电感式微位移传感器
位移传感器的工作原理

位移传感器的工作原理一、引言位移传感器是一种用于测量物体位置或者运动的设备,广泛应用于工业自动化、机器人技术、汽车工程等领域。
本文将详细介绍位移传感器的工作原理及其应用。
二、工作原理位移传感器的工作原理基于不同的物理效应,常见的工作原理包括电阻式、电感式、电容式和光电式等。
1. 电阻式位移传感器电阻式位移传感器利用电阻值随位移变化的特性进行测量。
常见的电阻式位移传感器包括电位器和应变片传感器。
(1)电位器:电位器是由一条电阻丝和一个滑动触点组成的。
当物体位移时,滑动触点会沿着电阻丝挪移,导致电阻值的变化。
通过测量电阻值的变化,可以确定物体的位移。
(2)应变片传感器:应变片传感器是将应变片粘贴在被测物体上,当物体受到外力作用时,应变片会发生形变,导致电阻值的变化。
通过测量电阻值的变化,可以确定物体的位移。
2. 电感式位移传感器电感式位移传感器利用线圈中感应电动势随位移变化的特性进行测量。
常见的电感式位移传感器包括差动变压器和感应式位移传感器。
(1)差动变压器:差动变压器由两个线圈组成,一个是主线圈,一个是副线圈。
当物体位移时,主线圈和副线圈之间的磁耦合会发生变化,导致感应电动势的变化。
通过测量感应电动势的变化,可以确定物体的位移。
(2)感应式位移传感器:感应式位移传感器由线圈和铁芯组成。
当物体位移时,铁芯的位置会发生变化,导致线圈中感应电动势的变化。
通过测量感应电动势的变化,可以确定物体的位移。
3. 电容式位移传感器电容式位移传感器利用电容值随位移变化的特性进行测量。
常见的电容式位移传感器包括平行板电容传感器和共振电容传感器。
(1)平行板电容传感器:平行板电容传感器由两个平行的金属板组成,当物体位移时,两个金属板之间的距离会发生变化,导致电容值的变化。
通过测量电容值的变化,可以确定物体的位移。
(2)共振电容传感器:共振电容传感器由电容和电感组成。
当物体位移时,电容和电感之间的谐振频率会发生变化,导致电容值的变化。
传感器与检测技术-电感式传感器

电感式传感器是利用线圈自感或互感的变化来实现测量的一种装置。
可以用来测量位移、振动、压力、流量、重量、力矩、应变等多种物理量。
电感式传感器的核心部分是可变自感或可变互感,在被测量转换成线圈自感或互感的变化时。
一般要利用磁场作为媒介或利用铁磁体的某些现象。
这类传感器的主要特征是具有线圈绕组。
丄3. 1自感式传感器丄3. 2变压器式传感器丄3. 3涡流式传感器丄3. 4压磁式传感器丄3. 5感应同步器*本章要点3. 1自感式传感器©3.1©3. 1 蛛3・1©3. 1©3. 11自感式传感器的工作原理2灵敏度与非线性3等效电路T<14转换电路5零点残余电压©3. 1 6自感式传感器的特点及应用3. 1. 1自感式传感器的工作原理电感值与以下几个参数有关:与线圈匝数W平方成正比;与空气隙有效截面积S。
成正比;与空气隙长度1。
所反比。
刪图3-1自感式传感器原理图刪图3-2截面型自感式传感器B为动铁芯(通称衔铁)A为固定铁芯辎图3-3差动自感式传感器3. L1自感式传感器的工作原理截面型自感式传感器3. 1. 1自感式传感器的工作原理图LT3. L1自感式传感器的工作原理差分自感式传感器丕页iHBr图库J■・■3. 1. 2灵敏度与非线性气隙型其灵敏度为: 差动式传感器其灵敏度:S==lo以上结论在满足A 1/10< VI时成立。
从提高灵敏度的角度看,初始空气隙1。
距离人应尽量小。
其结果是被测量的范围也变小。
同时,灵敏度的非线性也将增加。
如釆用增大空气隙等效截面积和增加线圈匝数的方法来提高灵敏度,则必将增大传感器的几何尺寸和重量。
这些矛盾在设计传感器时应适当考虑。
与截面型自感传感器相比,气隙型的灵敏度较高。
但其非线性严重,自由行程小,制造装配困难。
因此近年来这种类型的使用逐渐减少。
差动式传感器其灵敏度与单极式比较。
其灵敏度提高一倍,非线性大大减小。
位移传感器的工作原理

位移传感器的工作原理一、引言位移传感器是一种用于测量物体位置或位移的装置,广泛应用于工业自动化、机械制造、航空航天等领域。
本文将详细介绍位移传感器的工作原理及其应用。
二、工作原理位移传感器的工作原理基于不同的物理原理,主要包括电容式、电感式、光电式和磁电式等。
1. 电容式位移传感器电容式位移传感器利用被测量物体与传感器之间的电容变化来测量位移。
当被测物体移动时,与传感器之间的电容会发生变化,传感器通过测量电容的变化来确定位移的大小。
电容式位移传感器具有高精度、高灵敏度和无接触的优点,适用于微小位移的测量。
2. 电感式位移传感器电感式位移传感器利用线圈之间的电感变化来测量位移。
当被测物体移动时,线圈之间的电感会发生变化,传感器通过测量电感的变化来确定位移的大小。
电感式位移传感器具有高精度和耐用性好的特点,适用于中小位移的测量。
3. 光电式位移传感器光电式位移传感器利用光电效应来测量位移。
传感器发射一束光线,当被测物体移动时,光线会被遮挡或反射,传感器通过测量光线的变化来确定位移的大小。
光电式位移传感器具有高精度和快速响应的特点,适用于高速位移的测量。
4. 磁电式位移传感器磁电式位移传感器利用磁场的变化来测量位移。
传感器通过测量磁场的变化来确定位移的大小。
磁电式位移传感器具有高精度和耐用性好的特点,适用于大范围位移的测量。
三、应用领域位移传感器在各个领域都有广泛的应用,下面介绍几个常见的应用领域。
1. 工业自动化位移传感器在工业自动化中常用于测量机械设备的位移,如机械臂的运动范围、传送带的位置等。
通过位移传感器的测量数据,可以实现机械设备的精确控制和自动化操作。
2. 机械制造位移传感器在机械制造中广泛应用于测量机械零件的位移和位置。
例如,用于测量机床的刀具位置、传送带的位置、液压缸的伸缩长度等。
通过位移传感器的测量数据,可以保证机械零件的精确加工和装配。
3. 航空航天位移传感器在航空航天领域中被用于测量飞行器的位移和姿态。
第四章电感式传感器

式中,r 、rc 为螺管、铁芯的半径;l、l为c 螺管、铁芯 的长度; lc 、rc 位移量。
所以,传感器灵敏度为:
K
4 2 N 2
l2
r
1 rc2
107
采用差动形式,灵敏度可提高一倍。 提高灵敏度的途径:
①使线圈与铁芯尺寸比值和趋于1; ②铁芯的材料选用导磁率大的材料。
三种自感式传感器的比较: ◆ 变间距式: 灵敏度最高,且随间距增大而减小;
4.2.4 误差因素分析
(1)激励电源的影响 幅值和频率都会直接影响输出,必须适当选择 合适的值。
(2)温度的影响: 温度变化,引起线圈磁场发生变化,从而产生 温漂(品质因数Q低时,影响更为严重。
解决方法:①采用恒流源供电; ②提高线圈的品质因数; ③采用差动电桥。
(3)零点残余电压 差动变压器在初始状态下,衔铁处于中间位置, 存在零点残余电压,
常用测量电路为: ◆ 差动整流电路 ◆ 相敏检波电路
1. 差动整流电路 差动整流电路分为全波和半波电路,如图所示:
以图(c)为例,波形变化为:
2.相敏检测电路
4.2.6 应用
(1)差动变压器式加速度传感器
(2)差动变压器式微压力变送器
微压传感器
退出
电感测微仪------差动式自感传感器测量微位移
4.1 自感式传感器
自感传感器的常见形式有气隙型和螺管型。
一、气隙型电感传感器 1. 工作原理:
线圈的电感为:
N2 L
Rm
Rm
l1
1S1
l2
2S2
l
0S
一般铁心的磁阻远较气隙磁阻小,有
Rm
l
0S
电感值与以下几个参数有关:与线圈匝数N 平方成正比;与空气隙有效截面积S成正比;与 空气隙长度所反比。
位移传感器的工作原理 (2)

位移传感器的工作原理位移传感器是一种用于测量物体位移的装置。
它通过将物体的位移转换为电信号来实现测量。
位移传感器在许多领域中都有广泛的应用,例如工业自动化、机械加工、医疗设备等。
位移传感器的工作原理基于不同的物理原理,常见的几种工作原理包括电阻式、电容式、电感式和光电式。
电阻式位移传感器是最常见的一种类型。
它利用电阻的变化来测量物体的位移。
普通情况下,电阻式位移传感器由一个固定电阻和一个活动电阻组成。
活动电阻的位置随着物体的位移而改变,从而导致电阻值的变化。
通过测量电阻值的变化,可以确定物体的位移。
电容式位移传感器利用电容的变化来测量物体的位移。
它通常由两个平行的电容板组成,当物体位移时,电容板之间的距离也会发生变化,从而导致电容值的变化。
通过测量电容值的变化,可以确定物体的位移。
电感式位移传感器利用电感的变化来测量物体的位移。
它通常由一个线圈和一个铁芯组成。
当物体位移时,铁芯的位置相对于线圈也会发生变化,从而导致电感值的变化。
通过测量电感值的变化,可以确定物体的位移。
光电式位移传感器利用光的变化来测量物体的位移。
它通常由一个发光二极管和一个光敏电阻组成。
当物体位移时,发光二极管照射到光敏电阻上的光强度会发生变化,从而导致电阻值的变化。
通过测量电阻值的变化,可以确定物体的位移。
除了上述几种常见的工作原理外,还有其他一些特殊的工作原理,如压电式、磁电式、超声波式等。
不同的工作原理适合于不同的应用场景,选择合适的工作原理可以提高位移传感器的测量精度和稳定性。
位移传感器的性能指标包括测量范围、灵敏度、分辨率、线性度、重复性和稳定性等。
测量范围是指位移传感器能够测量的最大位移值,灵敏度是指位移传感器输出信号与输入位移之间的关系,分辨率是指位移传感器能够分辨的最小位移值,线性度是指位移传感器输出信号与输入位移之间的线性关系,重复性是指位移传感器在相同位移条件下重复测量的一致性,稳定性是指位移传感器在长期使用过程中输出信号的稳定性。
位移传感器的原理及应用

2021/2/4
3366
涂层厚度仪
测量线路板的铜膜厚度
2021/2/4
3377
转速测量
在一个旋转体上开一条或数条槽如图3.2.15(a)所示,或者做
成齿,如图3.2.15(b)所示,旁边安装一个涡流传感器。当旋
转体转动时,涡流传感器将周期性地改变输出信号,此电压
经过放大、整形,可用频率计指示出频率数值。此值与槽数
2021/2/4
19
微小位移的测量
1-测端 2-防尘罩 3-轴套 4-圆片簧 5-测杆 6-磁筒 7-磁芯 8-线圈 9-弹簧 10-导线
2021/2/4
20
电感式滚柱直径分选装置
3.2.8 滚柱直径分选装置
1—气缸 2—活塞 3—推杆 4—被测滚柱 5—落料管
6—电感测微器 7—钨钢测头 102—021/容2/4 器(料斗)
8—限位挡板
9—电磁21翻板 21
电感式滚柱直径分选装置(外形)
(参考中原量仪股份有限公司资料) 滑道
轴承滚子外形
分选仓位
2021/2/4
22 20222
电感式滚柱直 径分选装置外 形(参考无锡市通达滚
子有限公司资料)
滑道
11个分选仓位 废料仓
2021/2/4
落料振动 台
23 20223
粗糙度仪外形
参数的变化即可达到探伤的目的。
2021/2/4
3399
在探伤时,重要的是缺陷信号和干扰信号比。为了获得需要 的频率而采用滤波器,如图3.3.16(a)所示,需要进一步抑 制干扰信号,可采用幅值甄别电路。把这一电路调整到裂缝 信号正好能通过的状态,凡是低于裂缝信号都不能通过这一 电路,这样干扰信号都抑制掉了。如图3.2.16(b)所示。
位移传感器

4位绝对码光电编码器码制
角度 0.0 22.5 45.0 67.5 90.0 112.5 135.0 157.5 180.0 202.5 225.0 247.5 270.0 292.5 315.0 337.5 位置 A B C D E F G H I J K L M N O p 二进制码 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 十进制码 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 格雷码 0000 0001 0011 0010 0110 0111 0101 0100 1100 1101 1111 1110 1010 1011 1001 1000
W W 2 sin( / 2)
W-栅距, a-线宽, b-缝宽 W=a+b ,a=b=W/2
一、长度及线位移检测
莫尔条纹特性:
方向性:垂直于角平分线 → 与光栅移动方向垂直 同步性:光栅移动一个栅距 → 莫尔条纹移动一个间距
放大性:夹角θ很小 → B>>W → 光学放大 → 提高灵敏度
准确性:误差平均效应 → 克服个别/局部误差 → 提高精度
l u0 A
衔铁
u0W 2 A u0W 2 A W2 L l Rm l l ur
思考:灵敏度? 线性度? 改进方法? (2) 变面积式 (3) 螺管式 差动式
1 l 2
一、长度及线位移检测
(2) 变面积式
蔡萍教材P40 图3-5
(3) 螺管式
一、长度及线位移检测
电感位移传感器
在沿着偏心方向上,条纹近似地平行于栅线,称纵向莫尔条纹 其他位置上上,称为斜向莫尔条纹
差动电感式位移传感器调理电路设计

Design of Conditioning Circuit
for Differential Inductive Displacement Transducer
ZHANG HaifeiꎬLEI Xiaojuan
(Xi’ an Aerospace Corporation of Metrology & MeasurementꎬXi’ an 710100ꎬChina)
作可靠、寿命长等优点ꎮ 其作为一种精密的位移检测
部件ꎬ在航空、航天、兵器、精密测量等领域有着广泛的
应用
[2]
ꎮ
变差动变压器分为两种ꎬ一种是测量直线位移的
线 性 可 变 差 动 变 压 器 ( linear variable differential
收稿日期:2018 ̄12 ̄28
调理电路的解决方案ꎮ LINEAR 公司采用信号发生器
AD698 芯片的单芯片解决方案的调理电路ꎮ 该电路采用比例输出ꎬ可有效提高调理电路的准确度和抗干扰能力ꎮ 其输出采用电压隔
离芯片 ISO124ꎬ可实现隔离度达 1 500 V 有效值电压的隔离ꎬ减少了不同系统间的传输干扰ꎮ 设计了变送器输出模块ꎬ可通过选择电
流输出方式提高长距离传输的可靠性ꎮ 通过对电路的测试和分析ꎬ证明其满足使用单通道 LVDT 高精度测量的需求ꎮ 该电路设计方
circuit based on AD698 chip was designed. The adoption of proportional output could effectively improve the accuracy and anti ̄
interference ability of the conditioning circuit. By using voltage isolation chip ISO124 for its outputꎬthe isolation up to 1 500 V
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《传感器原理及应用》课程考核论文题目电感式微位移传感器分析及应用实例班级学号姓名成绩机械与汽车工程学院机械电子工程系二零一四年五月目录摘要 2 引言 2一、电感式传感器组成及原理 3二、电感测头的结构11三、差动变压器应用11四、电感式微位移传感器应用实例12 参考文献23电感式微位移传感器分析及应用实例摘要:随着现代制造业的规模逐渐扩大,自动化程度愈来愈高。
要保证产品质量,对产品的检测和质量管理都提出了更高的要求。
电感式微位移传感器是一种分辨率极高、工作可靠、使用寿命很长的测量仪器,应用于微位移测量已有比较长的历史. 本文主要对电感式微位移传感器进行了系统性分析,阐述了其物理效应、构成、结构、测量电路、显示装置等基本内容,并在网上对此传感器进行了选型,结合其产品手册/使用说明书,详细说明了此传感器的用法,并进行了举例说明。
关键词: 电感式传感器,相敏检波,零点残余电压Abstract:With modern manufacturing scale expands gradually, more and more high degree of automation. To ensure the quality of product, the product testing and quality management are put forward higher requirements. Inductive micrometer is a kind of extremely high resolution, reliable operation, long service life measuring instrument, used in the micro displacement measurement has a long history. This article mainly has carried on the systematic analysis to inductance displacement of weak, expounds the physical effect, composition, structure, measuring circuit, display device, the basic content, and for the selection of this sensor on the net,combined with its product manuals operating instructions, detailed the use of the sensor, and an example was carried out.Key words: Inductive sensor, phase sensitive detection, zero residual voltage引言电感式微位移传感器又称电感式测微仪是一种能够测量微小尺寸变化的精密测量仪器,它由主体和测头两部分组成,配上相应的测量装置(例如测量台架等),能够完成各种精密测量。
例如,检查工件的厚度、内径、外径、椭圆度、平行度、直线度、径向跳动等,被广泛应用于精密机械制造业、晶体管和集成电路制造业以及国防、科研、计量部门的精密长度测量。
主要的技术指标为⑴测量范围:0~±30μm档及0~±500μm档。
⑵示值误差:0~土30μm档为0.1μm,0~±500μm档为1μm。
⑶分辨率:0~±30μm档为0.01μm,0~±500m档为0.1μm。
⑷极性:当测量值为负时,自动显示“-”;为正时,无极性符号。
一、电感式传感器组成及原理电感式传感器是利用线圈自感或互感的变化来实现测量的一种装置,可以用来测量位移、振动、压力、流量、重量、力矩和应变等多种物理量。
电感式传感器的核心部分是可变自感或可变互感,在被测量转换成线圈自感或互感的变化时,一般要利用磁场作为媒介或利用铁磁体的某些现象。
这类传感器的主要特征是具有绕组。
电感式传感器的优点①结构简单、可靠。
②分辨率高。
能测量0.1μm的机械位移,甚至更小;能感受0.1角秒的微小角位移。
输出信号强,电压灵敏度可达数百mV/mm 。
③重复性好,线性度优良在几十μm到数百mm的位移范围内,输出特性的线性度较好,且比较稳定。
④能实现远距离传输、记录、显示和控制。
电感式传感器的不足:存在交流零位信号,不宜高频动态测量。
电感式传感器种类很多。
根据转换原理不同,可分为自感式和互感式两种;根据结构形式不同,可分为气隙型和螺管型两种。
现在市场上的电感式测微仪多采用差动变压器式结构,故这里只针对差动式变压器进行说明。
(一)结构原理与等效电路差动变压器的结构形式如图所示,它分为气隙型和螺管型两种形式。
气隙型差动变压器由于行程小,且结构较复杂,因此目前已很少采用,而大多数采用螺管型差动变压器。
下面仅讨论螺管型差动变压器。
(a)气隙型(b)螺管型1- 初级线圈 2、3- 次级线圈 4- 衔铁差动变压器由衔铁、初级线圈、次级线圈和线圈骨架等组成。
初级线圈作为差动变压器激励用,相当于变压器的原边;次级线圈由两个结构尺寸和参数相同的相同线圈反相串接而成,相当于变压器的副边。
差动变压器的工作原理类似变压器的作用原理。
一、二次绕组间的耦合能随衔铁的移动而变化,即绕组间的互感随被测位移改变而变化。
由于在使用时采用两个二次绕组反向串接,以差动方式输出,所以把这种传感器称为差动变压器式电感传感器,通常简称差动变压器。
差动变压器工作在理想情况下(忽略涡流损耗、磁滞损耗和分布电容等影响),它的等效电路如图所示。
图U1为一次绕组激励电压;M1、M2分别为一次绕组与两个二次绕组间的互感:L1、R1分别为一次绕组的电感和有效电阻;L21、L22分别为两个二次绕组的电感;R21、R22分别为两个二次绕组的有交电阻。
对于差动变压器,当衔铁处于中间位置时,两个二次绕组互相同,因而由一次侧激励引起的感应电动势相同。
由于两个二次绕组反向串接,所以差动输出电动势为零。
当衔铁移向二次绕组L21一边,这时互感M1大,M2小,因而二次绕组L21内感应电动势大于二次绕组L22内感应电动势,这时差动输出电动势不为零。
在传感器的是量程内,衔动移越大,差动输出电动势就越大。
同样道理,当衔铁向二次绕组L22一边移动差动输出电动势仍不为零,但由于移动方向改变,所以输出电动势反相。
因此通过差动变压器输出电动势的大小和相位可以知道衔铁位移量的大小和方向。
由图4.2.2可以看出一次绕组的电流为:二次绕组的感应动势为:由于二次绕组反向串接,所以输出总电动势为:其有效值为:差动变压器输出电势e与衔铁位移x的关系如图所示,其中x表示衔铁偏离中心位置的距离。
差动变压器输出特性曲线(二)线性度与灵敏度(1)线性度。
差动变压器的线性范围受到螺管线圈轴向磁场不均匀的影响。
靠合理的设计保证所要求的线性范围和线性度。
(2)灵敏度。
差动变压器的灵敏度是指衔铁移动单位位移时所产生的输出电势的变化,可用mV/mm来表示;在实用中考虑到激励电压的影响,还常用mV/mm/V来表示,即衔铁单位位移所产生的电势变化除以激励电压值。
差动变压器灵敏度的高低与初级电压、次级绕组匝数和激励电压的频率有关:①与次级匝数的关系次级匝数增加,灵敏度增加,二者呈线性关系。
但是次级匝数不能无限制增加,因为差动变压器零点残余电压也随之变大。
②初级电压灵敏度与初级电压成正比关系,但初级电压也不能过大,过大时会使差动变压器线圈发热而引起输出信号漂移,一般采用3~8V。
③激励电源频率在频率很低时,灵敏度随频率增加而增加;当频率升高,线圈的感抗大大高于其电阻时,灵敏度与频率无关;当频率超过某一数值时(该值因衔铁材料而不同),由于高频时导线的集肤效应使导线有效电阻增加,衔铁的涡流损耗及磁滞损耗增加,使输出下降。
图2-1是某种导磁材料输入频率与灵敏度的关系,可供选择激励频率时参考。
差动变压器的激磁频率与灵敏度的关系(三)差动变压器的误差因素分析1、激励电压幅值与频率的影响激励电源电压幅值的波动,会使线圈激励磁场的磁通发生变化,直接影响输出电势。
而频率的波动,只要适当地选择频率,其影响不大。
2、温度变化的影响周围环境温度的变化,引起线圈及导磁体磁导率的变化,从而使线圈磁场发生变化产生温度漂移。
当线圈品质因数较低时,影响更为严重,因此,采用恒流源激励比恒压源激励有利。
适当提高线圈品质因数并采用差动电桥可以减少温度的影响。
3、零点残余电压当差动变压器的衔铁处于中间位置时,理想条件下其输出电压为零。
但实际上,当使用桥式电路时,在零点仍有一个微小的电压值(从零点几mV到数十mV)存在,称为零点残余电压。
如图是扩大了的零点残余电压的输出特性。
零点残余电压的存在造成零点附近的不灵敏区;零点残余电压输入放大器内会使放大器末级趋向饱和,影响电路正常工作等。
图中e1为差动变压器初级的激励电压,e20包含基波同相成分、基波正交成分,二次及三次谐波和幅值较小的电磁干扰等。
零点残余电压产生原因:①基波分量。
由于差动变压器两个次级绕组不可能完全一致,因此它的等效电路参数(互感M、自感L及损耗电阻R)不可能相同,从而使两个次级绕组的感应电势数值不等。
又因初级线圈中铜损电阻及导磁材料的铁损和材质的不均匀,线圈匝间电容的存在等因素,使激励电流与所产生的磁通相位不同。
②高次谐波。
高次谐波分量主要由导磁材料磁化曲线的非线性引起。
由于磁滞损耗和铁磁饱和的影响,使得激励电流与磁通波形不一致产生了非正弦(主要是三次谐波)磁通,从而在次级绕组感应出非正弦电势。
另外,激励电流波形失真,因其内含高次谐波分量,这样也将导致零点残余电压中有高次谐波成分。
消除零点残余电压方法:1、从设计和工艺上保证结构对称性为保证线圈和磁路的对称性,首先,要求提高加工精度,线圈选配成对,采用磁路可调节结构。
其次,应选高磁导率、低矫顽力、低剩磁感应的导磁材料。
并应经过热处理,消除残余应力,以提高磁性能的均匀性和稳定性。
由高次谐波产生的因素可知,磁路工作点应选在磁化曲线的线性段。
2、选用合适的测量线路采用相敏检波电路不仅可鉴别衔铁移动方向,而且把衔铁在中间位置时,因高次谐波引起的零点残余电压消除掉。
如图,采用相敏检波后衔铁反行程时的特性曲线由1变到2,从而消除了零点残余电压。
相敏检波后的输出特性3.采用补偿线路①由于两个次级线圈感应电压相位不同,并联电容可改变其一的相位,也可将电容C改为电阻,如图(a)。
由于R的分流作用将使流入传感器线圈的电流发生变化,从而改变磁化曲线的工作点,减小高次谐波所产生的残余电压。