完整版高一函数大题训练附答案解析
高一数学函数试题答案及解析

高一数学函数试题答案及解析1.设,的整数部分用表示,则的值是 .【答案】1546【解析】,,,,所以.【考点】信息给予题,要善于捕捉信息,灵活运用2.在R上定义运算,若不等式成立,则实数a的取值范围是().A.{a|}B.{a|}C.{a|}D.{a|}【答案】C【解析】由题知∴不等式对任意实数x都成立转化为对任意实数x都成立,即恒成立,解可得.故选A.【考点】本题考查了在新定义下对函数恒成立问题的应用.关于新定义型的题,关键是理解定义,并会用定义来解题.3.已知点是直线上的任意一点,则的最小值为()A.B.C.D.【答案】A【解析】点是直线上的任意一点,则有,即,所以有,显然当时,有最小值.【考点】消元法,二次函数中配方法求最值.4.一次函数的图像过点和,则下列各点在函数的图像上的是( ) A.B.C.D.【答案】C【解析】法一:设,由该函数的图像过点及,可得,求解得,所以,依次将A、B、C、D中的横坐标代入计算可知,只有点符合要求,故选C;法二:一次函数的图像是一条直线,由该函数的图像过点及可知,,所以直线的方程为:即,依次将各点的纵坐标减去横坐标,看是否为1,是1的点就在直线上,即该点在函数的图像上,最后确定只有C答案满足要求.【考点】1.一次函数的解析式;2.直线的方程.5.下列函数在上单调递增的是()A.B.C.D.【答案】D【解析】:对于A选项,函数在递减,故A不正确;对于B选项,函数在递减,在递增,故B不正确;对于C选项,函数在递减,故C不正确;对于D选项,函数在上单调递增,合题意综上知,D选项是正确选项【考点】本题考查指数函数、对数函数、幂函数、反比例函数等常见函数的单调性.6.函数的最小值是【答案】【解析】,则函数的最小值为。
【考点】函数的性质点评:本题通过构造形式用基本不等式求最值,训练答题都观察、化归的能力.7.已知f(x)是实数集上的偶函数,且在区间上是增函数,则的大小关系是()A.B.C.D.【答案】D【解析】因为,f(x)是实数集上的偶函数,且在区间上是增函数,所以,函数的图象关于y 轴对称,在区间是减函数。
高一数学函数的应用测试题(含答案)

高一数学函数的应用测试题(含答案)高一数学函数的应用测试题(含答案)数学是研究现实世界空间形式和数量关系的一门科学。
小编准备了高一数学函数的应用测试题,具体请看以下内容。
一、选择题:本大题共12小题,每小题5分,共60分.1.函数的定义域是( )A.[1,+)B.45,+C.45,1D.45,1解析:要使函数有意义,只要得01,即45答案:D2.设a=20.3,b=0.32,c=logx(x2+0.3)(x1),则a,b,c的大小关系是()A.aC.c解析:∵a=20.321=2,且a=20.320=1,1∵x1,c=logx(x2+0.3)logxx2=2. cb.答案:B3.已知函数f(x)=ln(x+x2+1),若实数a,b满足f(a)+f(b-1)=0,则a+b等于()A.-1B.0C.1D.不确定解析:观察得f(x)在定义域内是增函数,而f(-x)=ln(-x+x2+1)=ln1x+x2+1=-f(x),f(x)是奇函数,则f(a)=-f(b-1)=f(1-b).a=1-b,即a+b=1.答案:C4.已知函数f(x)=-log2x (x0),1-x2 (x0),则不等式f(x)0的解集为()A.{x|0C.{x|-1-1}解析:当x0时,由-log2x0,得log2x0,即0当x0时,由1-x20,得-1答案:C5.同时满足两个条件:①定义域内是减函数;②定义域内是奇函数的函数是()A.f(x)=-x|x|B.f(x)=x3C.f(x)=sinxD.f(x)=lnxx解析:为奇函数的是A、B、C,排除D. A、B、C中在定义域内为减函数的只有A.答案:A6.函数f(x)=12x与函数g(x)= 在区间(-,0)上的单调性为()A.都是增函数B.都是减函数C.f(x)是增函数,g(x)是减函数D.f(x)是减函数,g(x)是增函数解析:f(x)=12x在x(-,0)上为减函数,g(x)= 在(-,0)上为增函数.答案:D7.若x(e-1,1),a=lnx,b=2lnx,c=ln3x,则()A.aC.b解析:a=lnx,b=2lnx=lnx2,c=ln3x.∵x(e-1,1),xx2.故ab,排除A、B.∵e-1lnx答案:C8.已知f(x)是定义在(-,+)上的偶函数,且在(-,0]上是增函数,若a=f(log47),,c=f(0.2-0.6) ,则a、b、c的大小关系是()A.cC.c解析:函数f(x)为偶函数,b=f(log123)=f(log23),c=f(0.2-0.6)=f(50.6).∵50.6log23=log49log47,f(x)在(0,+)上为减函数,f(50.6)答案:A9.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L1=5.06x-0.15x2和L2=2x,其中x为销售量(单位:辆),若该公司在这两地共销售15辆车,则能获得的最大利润为()A.45.606万元B.45.6万元C.46.8万元D.46.806万元解析:设在甲地销售x辆,则在乙地销售(15-x)辆,总利润L=L1+L2=5.06x-0.15x2+2(15-x)=-0.15x2+3.06x+30,当x=3.0620.15=10.2时,L最大.但由于x取整数,当x=10时,能获得最大利润,最大利润L=-0.15102+3.0610+30=45.6(万元).答案:B10.若f(x)是定义在R上的偶函数,且满足f(x+3)=f(x),f(2)=0,则方程f(x)=0在区间(0,6)内解的个数的最小值是()A.5B.4C.3D.2解析:f(5)=f(2+3)=f(2)=0,又∵f(-2)=f(2)=0,f(4)=f(1)=f(-2)=0,在(0,6)内x=1,2,4,5是方程f(x)=0的根.答案:B11.函数f(x)=x+log2x的零点所在区间为()A.[0,18]B.[18,14]C.[14,12]D.[12,1]解析:因为f(x)在定义域内为单调递增函数,而在四个选项中,只有f14f120,所以零点所在区间为14,12.答案:C12.定义在R上的函数f(x)满足f(x+2)=3f(x),当x[0,2]时,f(x)=x2-2x,则当x[-4,-2]时,f(x)的最小值是()A.-19B.-13C.19D.-1解析:f(x+2)=3f(x),当x[0,2]时,f(x)=x2-2x,当x=1时,f(x)取得最小值.所以当x[-4,-2]时,x+4[0,2],所以当x+4=1时,f(x)有最小值,即f(-3)=13f(-3+2)=13f(-1)=19f(1)=-19.答案:A第Ⅱ卷(非选择共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.若函数f(x)=ax2+x+1的值域为R,则函数g(x)=x2+ax+1的值域为__________.解析:要使f(x)的值域为R,必有a=0.于是g(x)=x2+1,值域为[1,+).答案:[1,+)14.若f(x)是幂函数,且满足f(4)f(2)=3,则f12=__________. 解析:设f(x)=x,则有42=3,解得2=3,=log23,答案:1315.若方程x2+(k-2)x+2 k-1=0的两根中,一根在0和1之间,另一根在1和2之间,则实数k的取值范围是__________. 解析:设函数f(x)=x2+(k-2)x+2k-1,结合图像可知,f(0)0,f(1)0,f(2)0.即2k-10,1+(k-2)+2k-10,4+2(k-2)+2k-10,解得k12,k23,即1214,我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
高一三角函数诱导公式练习题(带详解答案)

三角函数诱导公式1.全国Ⅱ)若sin α<0且tan α>0,则α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角2.(07·湖北)tan690°的值为( )A .-33 B.33 C. 3 D .- 33.f (sin x )=cos19x ,则f (cos x )=( )A .sin19xB .cos19xC .-sin19xD .-cos19x4.设f (x )=a sin(πx +α)+b cos(πx +β),其中a ,b ,α,β∈R ,且ab ≠0,α≠k π(k ∈Z).若f (2009)=5,则f (2010)等于( )A .4B .3C .-5D .55.(09·全国Ⅰ文)sin585°的值为( )A .-22 B.22 C .-32 D.326.函数y =5sin ⎝⎛⎭⎫25x +π6的最小正周期是( ) A.25π B.52π C.π3 D .5π7.(2010·重庆文,6)下列函数中,周期为π,且在[π4,π2]上为减函数的是( ) A .y =sin(2x +π2) B .y =cos (2x +π2) C .y =sin(x +π2) D .y =cos(x +π2)8.函数y =-2tan ⎝⎛⎭⎫3x +π4的单调递减区间是________.三角函数诱导公式(答案)1.[答案] C2.[答案] A[ 解析] tan690°=tan(-30°+2×360°)=tan(-30°)=-tan30°=-33,选A. 3.[答案] C[解析] f (cos x )=f (sin(90°-x ))=cos19(90°-x )=cos(270°-19x )=-sin19x .4.[答案] C[解析] ∵f (2009)=a sin(2009π+α)+b cos(2009π+β)=-a sin α-b cos β=5, ∴a sin α+b cos β=-5.∴f (2010)=a sin α+b cos β=-5.5.[答案] A[解析] sin585°=sin(360°+225°)=sin225°=sin(180°+45°)=-sin45°=-22. 6.[答案] D[解析] T =2π25=5π. 7.7.[答案] A[解析] 选项A :y =sin(2x +π2)=cos2x ,周期为π,在[π4,π2]上为减函数; 选项B :y =cos(2x +π2)=-sin2x ,周期为π,在[π4,π2]上为增函数; 选项C :y =sin(x +π2)=cos x ,周期为2π; 选项D :y =cos(x +π2)=-sin x ,周期为2π.故选A. 8. [答案] ⎝⎛⎭⎫k π3-π4,k π3+π12(k ∈Z)[解析] 求此函数的递减区间,也就是求y =2tan ⎝⎛⎭⎫3x +π4的递增区间,由k π-π2<3x +π4<k π+π2,k ∈Z 得:k π3-π4<x <k π3+π12, ∴减区间是⎝⎛⎭⎫k π3-π4,k π3+π12,k ∈Z.。
高一数学函数综合试题答案及解析

高一数学函数综合试题答案及解析1.定义运算:,对于函数和,函数在闭区间上的最大值称为与在闭区间上的“绝对差”,记为,则= .【答案】.【解析】记,,于是构造函数,则当时,;当或时,所以.即为所求.【考点】函数的最值及其几何意义.2.设,那么()A.B.C.D.【答案】B.【解析】观察题意所给的递推式特征可知:,所以,故选B.【考点】数列的递推公式.3.函数y=-xcosx的部分图象是().【答案】D.【解析】选判断函数的奇偶性,此时,有,可知此函数为奇函数,排除A,C;又当x>0时,取时,可知此时,易知图像与x轴交于,而当时,,故选D.【考点】函数图像的辨析与识别,奇偶函数的定义与性质,排除法,特殊角的三角函数值.4.方程在区间内的所有实根之和为 .(符号表示不超过的最大整数).【答案】2.【解析】设,当时,;当时,;当时,;当时,;即;令,得;令,得;的所有根为0,2,之和为2.【考点】新定义题、函数图像的交点.5.若不等式对任意的上恒成立,则的取值范围是()A.B.C.D.【答案】D.【解析】∵,又∵,,∴,又∵,根据二次函数的相关知识,可知当,时,,综上所述,要使不等式对于任意的恒成立,实数的取值范围是.【考点】1.函数求最值;2.恒成立问题的处理方法.6.下列四个命题:①方程若有一个正实根,一个负实根,则;②函数是偶函数,但不是奇函数;③函数的值域是,则函数的值域为;④一条曲线和直线的公共点个数是,则的值不可能是.其中正确的有________________(写出所有正确命题的序号).【答案】①④【解析】,故①正确;根据定义域,,所以,所以也是奇函数;故②不正确;仅是定义域变了,值域没有改变;故③不正确;是关于对称轴对称的图像,所以与其交点个数只能是偶数个,不可能是1.故④正确.【考点】1.方程根与系数的关系;2.函数奇偶性;3.抽象函数;4.函数图像.7.已知函数,则下列说法中正确的是()A.若,则恒成立B.若恒成立,则C.若,则关于的方程有解D.若关于的方程有解,则【答案】D.【解析】绝对值不等式,当时,则,此时,所以A错误;当恒成立时,有,此时假设,则由绝对值不等式可知恒成立,此时与恒成立矛盾,再结合对A选项的分析,可知,所以B选项错误;当时,则,此时,方程,左边是正数,右边是负数,无解,所以C错误;对于D,当关于的方程有解时,由上述C选项的分析可知不可能小于0,当时,,也不满足有解,所以,此时由有解,可得,所以,所以,选项D正确,故选D.【考点】函数与绝对值不等式.8.如果二次函数不存在零点,则的取值范围是()A.B.C.D.【答案】B【解析】∵二次函数不存在零点,二次函数图象向上,∴,可得,解得,故选D.【考点】1、函数零点;2、函数与方程的关系.9.已知函数是定义在上的奇函数,当时的解析式为.(Ⅰ)求函数的解析式;(Ⅱ)求函数的零点.【答案】(Ⅰ)(Ⅱ)零点为【解析】(Ⅰ)先利用奇函数的性质求时的解析式,再求时的解析式,最后写出解析式. 本小题的关键点:(1)如何借助于奇函数的性质求时的解析式;(2)不能漏掉时的解析式.(Ⅱ)首先利用求零点的方法:即f(x)=0,然后解方程,同时注意限制范围.试题解析:(Ⅰ)依题意,函数是奇函数,且当时,,当时,, 2分又的定义域为,当时, 2分综上可得, 2分(Ⅱ)当时,令,即,解得,(舍去) 2分当时,, 1分当时,令,即,解得,(舍去) 2分综上可得,函数的零点为 1分【考点】1、奇函数的性质;2、求方程的零点.10.函数的零点所在的区间是()A.B.C.D.【答案】C.【解析】因为函数的定义域为大于零的实数。
高一数学函数经典题目及答案

1函数解析式的特殊求法例1 已知f(x)是一次函数, 且f[f(x)]=4x -1, 求f(x)的解析式例2 若x x x f 21(+=+),求f(x)例3 已知x x x f 2)1(+=+,求)1(+x f例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式例5 已知f(x)满足x xf x f 3)1()(2=+,求)(x f2函数值域的特殊求法例1. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。
例2. 求函数22x 1x x 1y +++=的值域。
例3求函数y=(x+1)/(x+2)的值域例4. 求函数1e 1e y x x +-=的值域。
例1下列各组中的两个函数是否为相同的函数? ①3)5)(3(1+-+=x x x y 52-=x y ②111-+=x x y )1)(1(2-+=x x y③21)52()(-=x x f 52)(2-=x x f2若函数)(x f 的图象经过)1,0(-,那么)4(+x f 的反函数图象经过点(A))1,4(-(B))4,1(-- (C))1,4(-- (D))4,1(-例3已知函数)(x f 对任意的a b R ∈、满足:()()()6,f a b f a f b +=+-0,()6a f a ><当时;(2)12f -=。
(1)求:(2)f 的值;(2)求证:()f x 是R 上的减函数;(3)若(2)(2)3f k f k -<-,求实数k 的取值范围。
例4已知{(,)|,,A x y x n y an b n ===+∈Z },2{(,)|,315,B x y x m y m m ===+∈Z },22{(,)|C x y x y =+≤14},问是否存在实数,a b ,使得(1)A B ≠∅,(2)(,)a b C ∈同时成立.证明题1.已知二次函数2()f x ax bx c =++对于x 1、x 2∈R ,且x 1<x 2时12()()f x f x ≠,求证:方程()f x =121[()()]2f x f x +有不等实根,且必有一根属于区间(x 1,x 2).答案1解:设f(x)=kx+b 则 k(kx+b)+b=4x -1 则⎪⎩⎪⎨⎧-==⇒⎩⎨⎧-=+=3121)1(42b k b k k 或 ⎩⎨⎧=-=12b k ∴312)(-=x x f 或12)(+-=x x f 2换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。
高一数学第一学期函数压轴大题练习含答案

高一数学第一学期函数压轴大题练习含答案1.本小题满分12分已知x 满足不等式211222(log )7log 30x x ++≤,求22()log log 42x xf x =⋅的最大值与最小值及相应x 值. 2.14分已知定义域为R 的函数2()12x xaf x -+=+是奇函数1求a 值;2判断并证明该函数在定义域R 上的单调性;3若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求实数k 的取值范围; 3. 本小题满分10分已知定义在区间(1,1)-上的函数2()1ax b f x x +=+为奇函数,且12()25f =. 1 求实数a ,b 的值; 2 用定义证明:函数()f x 在区间(1,1)-上是增函数;3 解关于t 的不等式(1)()0f t f t -+<.4. 14分定义在R +上的函数fx 对任意实数a,b +∈R ,均有fab=fa+fb 成立,且当x>1时,fx<0, 1求f1 2求证:fx 为减函数; 3当f4= -2时,解不等式1)5()3(-≥+-f x f5.本小题满分12分已知定义在1,4上的函数fx =x 2-2bx+4bb ≥1,I 求fx 的最小值gb ; II 求gb 的最大值M;6. 12分设函数()log (3)(0,1)a f x x a a a =->≠且,当点(,)P x y 是函数()y f x =图象上的点时,点(2,)Q x a y --是函数()y g x =图象上的点. 1写出函数()y g x =的解析式;2若当[2,3]x a a ∈++时,恒有|()()|1f x g x -,试确定a 的取值范围;3把()y g x =的图象向左平移a 个单位得到()y h x =的图象,函数1()22()()()2h x h x h x F x a a a ---=-+,0,1a a >≠且在1[,4]4的最大值为54,求a 的值.7. 12分设函数124()lg()3xxa f x a R ++=∈.1当2a =-时,求()f x 的定义域;2如果(,1)x ∈-∞-时,()f x 有意义,试确定a 的取值范围; 3如果01a <<,求证:当0x ≠时,有2()(2)f x f x <. 8. 本题满分14分已知幂函数(2)(1)()()k k f x x k z -+=∈满足(2)(3)f f <;(1)求整数k 的值,并写出相应的函数()f x 的解析式;(2)对于1中的函数()f x ,试判断是否存在正数m,使函数()1()(21)g x mf x m x =-+-,在区间[]0,1上的最大值为5;若存在,求出m 的值;若不存在,请说明理由;9. 本题满分14分已知函数1()(0x f x a a -=>且1)a ≠Ⅰ若函数()y f x =的图象经过()4,3P 点,求a 的值;Ⅱ当a 变化时,比较1(lg)( 2.1)100f f -与大小,并写出比较过程; Ⅲ若(lg )100f a =,求a 的值.10. 本题16分已知函数9()log (91)xf x kx =++k ∈R 是偶函数.1求k 的值;2若函数()y f x =的图象与直线12y x b =+没有交点,求b 的取值范围; 3设()94()log 33xh x a a =⋅-,若函数()f x 与()h x 的图象有且只有一个公共点,求实数a 的取值范围.11. 本小题满分12分二次函数()y f x =的图象经过三点(3,7),(5,7),(2,8)A B C --.1求函数()y f x =的解析式2求函数()y f x =在区间[],1t t +上的最大值和最小值12.本小题满分14分 已知函数xx a x f 22)(+=,且)(x f 为奇函数.Ⅰ求a 的值; Ⅱ定义:若函数0),0(,)(>>+=x a xax x g ,则函数)(x g 在],0(a 上是减函数,在),[+∞a 是增函数.设2)1()()(+--=x f x f x F ,求函数)(x F 在]1,1[-∈x 上的值域.13.本小题满分16分设0a >,0b >,已知函数()1ax bf x x +=+. Ⅰ当a b ≠时,讨论函数()f x 的单调性直接写结论; Ⅱ当0x >时,i 证明2)]([)()1(ab f a b f f =⋅;14.本小题满分16分 设函数])1(lg[)(22x a ax x f +-=的定义域区间为I,其中0a >.Ⅰ求I 的长度)(a L 注:区间(,)αβ的长度定义为βα-;Ⅱ判断函数)(a L 的单调性,并用单调性定义证明; Ⅲ给定常数(0,1)k ∈,当[]k k a +-∈1,1时,求区间I 长度)(a L 的最小值.1.解:由211222(log )7log 30x x ++≤,∴1213log 2x -≤≤-, ∴21log 32x ≤≤, 而2222()log log (log 2)(log 1)42x xf x x x =⋅=--=222(log )3log 2x x -+=2231(log )24x --,当23log 2x =时min 1()4f x =- 此时x =322=,当2log 3x =时max 91()244f x =-=,此时8x =. 2. 解:1由题设,需12(0)0,1a f a -+==∴=,1212()xxf x -+∴=经验证,()f x 为奇函数,1a ∴=---------2分2减函数--------------3分证明:任取121221,,,0R x x x x x x x∈∆=-,由1122121122(22)1212211212(12)(12)()()x x x x x x x x y f f x x ---++++∆=-=-=∴该函数在定义域R 上是减函数--------------7分3. 解:1由2()1ax bf x x+=+为奇函数,且 2122()1251()2a bf +==+ 则21122()()12251()2a bf f -+-==-=-+-,解得:1,0a b ==;∴2()1x f x x =+2证明:在区间(1,1)-上任取12,x x ,令1211x x -<<<,1211x x -<<< ∴ 120x x -< ,1210x x -> , 21(1)0x +>, 22(1)0x +>∴12()()0f x f x -< 即12()()f x f x <故函数()f x 在区间(1,1)-上是增函数.3(1)()0f t f t -+< ∴ ()(1)(1)f t f t f t <--=-函数()f x 在区间(1,1)-上是增函数 ∴ 111111t tt t <-⎧⎪-<<⎨⎪-<-<⎩∴102t <<故关于t 的不等式的解集为1(0,)2. 41 由条件得f1=f1+f1,所以f1=02 法一:设k 为一个大于1的常数,x ∈R+,则 fkx=fx+fk因为k>1,所以fk<0,且kx>x所以kx>x,fkx<fx 对x ∈R+恒成立,所以 fx 为R+上的单调减函数 法二:设()2121,0,x x x x <+∞∈且令1,12>=k kx x 则 有题知,fk<0)()(0)()(2121x f x f x f x f >>-∴即所以fx 在0,+∞上为减函数 法三:设()2121,0,x x x x <+∞∈且)()(0)()(2121x f x f x f x f >>-∴即 所以fx 在0,+∞上为减函数 5解:fx=x-b 2-b 2+4b的对称轴为直线x =b b ≥1, I ①当1≤b ≤4时,gb =fb =-b 2+4b ; ②当b >4时,gb =f4=16-314b ,综上所述,fx 的最小值gb =2 (14)4 3116 (4)4bb b b b ⎧-+⎪⎪⎨⎪-⎪⎩≤≤。
高一函数题目及答案解析

高一函数题目及答案解析学习数学,课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,今天小编在这给大家整理了高一函数题型及答案,接下来随着小编一起来看看吧!高一函数题目及答案解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设U=R,A={x|x>0},B={x|x>1},则A∩?UB=()A{x|0≤x<1}B.{x|0C.{x|x<0}D.{x|x>1}【解析】?UB={x|x≤1},∴A∩?UB={x|0【答案】B2.若函数y=f(x)是函数y=ax(a>0,且a≠1)的反函数,且f(2)=1,则f(x)=()A.log2xB.12xC.log12xD.2x-2【解析】f(x)=logax,∵f(2)=1,∴loga2=1,∴a=2.∴f(x)=log2x,故选A.【答案】A3.下列函数中,与函数y=1x有相同定义域的是()A.f(x)=lnxB.f(x)=1xC.f(x)=|x|D.f(x)=ex【解析】∵y=1x的定义域为(0,+∞).故选A.【答案】A4.已知函数f(x)满足:当x≥4时,f(x)=12x;当x<4时,f(x)=f(x+1).则f(3)=()A.18B.8C.116D.16【解析】f(3)=f(4)=(12)4=116.【答案】C5.函数y=-x2+8x-16在区间[3,5]上()A.没有零点B.有一个零点C.有两个零点D.有无数个零点【解析】∵y=-x2+8x-16=-(x-4)2,∴函数在[3,5]上只有一个零点4.【答案】B6.函数y=log12(x2+6x+13)的值域是()A.RB.[8,+∞)C.(-∞,-2]D.[-3,+∞)【解析】设u=x2+6x+13=(x+3)2+4≥4y=log12u在[4,+∞)上是减函数,∴y≤log124=-2,∴函数值域为(-∞,-2],故选C.【答案】C7.定义在R上的偶函数f(x)的部分图象如图所示,则在(-2,0)上,下列函数中与f(x)的单调性不同的是()A.y=x2+1B.y=|x|+1C.y=2x+1,x≥0x3+1,x<0D.y=ex,x≥0e-x,x<0【解析】∵f(x)为偶函数,由图象知f(x)在(-2,0)上为减函数,而y=x3+1在(-∞,0)上为增函数.故选C.【答案】C8.设函数y=x3与y=12x-2的图象的交点为(x0,y0),则x0所在的区间是()A.(0,1)B.(1,2)C(2,3)D.(3,4)【解析】由函数图象知,故选B.【答案】B9.函数f(x)=x2+(3a+1)x+2a在(-∞,4)上为减函数,则实数a的取值范围是()A.a≤-3B.a≤3C.a≤5D.a=-3【解析】函数f(x)的对称轴为x=-3a+12,要使函数在(-∞,4)上为减函数,只须使(-∞,4)?(-∞,-3a+12)即-3a+12≥4,∴a≤-3,故选A.【答案】A10.某新品牌电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售790台,则下列函数模型中能较好反映销量y与投放市场的月数x之间的关系的是()A.y=100xB.y=50x2-50x+100C.y=50×2xD.y=100log2x+100【解析】对C,当x=1时,y=100;当x=2时,y=200;当x=3时,y=400;当x=4时,y=800,与第4个月销售790台比较接近.故选C.【答案】C11.设log32=a,则log38-2log36可表示为()A.a-2B.3a-(1+a)2C.5a-2D.1+3a-a2【解析】log38-2log36=log323-2log3(2×3)=3log32-2(log32+log33)=3a-2(a+1)=a-2.故选A.【答案】A12.已知f(x)是偶函数,它在[0,+∞)上是减函数.若f(lgx)>f(1),则x的取值范围是()A.110,1B.0,110∪(1,+∞)C.110,10D.(0,1)∪(10,+∞)【解析】由已知偶函数f(x)在[0,+∞)上递减,则f(x)在(-∞,0)上递增,∴f(lgx)>f(1)?0≤lgx<1,或lgx<0-lgx<11≤x<10,或0或110∴x的取值范围是110,10.故选C.【答案】C二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)13.已知全集U={2,3,a2-a-1},A={2,3},若?UA={1},则实数a 的值是________.【答案】-1或214.已知集合A={x|log2x≤2},B=(-∞,a),若A?B,则实数a的取值范围是(c,+∞),其中c=________.【解析】A={x|0【答案】415.函数f(x)=23x2-2x的单调递减区间是________.【解析】该函数是复合函数,可利用判断复合函数单调性的方法来求解,因为函数y=23u是关于u的减函数,所以内函数u=x2-2x的递增区间就是函数f(x)的递减区间.令u=x2-2x,其递增区间为[1,+∞),根据函数y=23u是定义域上的减函数知,函数f(x)的减区间就是[1,+∞).【答案】[1,+∞)高一数学学习什么?高一上学期有的地方是2113学习必修一和必修四,5261必修4102一的主要内容是《集合》、《函数》1653,必修四的主要内容是《三角函数》、《向量》。
高一数学函数试题答案及解析

高一数学函数试题答案及解析1.已知函数在处取得最大值,则可能是( )A.B.C.D.【答案】【解析】根据函数解析式的特点,设,则根据正弦和角公式,可知函数,则其最值在处取得,所以.【考点】正余弦特殊值,正弦和角公式,正弦函数最值.2.下列函数在区间是增函数的是A.B.C.D.【答案】D【解析】(A)函数是上的减函数;(B)函数是R上的减函数;(C)的对称轴为,所以该函数是上的增函数;(D)是上的增函数,所以在区间是增函数,故D为正确答案.【考点】函数的单调性.3.如图,点从点出发,分别按逆时针方向沿周长均为的正三角形、正方形运动一周,两点连线的距离与点走过的路程的函数关系分别记为,定义函数对于函数,下列结论正确的个数是()①;②函数的图像关于直线对称;③函数值域为;④函数在区间上单调递增.A.1B.2C.3D.4【答案】D【解析】由题意可得由函数与的图像可得函数由图像可知,①②③④都正确.【考点】1.函数的图像;2.分段函数;3.函数的单调性;4.函数的值域.4.已知函数,的部分图象如图所示,则( )A.B.C.D.【答案】B【解析】根据题意,由于函数,的部分图象可知函数的周期为,故可知将代入可知,函数值为零,则可知得到,故可知由于过点(0,1)可知A=1,故可知解析式为,故,故答案为B.【考点】函数的性质点评:主要考查了三角函数图象与性质的运用,属于基础题。
5.方程有唯一解,则实数的取值范围是()A.B.C.或D.或或【答案】D【解析】方程有唯一解,即半圆与直线只有一个公共点。
结合几何图形分析知,实数的取值范围是或或,选D。
【考点】直线与圆的位置关系点评:简单题,利用转化与化归思想,将方程解的个数问题,转化成直线与半圆的公共点个数问题。
6.已知函数,则满足不等式的实数的取值范围是__________________.【答案】【解析】因为,函数是单调增函数,且为奇函数,所以,即,所以,,解得,实数的取值范围是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
完整版高一函数大题训练附答案解析一、解答题1.已知a R ∈,当0x >时,()21log f x a x ⎛⎫=+ ⎪⎝⎭.(Ⅰ)若函数()f x 过点()1,1,求此时函数()f x 的解析式; (Ⅱ)若函数()()22log g x f x x =+只有一个零点,求实数a 的值;(Ⅲ)设0a >,若对任意实数1,13t ⎡⎤∈⎢⎥⎣⎦,函数()f x 在[],1t t +上的最大值与最小值的差不大于1,求实数a 的取值范围. 2.已知偶函数满足:当时,,当时,.(1)求当时,的表达式; (2)试讨论:当实数满足什么条件时,函数有4个零点,且这4个零点从小到大依次构成等差数列.3.已知有穷数列{}n a 、{}n b (1,2,,n k =⋅⋅⋅),函数1122()||||||k k f x a x b a x b a x b =-+-+⋅⋅⋅+-.(1)如果{}n a 是常数列,1n a =,n b n =,3k =,在直角坐标系中在画出函数()f x 的图象,据此写出该函数的单调区间和最小值,无需证明;(2)当n n a n b ==,7k m =(m ∈*N )时,判断函数()f x 在区间[5,51]m m +上的单调性,并说明理由;(3)当n a n =,1n b n=,100=k 时,求该函数的最小值. 4.已知函数()ln ()f x x ax a R =-∈有两个不同的零点. (1)求a 的取值范围;(2)记两个零点分别为12,x x ,且12x x <,已知0λ>,若不等式121ln ln x x λλ+<+恒成立,求λ的取值范围.5.已知函数()()21f x x x a x R =--+∈. (1)当1a =时,求函数()y f x =的零点.(2)当30,2a ⎛⎫∈ ⎪⎝⎭,求函数()y f x =在[]1,2x ∈上的最大值;(3)对于给定的正数a ,有一个最大的正数()T a ,使()0,x T a ∈⎡⎤⎣⎦时,都有()1f x ≤,试求出这个正数()T a 的表达式.6.已知2()2(1)3()=-++∈f ax x a x R a .(1)若函数()f x 在3[,3]2单调递减,求实数a 的取值范围;(2)令()()1=-f x h x x ,若存在123,[,3]2∈x x ,使得121()()2+-≥a h x h x 成立,求实数a 的取值范围.7.已知函数()2x f x =,2()log g x x =. (1)若0x 是方程3()2f x x =-的根,证明02x 是方程3()2g x x =-的根; (2)设方程5(1)2f x x -=-,5(1)2g x x -=-的根分别是1x ,2x ,求12x x +的值. 8.对于定义域为D 的函数()y f x =,如果存在区间[],m n D ⊆,其中m n <,同时满足: ①()f x 在[],m n 内是单调函数:②当定义域为[],m n 时,()f x 的值域为[],m n ,则称函数()f x 是区间[],m n 上的“保值函数”,区间[],m n 称为“保值区间”.(1)求证:函数()22g x x x =-不是定义域[]0,1上的“保值函数”;(2)若函数()2112f x a a x=+-(,0a R a ∈≠)是区间[],m n 上的“保值函数”,求a 的取值范围;(3)对(2)中函数()f x ,若不等式()22a f x x ≤对1≥x 恒成立,求实数a 的取值范围.9.已知函数()y f x =,x D ∈,如果对于定义域D 内的任意实数x ,对于给定的非零常数m ,总存在非零常数T ,恒有()()f x T mf x +>成立,则称函数()f x 是D 上的m 级类增周期函数,周期为T ,若恒有()()f x T mf x +=成立,则称函数()f x 是D 上的m 级类周期函数,周期为T .(1)已知函数2()f x x ax =-+是[3,)+∞上的周期为1的2级类增周期函数,求实数a 的取值范围;(2)已知1T =,()y f x =是[0,)+∞上m 级类周期函数,且()y f x =是[0,)+∞上的单调递增函数,当[0,1)x ∈时,()2x f x =,求实数m 的取值范围;(3)是否存在实数k ,使函数()cos f x kx =是R 上的周期为T 的T 级类周期函数,若存在,求出实数k 和T 的值,若不存在,说明理由.10.已知函数()242 1.x xf x a =⋅--(1)当1a =时,求函数()f x 在[]3,0x ∈-的值域; (2)若()f x 存在零点,求a 的取值范围. 11.已知函数11()(,0)f x b a b R a x a x a=++∈≠-+且. (1)判断()y f x =的图象是否是中心对称图形?若是,求出对称中心;若不是,请说明理由;(2)设()(1)g x b x =+,试讨论()()y f x g x =-的零点个数情况.12.已知定义在R 上的偶函数()f x 和奇函数()g x ,且()()xf xg x e +=.(1)求函数()f x ,()g x 的解析式;(2)设函数()12112g x F x f x ⎛⎫- ⎪⎝⎭=+⎛⎫- ⎪⎝⎭,记()1231n H n F F F F n n n n -⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()*,2n N n ∈≥.探究是否存在正整数()2n n ≥,使得对任意的(]0,1x ∈,不等式()()()2g x H n g x >⋅恒成立?若存在,求出所有满足条件的正整数n 的值;若不存在,请说明理由.13.对于函数f (x ),若f (x 0)=x 0,则称x 0为f (x )的“不动点”;若f [f (x 0)]=x 0,则称x 0为f (x )的“稳定点”满足函数f (x )的“不动点”和“稳定点”的集合分别记为A 和B ,即A ={x |f (x )=x },B ={x |f [f (x )]=x }. (Ⅰ)设f (x )=x 2-2,求集合A 和B ; (Ⅱ)若f (x )=x 2-a ,且满足∅A =B ,求实数a 的取值范围.14.已知集合M 是满足下列性质的函数()f x 的全体:在定义域内存在0x 使得()()()0011f x f x f +=+成立.(1)函数()21f x x=+是否属于集合M ?请说明理由; (2)函数()2ln1af x x =∈+M ,求a 的取值范围; (3)设函数()23x f x x =+,证明:函数()f x ∈M .15.记函数()f x 的定义域为D . 如果存在实数a 、b 使得()()f a x f a x b -++=对任意满 足a x D -∈且a x D +∈的x 恒成立,则称()f x 为ψ函数. (1)设函数1()1f x x=-,试判断()f x 是否为ψ函数,并说明理由; (2)设函数1()2xg x t=+,其中常数0t ≠,证明:()g x 是ψ函数;(3)若()h x 是定义在R 上的ψ函数,且函数()h x 的图象关于直线x m =(m 为常数)对称,试判断()h x 是否为周期函数?并证明你的结论.【参考答案】一、解答题1.(Ⅰ)()()21log 10f x x x ⎛⎫=+> ⎪⎝⎭;(Ⅱ)0a =或14-;(Ⅲ)3[,)2+∞【解析】 【详解】试题分析:(Ⅰ)将点()1,1 代入可得函数的解析式;(Ⅱ)函数有一个零点,即()22log 0f x x += ,根据对数运算后可得210ax x +-= ,将问题转化为方程有一个实根,分0a = 和0,0a ≠∆= 两种情况,得到a 值,最后再代入验证函数的定义域;(Ⅲ)首先根据单调性的定义证明函数的单调性,再根据函数的最大值减最小值()()11f t f t -+≤ 整理为()2110at a t ++-≥ ,对任意1,13t ⎡⎤∈⎢⎥⎣⎦恒成立,0a > 时,区间为函数的单调递增区间,所以只需最小值大于等于0,求解a 的取值范围. 试题解析:(Ⅰ)函数()21log f x a x ⎛⎫=+ ⎪⎝⎭过点()1,1,()()21log 11f a ∴=+=, 1a ∴=,∴此时函数()21log 1(0)f x x x ⎛⎫=+> ⎪⎝⎭(Ⅱ)由()22log 0f x x +=得221log 2log 0a x x ⎛⎫+== ⎪⎝⎭,211a x x ⎛⎫∴+⋅= ⎪⎝⎭化为210ax x +-=, 当0a =时,可得1x =,经过验证满足函数()g x 只有一个零点;当0a ≠时,令140a ∆=+=解得14a =-,可得2x =,经过验证满足函数()g x 只有一个零点, 综上可得:0a =或14-.(Ⅲ)任取()12,0,x x ∈+∞且12x x <,则210x x x ∆=->,()()11221222212121211221211221211log log log ,0,0,0,01,x ax x y f x f x a a x x x ax x x x a x ax x x ax x x ax x x ax x ⎛⎫⎛⎫+∆=-=+-+= ⎪ ⎪+⎝⎭⎝⎭<∴<+<++∴<<+1122212log 0x ax x x ax x +∴<+,即0y ∆<,()f x ∴在()0,+∞上单调递减.∴函数()f x 在区间[],1t t +上的最大值与最小值分别为()(),1f t f t +, ()()22111log log 11f t f t a a t t ⎛⎫⎛⎫∴-+=+-+≤ ⎪ ⎪+⎝⎭⎝⎭,整理得()2110at a t ++-≥对任意1,13t ⎡⎤∈⎢⎥⎣⎦恒成立,令()()211h t at a t =++-,0,a >∴函数()h t 在区间1,13⎡⎤⎢⎥⎣⎦上单调递增,103h ⎛⎫∴≥ ⎪⎝⎭,即11093a a ++-≥,解得32a ≥, 故实数a 的取值范围为3,2⎡⎫+∞⎪⎢⎣⎭.【点睛】本题以对数函数为载体,考查了函数的零点,单调性,最值,恒成立问题,以及转化与化归的能力,综合性比较高,最后一问转化为了二次函数的问题,所以需熟练掌握二次函数的恒成立问题.2.(1)()()(2)f x x a x =+--;(2)①23a <+时,34m =;②4a =时,1m =;③10473a +>时,23201216a a m -+=. 【解析】 【详解】(1)因为f(x)为偶函数,只需用-x 代替中的x 即可得到当时,的表达式; (2)零点,与交点有4个且均匀分布.所以,然后再分或24a <<或或四种情况讨论求出m 的值.解:(1)设则,又偶函数所以,………………………3分(2)零点,与交点有4个且均匀分布(Ⅰ)时, 得,所以时, …………………………5分 (Ⅱ)24a <<且时 , ,所以 时,……………………………7分(Ⅲ)时m=1时 符合题意………………… ……8分(IV )时,,,m此时所以 (舍) 且时,时存在 ………10分综上: ①时,②时,③时,符合题意 ………12分3.(1)图象见解析;递减区间(],2-∞,递增区间[)2,+∞,最小值()22f =;(2)单调递增;理由见解析;(3)292071. 【解析】(1)根据条件采用零点分段的方法作出函数()f x 的图象,根据图象确定出()f x 的单调区间和最小值;(2)写出()f x 的解析式,根据[]5,51x m m ∈+分析函数()f x 的结构,从而判断出()f x 的单调性;(3)先根据条件证明出()f x 的单调性然后即可求解出()f x 的最小值. 【详解】 (1)如图所示,由图象可知:单调递减区间(],2-∞,单调递增区间[)2,+∞,最小值()22f =; (2)因为()112233...77f x x x x m x m =⋅-+-+-++-且[]5,51x m m ∈+, 所以()()()()()()()()()()12233...555151...77f x x x x m x m m m x m m x =-+-+-++-+++-++-, 所以()()()()()()()()()222222155517212...55152 (72)2m m m m m f x x m x m m m +⋅++⋅=-+++-++++++ , 所以()()()()()()()222222222552425152...712 (52)m m m m f x x m m m m +--=++++++-+++,所以()()()()()()()2222222+35152...712 (52)m m f x x m m m m =++++++-+++且2302m m+>, 所以()f x 在[]5,51m m +上单调递增;(3)因为()12131...1001f x x x x x =-+-+-++-,显然当[)1,x ∈+∞时,()f x 单调递增,当(],0x ∈-∞时,()f x 单调递减, 设存在一个值()1*t N t ∈,使得10,x t ⎛⎫∈ ⎪⎝⎭时()f x 递减,1,1x t ⎛⎫∈ ⎪⎝⎭时()f x 递增,此时最小值即为1f t ⎛⎫⎪⎝⎭,下面证明1t存在:因为若要10,x t ⎛⎫∈ ⎪⎝⎭时()f x 递减,1,1x t ⎛⎫∈ ⎪⎝⎭时()f x 递增,则有12112100......t t t t t t t t t-+++++>+++,解得:71t ≥,且()1221100 (1111111)t t t t t t t t t t -++++<+++≠------,解得:171t -<, 所以7172t ≤<,所以71t =,所以存在1171t =满足条件,故假设成立,综上可知:()f x 在1,71⎛⎫-∞ ⎪⎝⎭上单调递减,在1+71⎛⎫∞ ⎪⎝⎭,上单调递增, ()()()()()()()min 1112170721731100171f x f x x x x x x ⎛⎫==-+-+⋅⋅⋅+-+-+-+⋅⋅⋅+- ⎪⎝⎭292041971x =+=【点睛】本题考查数列与函数的综合应用,其中着重考查了函数单调性方面的内容,对学生的理解与分析能力要求较高,难度较难. 4.(1)10a e<<(2)1λ≥ 【解析】 【详解】试题分析:(Ⅰ)方程ln 0x ax -=在()0,+∞有两个不同跟等价于函数()ln xg x x=与函数y a =的图像在()0,+∞上有两个不同交点,对()g x 进行求导,通过单调性画出()g x 的草图,由()g x 与y a =有两个交点进而得出a 的取值范围; (Ⅱ)分离参数得:121a x x λλ+>+,从而可得()1122lnx a x x x =-恒成立;再令()12,0,1x t t x =∈,从而可得不等式()()11ln t t t λλ+-<+在()0,1t ∈上恒成立,再令()()()11ln t h t t t λλ+-=-+,从而利用导数化恒成立问题为最值问题即可.试题解析:(I )依题意,函数()f x 的定义域为()0,+∞, 所以方程ln 0x ax -=在()0,+∞有两个不同跟等价于函数()ln xg x x=与函数y a =的图像在()0,+∞上有两个不同交点.又()21ln xg x x-'=,即当0x e <<时,()0g x '>;当x e >时,()0g x '<, 所以()g x 在()0,e 上单调递增,在(),e +∞上单调递减. 从而()()max 1g x g e e==. 又()g x 有且只有一个零点是1,且在0x →时,()g x →∞,在x →+∞时,()0g x →,所以()g x 的草图如下:可见,要想函数()ln x g x x =与函数y a =在图像()0,+∞上有两个不同交点,只需10a e<<. (Ⅱ)由(I )可知12,x x 分别为方程ln 0x ax -=的两个根,即11ln x ax =,22ln x ax =, 所以原式等价于()12121ax ax a x x λλλ+<+=+. 因为0λ>,120x x <<,所以原式等价于121a x x λλ+>+. 又由11ln x ax =,22ln x ax =作差得,()1122ln x a x x x =-,即1212ln x x a x x =-. 所以原式等价于121212ln1x x x x x x λλ+>-+. 因为120x x <<,原式恒成立,即()()1212121ln x x x x x x λλ+-<+恒成立. 令()12,0,1x t t x =∈,则不等式()()11ln t t t λλ+-<+在()0,1t ∈上恒成立. 令()()()11ln t h t t t λλ+-=-+,则()()()()()()222111t t h t t t t t λλλλ--+=-=++', 当21λ≥时,可见()0,1t ∈时,()0h t '>,所以()h t 在()0,1t ∈上单调递增,又()()10,0h h t =<在()0,1t ∈恒成立,符合题意;当21λ<时,可见当()20,t λ∈时,()0h t '>;当()2,1t λ∈时,()0h t '<, 所以()h t 在()20,t λ∈时单调递增,在()2,1t λ∈时单调递减.又()10h =,所以()h t 在()0,1t ∈上不能恒小于0,不符合题意,舍去.综上所述,若不等式121ln ln x x λλ+<+恒成立,只须21λ≥,又0λ>,所以1λ≥. 【点睛】本题考查了利用导数研究函数的极值,单调性,不等式恒成立问题,考查分类讨论思想,转化思想,考查学生灵活运用所学知识分析解决问题的能力,本题综合性较强,能力要求较高,属于难题,其中(2)问中对两根12,x x 的处理方法非常经典,将两个参数合并成一个参数t ,然后再构造函数,利用导函数进行分类讨论求解.5.(1)零点为11;(2)max12,0,21()1,1,2354,1,2a a f x a a a ⎧<≤⎪⎪⎪=<<⎨⎪⎪-≤<⎪⎩;(3)()a a T a a a ⎧≥⎪=⎨+<<⎪⎩【解析】 【分析】(1)将1a =代入,令()0f x =,去掉绝对值直接求解即可得出零点;(2)依题意,最大值在()()()1,2,2f f f a 中取得,然后分类讨论即可得出答案; (3)问题可转化为在给定区间内()1f x ≥-恒成立,分211a -+≤-及211a -+>-讨论得出答案. 【详解】(1)当1a =时,()2221,22121,2x x x f x x x x x x ⎧-++≥=--+=⎨-+<⎩,令2210-++=x x,解得:1x =1舍); 令2210x x -+=,解得:1x =; ∴函数()y f x =的零点为11;(2)由题意得:()2221,221,2x ax x af x x ax x a ⎧-++≥=⎨-+<⎩,其中()()021f f a ==,30,2a ⎛⎫∈ ⎪⎝⎭,∴最大值在()()()1,2,2f f f a 中取. 当021a <≤,即102a <≤时,()f x 在[]1,2上单调递减,()()max 12f x f a ∴==; 当122a a <<<,即112a <<时,()f x 在[]1,2a 上单调递增,[]2,2a 上单调递减, ()()max 21f x f a ∴==;当122a a ≤<<,即12a ≤<时,()f x 在[]1,a 上单调递减,[],2a 上单调递增,()()(){}max max 1,2f x f f ∴=;()()()()122254230f f a a a -=---=-<,()()max 254f x f a ∴==-;综上所述:()max12,0211,12354,12a a f x a a a ⎧<≤⎪⎪⎪=<<⎨⎪⎪-≤<⎪⎩;(3)()0,x ∈+∞时,0x -<,20x a -≥,()max 1f x ∴=,∴问题转化为在给定区间内()1f x ≥-恒成立.()21f a a =-+,分两种情况讨论:当211a -+≤-时,()T a 是方程2211x ax -+=-的较小根,即a ≥()T a a =当211a -+>-时,()T a 是方程2211x ax -++=-的较大根,即0a <<()T a a =;综上所述:()a a T a a a ⎧⎪=⎨<<⎪⎩ 【点睛】本题考查函数的最值及其几何意义,函数的零点与方程根的关系,属于难题. 6.(1)12a ≤(2)4([,).5∈-∞⋃+∞a 【解析】 【分析】(1)对a 讨论,0a =,0a >,0a <,结合二次函数的图象和单调性的性质,得到不等式组,解不等式即可得到a 的范围;(2)由题意可得在3[,3]2∈x 上,max min 1()()2+-≥a h x h x 成立, 1()(1)21ah x a x x -=-+--,令11[,2]2=-∈t x ,则11()2,[,2]2a g t a t t t -=⋅+-∈.对a 讨论,(i )当0a ≤时,(ii )当01a <<时,求出单调性和最值,即可得到a 的范围.【详解】(1)①当0a =时,()23f x x =-+,显然满足,②010123a a a a >⎧⎪⇒<<+⎨≥⎪⎩,③00132a a a a <⎧⎪⇒<+⎨≤⎪⎩, 综上实数a 的取值范围:12a ≤. (2)存在123,[,3]2∈x x ,使得121()()2+-≥a h x h x 成立即:在3[,3]2∈x 上,max min 1()()2+-≥a h x h x ,因为()1()(1)211-==-+---f x a h x a x x x ,令11[,2]2=-∈t x , 则11()2,[,2]2a g t a t t t -=⋅+-∈ (i )当0a ≤时,()g t 在1[,2]2t ∈上单调递减,所以max min 1()()2+-≥a g t g t ,等价于112()(2)227+-≥⇒≤a g g a ,所以0a ≤; (ii )当01a <<时,1()()2-=+-aa g t a t t ,()g t 在上单调递减,在)+∞上单调递增.①12≤时,即451a ≤<,()g t 在1[,2]2t ∈上单调递增.由max min 1()()2+-≥a g t g t 得到114(2)()225+-≥⇒≥a g g a ,所以451a ≤<.②2≥时,即105a <≤,()g t 在1[,2]2t ∈上单调递减,由max min 1()()2+-≥a g t g t 得到112()(2)227+-≥⇒≤a g g a ,所以105a <≤.③当122<<时,即1455a <<,min ()=g t g ,最大值则在(2)g 与1()2g 中取较大者,作差比较13(2)()322-=-g g a ,得到分类讨论标准:a .当1152<<a 时,13(2)()3022-=-<g g a ,此时max 1()()2=g t g ,由max min 1()()2+-≥a g t g t ,得到211()32409022a g g a a a +-≥⇒-+≥⇒≥或a ≤,所以15<≤ab .当1425≤<a 时,13(2)()3022-=->g g a ,此时max ()(2)=g t g ,由max min 1()()2+-≥a g t g t ,得到14(2)25+-≥⇒≥≥a g g a a ,此时无解,在此类讨论中,54(0,[,1).85-∈⋃a c .当1a ≥,()g t 在1[,2]2t ∈上单调递增,由max min 1()()2+-≥a g t g t ,得到114(2)()225+-≥⇒≥a g g a ,所以1a ≥,综合以上三大类情况,4([,).5∈-∞⋃+∞a 【点睛】本题考查函数的单调性的应用,考查存在性问题的解法,注意运用分类讨论的思想方法,以及转化思想,考查运算能力,属于难题.7.(1)证明见解析(2)72【解析】(1)因为0x 是方程3()2f x x =-的根,即00322x x =-,将02x 代入()g x 根据对数的运算性质可得.(2)由题意知,方程1522x x -=-,25log (1)2x x -=-的根分别是1x ,2x ,即方程132(1)2x x -=--,23log (1)(1)2x x -=--的根分别为1x ,2x ,令1t x =-,设方程322t t =-,23log 2t t =-的根分别为111t x =-,221t x =-,结合(1)的结论及函数的单调性可求. 【详解】解:(1)证明:因为0x 是方程3()2f x x =-的根, 所以00322xx =-,即00322x x =- ()0002032log 222x x x g x ===- 所以,02x 是方程3()2g x x =-的根. (2)由题意知,方程1522x x -=-,25log (1)2x x -=-的根分别是1x ,2x , 即方程132(1)2x x -=--,23log (1)(1)2x x -=--的根分别为1x ,2x , 令1t x =-设方程322tt =-,23log 2t t =-的根分别为111t x =-,221t x =-, 由(1)知1t 是方程322tt =-的根,则12t 是方程23log 2t t =-的根. 令23()log 2h t t t =+-,则12t 是()h t 的零点, 又因为()h t 是(0,)+∞上的增函数,所以,12t 是()h t 的唯一零点,即12t 是方程23log 2t t =-的唯一根. 所以122tt =,所以1121322tt t t +=+=,即()()123112x x -+-=,所以1237222x x +=+=【点睛】本题考查函数方程思想,函数的零点问题,属于难题. 8.(1)证明见详解;(2)32a <-或12a >;(3)112a <≤【解析】 【分析】(1)根据“保值函数”的定义分析即可(2)按“保值函数”定义知()f m m =,()f n n =,转化为,m n 是方程2112x a a x+-=的两个不相等的实根,利用判别式求解即可(3)去掉绝对值,转化为不等式组,分离参数,利用函数最值解决恒成立问题. 【详解】(1)函数()22g x x x =-在[]0,1x ∈时的值域为[]1,0-,不满足“保值函数”的定义, 因此函数()22g x x x =-不是定义域[]0,1上的“保值函数”.(2)因为函数()2112f x a a x=+-在[],m n 内是单调增函数, 因此()f m m =,()f n n =, 因此,m n 是方程2112x a a x+-=的两个不相等的实根, 等价于方程()222210a x a a x -++=有两个不相等的实根.由()222240a a a ∆=+->解得32a <-或12a >.(3)()2212a f x a a x=+-,()22a f x x ≤()22a f x x⇔≤⇔21222a a x x+--≤≤, 即为22122,122,a a x x a a x x ⎧+≤+⎪⎪⎨⎪+≥-⎪⎩对1≥x 恒成立.令()12h x x x=+,易证()h x 在[)1,+∞单调递增, 同理()12g x x x=-在[)1,+∞单调递减. 因此,()()min 13h x h ==,()()min 11g x g ==-.所以2223,21,a a a a ⎧+≤⎨+≥-⎩解得312a -≤≤.又32a <-或12a >,所以a 的取值范围是112a <≤. 【点睛】本题主要考查了新概念,函数的单调性,一元二次方程有解,绝对值不等式,恒成立,属于难题.9.(1)1a <;(2)2m ≥;(3)当1T =时,2k n π=,n ∈Z ;当1T =-时,(21)k n π=+,n ∈Z .【解析】 【分析】(1)由题意f (x +1)>2f (x )整理可求得a <x ﹣121x --,令x ﹣1=t (t ≥2),由g (t )=t 2t-在[2,+∞)上单调递增,即可求得实数a 的取值范围;(2)由x ∈[0,1)时,f (x )=2x ,可求得当x ∈[1,2)时,f (x )=mf (x ﹣1)=m •2x ﹣1,…当x ∈[n ,n +1)时,f (x )=mn •2x ﹣n ,利用f (x )在[0,+∞)上单调递增,可得m >0且mn •2n ﹣n ≥mn ﹣1•2n ﹣(n ﹣1),从而可求实数m 的取值范围;(3)f (x +T )=Tf (x )对一切实数x 恒成立,即cos k (x +T )=T cos kx 对一切实数恒成立,分当k =0时,T =1;当k ≠0时,要使cos k (x +T )=T cos kx 恒成立,只有T =±1,于是可得答案. 【详解】(1)由题意可知:f (x +1)>2f (x ),即﹣(x +1)2+a (x +1)>2(﹣x 2+ax )对一切[3,+∞)恒成立,整理得:(x ﹣1)a <x 2﹣2x ﹣1, ∵x ≥3,∴a ()22122111x x x x x ----==--<x ﹣121x --, 令x ﹣1=t ,则t ∈[2,+∞),g (t )=t 2t-在[2,+∞)上单调递增,∴g (t )min =g (2)=1, ∴a <1.(2)∵x ∈[0,1)时,f (x )=2x ,∴当x ∈[1,2)时,f (x )=mf (x ﹣1)=m •2x ﹣1,…当x ∈[n ,n +1)时,f (x )=mf (x ﹣1)=m 2f (x ﹣2)=…=mnf (x ﹣n )=mn •2x ﹣n , 即x ∈[n ,n +1)时,f (x )=mn •2x ﹣n ,n ∈N *, ∵f (x )在[0,+∞)上单调递增,∴m >0且mn •2n ﹣n ≥mn ﹣1•2n ﹣(n ﹣1), 即m ≥2.(3)由已知,有f (x +T )=Tf (x )对一切实数x 恒成立,即cos k (x +T )=T cos kx 对一切实数恒成立, 当k =0时,T =1; 当k ≠0时, ∵x ∈R ,∴kx ∈R ,kx +kT ∈R ,于是cos kx ∈[﹣1,1], 又∵cos (kx +kT )∈[﹣1,1],故要使cos k (x +T )=T cos kx 恒成立,只有T =±1, 当T =1时,cos (kx +k )=cos kx 得到 k =2n π,n ∈Z 且n ≠0; 当T =﹣1时,cos (kx ﹣k )=﹣cos kx 得到﹣k =2n π+π, 即k =(2n +1)π,n ∈Z ;综上可知:当T =1时,k =2n π,n ∈Z ; 当T =﹣1时,k =(2n +1)π,n ∈Z . 【点睛】本题考查周期函数,着重考查函数在一定条件下的恒成立问题,综合考查构造函数、分析转化、分类讨论的数学思想与方法,难度大,思维深刻,属于难题. 10.(1)9,08⎡⎤-⎢⎥⎣⎦;(2)0a >【解析】 【分析】(1)当1a =时,函数()()22221x x f x =--,转化为二次函数问题,利用二次函数的性质,即可求解;(2)由(1)转化为二次函数存在零点,利用二次函数的图象与性质,即可求解. 【详解】(1)当1a =时,()()224212221x x x x f x =⋅--=--, 令2x t =,[]3,0x ∈-,则1,18t ⎡⎤∈⎢⎥⎣⎦,故221921248y t t t ⎛⎫=--=-- ⎪⎝⎭,1,18t ⎡⎤∈⎢⎥⎣⎦,故值域为9,08⎡⎤-⎢⎥⎣⎦.(2)关于x 的方程()222210x x a --=有解,等价于方程2210ax x --=在()0,∞+上有解记()221g x ax x =--当0a =时,解为10x =-<,不成立; 当0a <时,开口向下,对称轴104x a=<,过点()0,1-,不成立; 当0a >时,开口向上,对称轴104x a=>,过点()0,1-,必有一个根为正, 所以,0a >.【点睛】本题主要考查了函数值域的求解,以及函数的零点问题的应用,其中解答中合理转化为二次函数,利用二次函数的图象与性质求解是解答的关键,着重考查了转化思想,以及分类讨论思想的应用,属于基础题.11.(1)()y f x =的图象是中心对称图形,对称中心为:()0,b ;(2)当0b >或22b a <-时,有3个零点;当220b a-≤≤时,有1个零点 【解析】 【分析】(1)设()()h x f x b =-,通过奇偶性的定义可求得()h x 为奇函数,关于原点对称,从而可得()f x 的对称中心,得到结论;(2)()()0y f x g x =-=,可知0x =为一个解,从而将问题转化为222b x a =-解的个数的讨论,即22222a b x a b b+=+=的解的个数;根据b 的范围,分别讨论不同范围情况下方程解的个数,从而得到零点个数,综合得到结果. 【详解】(1) 设()()11h x f x b x a x a=-=+-+ ()h x ∴定义域为:{}x x a ≠± ()()1111h x h x x a a x x a x a ⎛⎫-=+=-+=- ⎪---+-⎝⎭()h x ∴为奇函数,图象关于()0,0对称()y f x ∴=的图象是中心对称图形,对称中心为:()0,b (2)令()()110y f x g x bx x a x a=-=+-=-+ ()()20x b x a x a ⎡⎤∴-=⎢⎥-+⎢⎥⎣⎦,可知0x =为其中一个解,即0x =为一个零点 只需讨论222b x a=-的解的个数即可 ①当0b =时,222b x a=-无解 ()()y f x g x ∴=-有且仅有0x =一个零点②当0b >时 ,2220x a b =+> x ∴=222b x a =-的解()()y f x g x ∴=-有x =0x =共3个零点 ③当0b <时,22222a bx a b b+=+=(i )若220a b +<,即22b a <-时,220a bb+>x ∴=222b x a =-的解 ()()y f x g x ∴=-有x =0x =共3个零点 (ii )若220a b +=,即22b a =-时,222b x a =-的解为:0x = ()()y f x g x ∴=-有且仅有0x =一个零点(iii )若220a b +>,即220b a -<<时,220a bb+<,方程222b x a =-无解 ()()y f x g x ∴=-有且仅有0x =一个零点 综上所述:当0b >或22b a <-时,有3个零点;当220b a-≤≤时,有1个零点 【点睛】本题考查函数对称性的判断、函数零点个数的讨论.解决本题中零点个数问题的关键是能够将问题转化为方程222b x a =-根的个数的讨论,从而根据b 的不同范围得到方程根的个数,进而得到零点个数,属于较难题. 12.(1)见解析;(2)2,3n = 【解析】 【分析】(1)已知()()x f x g x e +=,结合函数的奇偶性可得()()xf xg x e --=,解方程组即可得函数解析式;(2)由函数奇偶性的性质可知()()g x f x 为奇函数,图象关于()0,0对称,则()12112g x F x f x ⎛⎫- ⎪⎝⎭=+⎛⎫- ⎪⎝⎭的图象关于点1,12⎛⎫⎪⎝⎭中心对称,利用对称性可得()H n ,然后利用恒成立问题解()()()2g x H n g x >⋅即可. 【详解】 (1)()()x f x g x e +=,()()x f x g x e --+-=函数()f x 为偶函数,()g x 为奇函数, ∴ ()()x f x g x e --=,()2x x e e f x -+∴=,()2x xe e g x --=. (2)易知()()g x f x 为奇函数,其函数图象关于()0,0中心对称,∴函数()12112g x F x f x ⎛⎫- ⎪⎝⎭=+⎛⎫- ⎪⎝⎭的图象关于点1,12⎛⎫⎪⎝⎭中心对称, 即对任意的x R ∈,()()12F x F x -+=成立. ()12H n F F n n ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭ 31n F F n n -⎛⎫⎛⎫+⋅⋅⋅+ ⎪ ⎪⎝⎭⎝⎭,()12n n H n F F n n --⎛⎫⎛⎫∴=++ ⎪ ⎪⎝⎭⎝⎭ 31n F F n n -⎛⎫⎛⎫+⋅⋅⋅+ ⎪ ⎪⎝⎭⎝⎭.两式相加,得()112n H n F F n n ⎡⎤-⎛⎫⎛⎫=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 2233n n F F F F n n n n ⎡⎤⎡⎤--⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦11n F F n n ⎡⎤-⎛⎫⎛⎫+⋅⋅⋅++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.即()()221H n n =-.()1H n n ∴=-.()()()2g x H n g x ∴>⋅,即()()221x x x x e e n e e --->--.()()()10x x x xe e e e n --⎡⎤∴-+-->⎣⎦.(]0,1x ∈,0x x e e -∴-> 1x x e e n -∴++>恒成立.令x t e =,(]1,t e ∈.则11y t t =++在(]1,e 上单调递增.1x x y e e -∴=++在(]0,1上单调递增.3n ∴≤.又已知2n ≥,2,3n ∴=. 【点睛】本题考查由函数奇偶性求函数解析式,考查由函数的对称性求值问题,考查恒成立问题的解法,属于中档题.13.(Ⅰ)A ={-1,2};B-13}(Ⅱ)[-14,34]【解析】 【分析】(Ⅰ)由f (x )=x 得x 2-x -2=0,解得x =-1,x =2,故A ={-1,2};由f (f (x ))=x ,可得f (x 2-2)=x ,即(x 2-2)2-(x 2-2)-2=x ;求解x 可得集合B .(Ⅱ)理解A =B 时,它表示方程x 2-a =x 与方程(x 2-a )2-a =x 有相同的实根,根据这个分析得出关于a 的方程求出a 的值. 【详解】(Ⅰ)由f (x )=x 得x 2-x -2=0,解得x =-1,x =2,故A ={-1,2}; 由f (f (x ))=x ,可得f (x 2-2)=x ,即(x 2-2)2-(x 2-2)-2=x ; 即x 4-2x 3-6x 2+6x +9=0,即(x +1)(x -3)(x 2-3)=0,解得x =-1,x =3,xxB-13}; (Ⅱ)∵∅A =B ,∴x 2-a =x 有实根,即x 2-x -a =0有实根,则△=1+4a ≥0,解得a ≥-14由(x 2-a )2-a =x ,即x 4-2ax 2-x +a 2-a =0的左边有因式x 2-x -a , 从而有(x 2-x -a )(x 2+x -a +1)=0. ∵A =B ,∴x 2+x -a +1=0要么没有实根,要么实根是方程x 2-x -a =0的根. 若x 2+x -a +1=0没有实根,则a <34;若x 2+x -a +1=0有实根且实根是方程x 2-x -a =0的根, 由于两个方程的二次项系数相同,一次项系数不同, 故此时x 2+x -a +1=0有两个相等的根-12,此时a =34方程x 2-x -a =0可化为:方程x 2-x -34=0满足条件,故a 的取值范围是[-14,34].【点睛】本题考查对新概念的理解和运用的能力,同时考查了集合间的关系和方程根的相关知识,解题过程中体现了分类讨论的数学思想.14.(1)见解析;(2)[33a ∈+;(3)见解析 【解析】 【分析】(1)直接进行验证或用反证法求解;(2)由()2ln 1af x x =∈+M 得到方程()22lnlnln 1211aa ax x =++++在定义域内有解,然后转化成二次方程的问题求解;(3)验证函数()f x 满足()()()0011f x f x f +=+即可得到结论成立. 【详解】 (1)()21f x M x=+∉.理由如下: 假设()21f x M x=+∈, 则在定义域内存在0x ,使得()()()0011f x f x f +=+成立, 即00221131x x +=+++,整理得2003320x x ++=,∵方程2003320x x ++=无实数解,∴假设不成立,∴()21f x M x=+∉. (2)由题意得()2ln+1a f x M x =∈, ()22ln ln ln 1211a a a x x ∴=++++在定义域内有解, 即()222220a x ax a ---+=在实数集R 内有解,当2a =时,12x =-,满足题意; 当2a ≠时,由0∆≥,得2640a a -+≤,解得33a ≤2a ≠,综上33a ≤∴实数a 的取值范围为33⎡⎣.(3)证明:∵()23x f x x =+,∴()()()()()000212000003113134232x x x f x f x f x x x +⎛⎫+-+=++---=+- ⎪⎝⎭, 又函数3x y =的图象与函数32y x =-+的图象有交点, 设交点的横坐标为a ,则3302a a +-=, ∴003302x x +-=,其中0x a =, ∴ 存在0x 使得()()()0011f x f x f +=+成立,∴()f x M ∈.【点睛】本题以元素与集合的关系为载体考查函数与方程的知识,解题的关键是根据题意中集合元素的特征将问题进行转化,然后再结合方程或函数的相关知识进行求解,考查转化能力和处理解决问题的能力.15.(1) 是ψ函数(2)见解析(3) 函数()h x 为周期函数【解析】【详解】试题分析:()1求出()11f x x=-的定义域,()()f a x f a x b -++=对任意x a ≠±恒成立转化成()()2222b a x a +-=对任意x a ≠±恒成立,解出20b a =-=,,使得()11f x x=-为ψ函数()2只需证明存在实数a ,b 使得当a x D -∈且a x D +∈时,()()g a x g a x b -++=恒成立,化简求得1b t=,2log a t =,满足条件()3图象关于直线x m =对称,结合()()h a x h a x b -++=,整体换元得()()()44h x m a b b h x h x ⎡⎤+-=--=⎣⎦,从而证明结论解析:(1)()11f x x =-是ψ函数 理由如下:()11f x x=-的定义域为{|0}x x ≠, 只需证明存在实数a ,b 使得()()f a x f a x b -++=对任意x a ≠±恒成立.由()()f a x f a x b -++=,得112b a x a x+-=-+,即()()2a x a x b a x a x ++-+=-+. 所以()()2222b a x a +-=对任意x a ≠±恒成立. 即2,0.b a =-=从而存在0,2a b ==-,使()()f a x f a x b -++=对任意x a ≠±恒成立.所以()11f x x=-是ψ函数. (2)记()g x 的定义域为D ,只需证明存在实数a ,b 使得当a x D -∈且a x D +∈时, ()()g a x g a x b -++=恒成立,即1122a x a x b t t -++=++恒成立. 所以()()2222a x a x a x a x t t b t t +-+-+++=++, 化简得,()()()2212222a x a x a bt b t t +--+=+-. 所以10bt -=,()22220a b t t +-=. 因为0t ≠,可得1b t =,2log a t =, 即存在实数a ,b 满足条件,从而()12x g x t=+是ψ函数. (3)函数()h x 的图象关于直线x m =(m 为常数)对称,所以()()h m x h m x -=+ (1),又因为()()h a x h a x b -++= (2),所以当m a ≠时,()()222h x m a h m x m a ⎡⎤+-=++-⎣⎦由(1) ()()()22h m x m a h a x h a a x ⎡⎤⎡⎤=-+-=-=+-⎣⎦⎣⎦由(2) ()()b h a a x b h x ⎡⎤=---=-⎣⎦ (3)所以()()()44222222h x m a h x m a m a b h x m a ⎡⎤+-=+-+-=-+-⎣⎦(取22t x m a =+-由(3)得)再利用(3)式,()()()44h x m a b b h x h x ⎡⎤+-=--=⎣⎦.所以()f x 为周期函数,其一个周期为44m a -.当m a =时,即()()h a x h a x -=+,又()()h a x b h a x -=-+,所以()2b h a x +=为常数. 所以函数()h x 为常数函数, ()()12b h x h x +==,()h x 是一个周期函数. 综上,函数()h x 为周期函数点睛:本题主要考查知识点的是新定义函数,证明函数的特性,本题的解题关键是抓住新定义中的概念,可将问题迎刃而解.对于这类问题,我们要弄清问题的本质,在解题中适当的变形,已知条件的运用,函数周期性等的证明即可得证,本题有一定难度。