:使用抛光机和不同粒度的研磨液进行抛光,以获得所需的表面光洁度和平整度。

4. 清洗:在抛光后,用清洁溶剂和超声波清洗设备对表面进行清洗,以去除残留的研磨液和杂质。

5. 检查:使用光学显微镜或其他检测设备对抛光表面进行检查,以确保表面平整度和光学性能符合要求。

6. 包装:抛光完成后,将碳化硅材料包装好,以防止在存储或运输过程中受到损坏。

以上是碳化硅镜面抛光工艺的一般步骤,具体的操作方法可能会因应用场景的不同而有所差异。

碳化硅mosfet工艺制备过程

碳化硅mosfet工艺制备过程

碳化硅MOSFET工艺制备过程1. 碳化硅简介碳化硅(Silicon Carbide,SiC)是一种半导体材料,具有优异的物理和化学性质,被广泛应用于各种高温、高电压和高频率的电子器件中。

碳化硅MOSFET是一种基于碳化硅材料制备的金属-氧化物-半导体场效应晶体管。

2. 制备过程概述碳化硅MOSFET的制备过程可以概括为以下几个步骤:1.硅衬底制备:选择高质量的硅衬底(Substrate),通常采用氮化硅或者氮化铝作衬底材料。

2.基底表面处理:对硅衬底进行化学处理,去除表面的氧化物和杂质,使基底表面变得干净平整。

3.硅衬底清洗:采用酸碱处理方法对硅衬底进行清洗,去除表面的有机和无机杂质,并提高衬底的电学性能。

4.硅衬底极柱制备:在硅衬底表面通过光刻和化学腐蚀等工艺步骤制备出硅衬底极柱(epi layer),用于形成MOSFET的源极和漏极。

5.氧化层形成:在硅衬底表面形成一层氧化层(Oxide Layer),通常采用湿法或干法氧化方法。

6.金属栅极制备:在氧化层表面通过物理气相沉积(PECVD)或热蒸发等方法,沉积金属薄膜,形成金属栅极(Gate Electrode)。

7.掩膜形成:通过光刻和蒸发等技术,制备出用于定义源极和漏极等结构的金属掩膜。

8.掺杂处理:采用离子注入或物理气相沉积等方法,向硅衬底中引入杂质,形成源极、漏极和通道区域,从而改变材料的导电性质。

9.金属电极制备:沉积金属薄膜并通过光刻和蒸发等工艺步骤制备源极和漏极等电极结构。

10.金属化层制备:通过蒸发和光刻等工艺,制备出金属化层,用于连接MOSFET的各个电极。

3. 制备过程详解3.1 硅衬底制备碳化硅MOSFET的制备过程通常从硅衬底的选择开始。

硅衬底材料应具有良好的晶体质量和电学性能,以确保器件的稳定性和性能。

目前常用的硅衬底材料有氮化硅和氮化铝。

选择合适的硅衬底材料是确保碳化硅MOSFET制备成功的关键。

3.2 基底表面处理硅衬底经过切割和打磨等工艺后,表面可能存在一些氧化物和杂质。

碳化硅粉体的制备及改性技术

碳化硅粉体的制备及改性技术

碳化硅粉体的制备及改性技术
碳化硅(SiC)是一种具有广泛应用前景的材料,具有高熔点、高硬度、高热导率、化学稳定性好等特点。

碳化硅粉体的制备及改性技术主要包括传统的化学法制备、物理法制备以及碳化硅的表面改性技术。

1.传统的化学法制备碳化硅粉体:
传统化学法包括共沉淀法、水热法、溶胶-凝胶法等。

其中,共沉淀法是最常用的一种制备方法之一、该方法包括混合硅源和碳源,通过调节pH值和温度来控制反应过程,得到碳化硅粉体。

共沉淀法制备碳化硅粉体具有操作简便、成本较低等优点,但粒径分布较宽,控制难度较大。

2.物理法制备碳化硅粉体:
物理法包括等离子熔融法、化学气相沉积法等。

其中,等离子熔融法是一种常用的物理法制备碳化硅粉体的方法。

该方法通过在高温等离子体中熔融和冷凝制备碳化硅粉体。

等离子熔融法制备的碳化硅粉体晶粒度均匀,纯度高,但设备复杂,成本较高。

3.碳化硅的表面改性技术:
为了提高碳化硅粉体的分散性、抗聚集性,常采用表面改性技术。

常用的表面改性方法包括表面改性剂包覆、离子注入、化学气相沉积等。

其中,表面改性剂包覆法是较常用的改性技术,通过将表面改性剂包裹在碳化硅粉体颗粒表面,减少颗粒间的吸附力和静电作用力,改善颗粒的分散性。

化学气相沉积是一种在碳化硅颗粒表面沉积一层功能性薄膜来改性的方法,可以改善粉体的分散性和抗聚集性。

以上是碳化硅粉体的制备及改性技术的一些常见方法。

随着科学技术的不断进步,制备技术和改性技术也在不断完善和发展,未来有望实现更高效、可控性更强的制备和改性碳化硅粉体方法。

硅片清洗工艺原理及现状

硅片清洗工艺原理及现状

硅片清洗工艺原理及现状硅片清洗工艺是半导体工业中非常重要的一项工艺,它主要用于去除硅片表面的杂质和污染物,保证硅片表面的纯净度和光洁度,从而提高半导体器件的制造质量和性能。

本文将从硅片清洗工艺的原理和现状两个方面进行探讨。

一、硅片清洗工艺的原理硅片清洗工艺的原理可以分为物理清洗和化学清洗两个方面。

物理清洗主要是通过机械力和流体力的作用,去除硅片表面的颗粒、尘埃等杂质。

常见的物理清洗方法有超声波清洗、喷洗清洗和旋转清洗等。

其中,超声波清洗是一种利用超声波的高能量和高频率振动来产生液体中的微小气泡,从而形成强大的冲击力和剥离力,将硅片表面的污染物剥离下来的方法。

喷洗清洗则是通过高速喷射的液体流动来冲击和清洗硅片表面的污染物。

旋转清洗则是将硅片浸泡在清洗液中,通过旋转硅片来增加清洗液与硅片表面的接触面积,从而加强清洗效果。

化学清洗主要是利用化学反应来去除硅片表面的有机和无机污染物。

常见的化学清洗方法有酸洗、碱洗和氧化洗等。

酸洗是通过将硅片浸泡在酸性溶液中,利用酸对污染物进行化学反应,从而去除硅片表面的有机和无机污染物。

碱洗则是利用碱性溶液对硅片表面的污染物进行中和和溶解,从而实现清洗的目的。

氧化洗则是将硅片置于氧化剂溶液中,利用氧化剂对硅片表面的污染物进行氧化和溶解。

二、硅片清洗工艺的现状硅片清洗工艺已经非常成熟,并且在半导体工业中得到广泛应用。

随着半导体器件的不断发展和制造工艺的不断进步,硅片清洗工艺也在不断改进和创新。

在物理清洗方面,超声波清洗是目前最常用的物理清洗方法之一。

它具有清洗效果好、能耗低的优点,可以在不损伤硅片表面的情况下去除硅片表面的污染物。

此外,喷洗清洗和旋转清洗也得到了广泛的应用。

在化学清洗方面,酸洗和碱洗仍然是主要的化学清洗方法。

但是,由于酸洗和碱洗会产生大量的废液和废气,对环境造成污染,因此研究人员正在寻找更环保的清洗方法。

例如,一些研究者正在开发利用超临界流体进行清洗的方法,超临界流体具有较高的溶解能力和较低的粘度,可以更彻底地去除硅片表面的污染物,并且不会对环境造成污染。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

碳化硅粉体清洗工艺
碳化硅粉体清洗工艺是指对碳化硅粉末进行清洗和除尘的工艺。

碳化硅粉体作为一种常见的粉状材料,在生产和加工过程中经常需要进行清洗和除尘处理。

碳化硅粉体清洗工艺主要包括以下步骤:
1. 准备清洗液:根据碳化硅粉体的性质和污染程度,选择合适的清洗液。

一般来说,碳化硅粉体的清洗液可以是水或有机溶剂等。

2. 涂布:将清洗液涂布在碳化硅粉体表面,让其充分浸润和湿润。

3. 搅拌或振动:用搅拌器或振动机等设备,将碳化硅粉体和清洗液进行充分混合。

4. 沉淀分离:让碳化硅粉体和清洗液静置一段时间,使污染物沉淀到底部,再将上清液倒出。

5. 冲洗:用清水或其他洗涤剂将碳化硅粉体进行冲洗,使其彻底去除污染物和清洗液。

6. 烘干:将碳化硅粉体放置在通风良好的地方,让其自然干燥或者使用烘干设备进行烘干。

以上就是碳化硅粉体清洗工艺的主要步骤。

需要注意的是,在具体操作中还应该根据不同的碳化硅粉体特性和污染程度,灵活调整清洗液和清洗时间等参数,以达到最佳的清洗效果。

- 1 -。

相关文档
最新文档