第1章 变形监测概述

合集下载

变形监测的概述及分析

变形监测的概述及分析

变形监测的概述及分析变形监测就是利用专用的仪器和方法对变形体的变形现象进行持续观测、对变形体变形性态进行分析和变形体变形的发展态势进行预测等的各项工作。

其任务是确定在各种荷载和外力作用下,变形体的形状、大小、及位置变化的空间状态和时间特征。

在精密工程测量中,最具代表性的变形体有大坝、桥梁、高层建筑物、边坡、隧道和地铁等。

变形监测的内容,应根据变形体的性质和地基情况决定。

对水利工程建筑物主要观测水平位移、垂直位移、渗透及裂缝观测,这些内容称为外部观测。

为了了解建筑物(如大坝)内部结构的情况,还应对混凝土应力、钢筋应力、温度等进行观测,这些内容常称为内部观测,在进行变形监测数据处理时,特别是对变形原因做物理解释时,必须将内、外观测资料结合起来进行分析。

变形监测的首要目的是要掌握水工建筑物的实际性状,科学、准确、及时的分析和预报水利工程建筑物的变形状况,对水利工程建筑物的施工和运营管理极为重要。

变形监测涉及工程测量、工程地质、水文、结构力学、地球物理、计算机科学等诸多学科的知识,它是一项跨学科的研究,并正向边缘学科的方向发展。

变形监测工作的意义主要表现在两个方面:首先是掌握水利工程建筑物的稳定性,为安全运行诊断提供必要的信息,以便及时发现问题并采取措施;其次是科学上的意义,包括根本的理解变形的机理,提高工程设计的理论,进行反馈设计以及建立有效的变形预报模型。

建筑物变形监测内容一般有沉降监测、水平位移监测和倾斜变形监测等。

由于高层建筑物变形主要表现在沉降变形上,即垂直变形,所以本文中主要针对沉降监测进行研究,给出了楼房变形监测方法和步骤,以及注意的问题。

2、沉降监测方法2.1点位布置在适当位置选择三个参考基准点构成本次沉降观测工作的起算基准系统。

基准点的稳定是沉降观测工作中最重要的因素。

在沉降观测之前和过程中应对三个基准点进行联测。

三个基准点相互验证,选择最稳定的点作为沉降观测起始点。

根据规范规定,沉降观测点(所谓沉降观测点是指为了反映出建筑物的准确沉降情况,沉降观测点设置在最能反应沉降特征且便于观测的位置,在建筑物上纵横向对称,且相邻点之间间距以15 ~30 m为宜,均匀分布在建筑物的周围。

变形监测完整版资料

变形监测完整版资料

变形监测完整版资料1、变形监测定义是指对被监测的对象或物体进行测量以确定其空间位置及内部形态随时间的变化特征。

2、变形监测的目的1)分析和评价建筑物的安全状态2)验证设计参数3)反馈设计施工质量4)研究正常的变形规律和预报变形的方法3、变形监测的意义对于机械技术设备,则保证设备安全、可靠、高效地运行,为改善产品质量和新产品的设计提供技术数据;对于滑坡,通过监测其随时间的变化过程,可进一步研究引起滑坡的成因,预报大的滑坡灾害;通过对矿山由于矿藏开挖所引起的实际变形观测,可以采用控制开挖量和加固等方法,避免危险性变形的发生,同时可以改变变形预报模型;在地壳构造运动监测方面,主要是大地测量学的任务,但对于近期地壳垂直和水平运动以及断裂带的应力积聚等地球动力学现象、大型特种精密工程以及铁路工程也具有重要的意义。

4、变形监测的特点1)周期性重复观测2)精度要求高3)多种观测技术的综合应用4)监测网着重于研究电位的变化5、为了最大限度地测量出建筑物的变形特征数据,减少测量仪器、外界条件等引起的系统性误差影响,每次观测时,测量的人员、仪器、作业条件等都应相对固定。

例如,在进行沉降观测时,要求在规定的日期,按照设计线路和精度进行观测,水准网形原则上不准改变,测量仪器一般也不准更改,对于某些测量要求较高的情况,测站的位置也应基本固定。

6、建筑物变形的一般分类在通常情况下,变形可分为静态变形和动态变形两大类。

静态变形主要指变形体随时间的变化而发生的变形,这种变形一般速度较慢,需要较长的时间才能被发觉。

动态变形主要指变形体在外界荷载的作用下发生的变形,这种变形的大小和速度与荷载密切相关,在通常情况下,荷载的作用将使变形即刻发生。

7、按变形特征分类变形可分为变形体自身的形变和变形体的刚体位移。

1)自身变形,伸缩,错动,弯曲扭转。

2)钢体的位移,整体平移,转动,升降,倾斜。

8、变形监测的主要内容现场巡视;位移监测;渗流监测;应力监测等。

现代工程变形监测PPT课件

现代工程变形监测PPT课件

制定和完善变形监测相关的标准和规范, 提高监测数据的可比性和可靠性。
感谢您的观看
THANKS
详细描述
除了上述几种监测技术外,还有一些其他先进的变形监测技术,如雷达干涉测量、激光扫描等。这些技术各有特 点,可根据工程需求选择合适的监测手段,以实现更高效、更精确的变形监测。
04 工程实例分析
高层建筑物的变形监测
监测目的
监测数据分析
确保高层建筑在施工和使用过程中的 安全性和稳定性,及时发现和预警潜 在的变形风险。
通过对监测数据的处理和分析,评估 建筑物的变形状况,预测未来的变形 趋势,为工程维护和加固提供依据。
监测方法
采用全站仪、水准仪等测量设备,对 建筑物的沉降、倾斜、裂缝等进行定 期监测。
大跨度桥梁的变形监测
监测目的
确保大跨度桥梁在运营过程中的 安全性和稳定性,及时发现和预
警潜在的变形风险。
监测方法
采用GPS、红外线等测量技术,对 桥梁的挠度、倾斜、位移等进行定 期监测。
按监测周期可分为
长期监测、中期监测和短期监 测。
变形监测的方法
01
02
03
04
05
常规大地测量法
全球定位系统 (GPS)法
合成孔径雷达干 涉(In…
光纤光栅传感器 法
其他方法
利用全站仪、水准仪等常 规测量仪器进行变形体的 平面位移和垂直位移监测 ;
利用GPS卫星信号进行高 精度定位,可实现大范围 、全天候、高精度的变形 监测;
全球定位系统(GPS)监测技术以其高精度、高效率、实时性等优点,广泛应 用于各类工程结构的变形监测。通过接收卫星信号,可以快速获取监测点的三 维坐标,实现连续、动态的变形监测。

变形监测知识点

变形监测知识点

变形监测知识点在土木工程、结构工程以及地质工程等领域中,变形监测被广泛应用于监测建筑物或地表的变形情况。

它能够提供实时、准确的数据,帮助工程师评估结构的稳定性并及时采取必要的措施。

本文将介绍变形监测的基本概念、常用监测方法以及一些相关的技术知识点。

1. 变形监测的基本概念变形指的是在一定时间内,地表、建筑物或其他工程结构的形状、尺寸或姿态发生的变化。

变形监测旨在通过测量和记录这些变化,分析结构的稳定性和安全性,并及时采取必要的维修或加固措施。

2. 常用的变形监测方法2.1. 精密水准仪监测精密水准仪是一种用于测量地面高程的仪器,常用于监测建筑物或地表的沉降情况。

通过在固定测点上放置精密水准仪,可以定期进行测量并记录数据,以评估结构的稳定性。

2.2. GNSS(全球导航卫星系统)监测GNSS是一种基于卫星定位的技术,例如全球定位系统(GPS),通过接收多个卫星信号来计算测点的位置。

它广泛应用于建筑物、桥梁等结构的变形监测中。

通过在监测点上安装GNSS接收器并持续记录位置数据,可以观察结构的变形情况。

2.3. 位移传感器监测位移传感器是一种用于测量结构位移的设备,常用于监测建筑物、桥梁等的变形情况。

常见的位移传感器包括应变计、测微计等。

它们可以安装在监测点上,并实时记录结构的位移数据,以便及时发现任何异常情况。

2.4. 激光扫描监测激光扫描是一种通过激光测距仪扫描目标物体,获取其三维坐标信息的技术。

在变形监测中,激光扫描可以用于建筑物、地表等的三维形变监测。

通过定期进行扫描并分析数据,可以了解结构的形变情况。

3. 监测数据的分析与处理变形监测所获得的大量数据需要进行分析和处理,以便得出结构变形及其影响的结论。

常用的数据分析方法包括:- 趋势分析:通过统计数据的变化趋势,判断结构是否存在变形。

- 相关性分析:分析不同监测点之间的相关性,找出结构中的热点区域。

- 空间分析:利用地理信息系统(GIS)等工具,对监测数据进行空间分析,以获取更清晰的结构变形信息。

变形监测

变形监测

中 国 矿 业 大 学
测量原理
探头内的感应电路在探头接近感应环时,将引起蜂鸣器报警 ,并使指示器上指针偏转。当指针达到蜂值,即探头中心正好对 准感应环时,利用电缆和标尺上的刻度,便可测得探头中心所在 的深度。根据一定时间间隔内前后两次的测量结果,可计算出不 同深度(感应环所在位置)岩层的垂直位移以及每一段内岩层的 竖向伸长或压缩量。为获得绝对的位移值,至少应有一个感应环 (如孔底附近)埋在稳定岩石中,或者有一个感应环(如孔口附 近)用其它方法测得绝对位移值。
3.1 岩体内部下沉测量(钻孔伸长仪)
安装好的下沉测量系统如图所示。
1-基准架;2-读数装置、卷缆轮;3-水泥浆;
4-充填砂浆;5-用粘结剂和胶带密封的感应环; 6-感应环;7-倾斜仪套管接头;8-倾斜仪套管; 9-注浆阀门;10-重锤;11-探头; 12-用粘结 剂和胶带密封的软管接头;13-用尼龙丝或胶带夹 固定的软管接头; 14-固定在刚性管上的软管末端。
点云数据
特征线提取 两次特征线比较
最终变形数据
中 国 矿 业 大 学
实例:焦炉和烟囱变形监测的扫描数据
1号焦炉点云数据 2号焦炉点云数据
点云数据截面截取 中 国 矿 业 大 学
截取后的点云数据和特征 线数据
3 岩体内部观测系统
岩层内部观测站测点一般布设在岩层内部的钻孔中,用于研究 岩层内部的移动和变形规律。
指标
扫描距离 距离测量精度 单点定位精度
数值
最远350m 7mm@100m 6mm@50m,12mm@100m
激光波长
扫描范围
脉冲532 nm
360° x 60° 连续扫描
中 国 矿 业 大 学
2.3三维激光扫描技术的特点

变形监测有哪些内容

变形监测有哪些内容

变形监测有哪些内容变形监测是指对工程结构或地质体进行形变的监测和分析,以及对变形进行预测和预警的一种技术手段。

变形监测通常应用于地质灾害预警、工程结构安全监测、地下水开采引起的地面沉降等领域。

在实际工程和地质勘察中,变形监测具有重要的意义,可以及时发现和预警可能出现的问题,保障工程安全和地质环境稳定。

下面将介绍一下变形监测的相关内容。

一、监测对象。

变形监测的对象包括但不限于以下几个方面:1. 工程结构,如建筑物、桥梁、隧道、坝体等工程结构的变形监测,可以通过监测结构的位移、变形、裂缝等情况,及时了解工程结构的变形情况,确保结构的安全性。

2. 地质体,如山体、边坡、岩体等地质体的变形监测,可以通过监测地表位移、地下水位变化、地下裂缝等情况,及时了解地质体的变形情况,预防地质灾害的发生。

3. 地下水位,地下水开采引起的地面沉降是一种常见的地质灾害,通过监测地下水位的变化,可以及时预警地面沉降的可能性,采取相应的措施进行治理。

二、监测方法。

1. GNSS监测,GNSS(全球导航卫星系统)是一种常用的变形监测技术,通过布设在监测对象周围的GNSS接收机,实时监测接收机的位置坐标,从而得到监测对象的位移和变形情况。

2. 雷达干涉监测,雷达干涉监测是一种利用合成孔径雷达(SAR)技术进行地表形变监测的方法,可以实现对大范围地表的高精度监测,对地质灾害的监测具有重要意义。

3. 激光测距监测,激光测距监测是一种利用激光测距仪进行变形监测的方法,可以实现对监测对象的高精度三维形变监测,适用于对工程结构的变形监测。

三、监测数据分析。

监测数据的分析是变形监测的重要环节,通过对监测数据的分析,可以及时发现变形情况,并进行预测和预警。

监测数据分析通常包括以下几个方面:1. 变形趋势分析,对监测数据进行时间序列分析,得出监测对象的变形趋势,判断变形是否存在加剧或减缓的趋势。

2. 变形速率分析,对监测数据进行速率分析,得出监测对象的变形速率,判断变形的快慢程度,为预测变形提供依据。

简述变形监测的内容

简述变形监测的内容

简述变形监测的内容变形监测是一种用于监测和评估地表和建筑物变形的技术。

它通过使用各种传感器和测量设备,对地表或建筑物进行连续或间歇性的监测,以检测和分析其变形情况。

这种监测技术在土地资源开发、地质灾害预警、建筑物结构安全等领域具有重要的应用价值。

变形监测的内容主要包括以下几个方面:1. 地表变形监测:地表变形是指地表形态、地形或地貌的改变。

地表变形监测可以通过使用全球定位系统(GPS)、卫星测高、摄影测量等技术手段来实现。

通过对地表进行连续或间歇性的监测,可以及时发现地质灾害、地下水位变化、地震活动等引起的地表变形情况,为地质灾害预警和环境监测提供依据。

2. 建筑物变形监测:建筑物变形是指建筑物结构、形态或位置的改变。

建筑物变形监测主要通过使用倾斜仪、位移传感器、应变计等设备来实现。

对于高层建筑、大型桥梁、隧道等重要工程结构,进行变形监测可以及时发现和评估其结构安全性能,为工程管理和维护提供科学依据。

3. 地下水位监测:地下水位是指地下水面的高度。

地下水位的变化对地下水资源的开发利用和环境保护具有重要意义。

地下水位监测可以通过使用水位计、压力传感器等设备来实现。

通过对地下水位进行连续或间歇性的监测,可以及时了解地下水资源的变化情况,为地下水资源管理和保护提供科学依据。

4. 地壳运动监测:地壳运动是指地球表面的水平位移和垂直位移。

地壳运动的监测可以通过使用GPS、测量雷达等技术手段来实现。

地壳运动的监测可以帮助科学家了解地球的构造和运动规律,为地震活动、火山喷发等地质灾害的预测和预警提供依据。

变形监测在地质灾害预警、土地资源开发、工程结构安全等领域具有重要的应用价值。

它可以及时发现和评估地表和建筑物的变形情况,为预防和减轻地质灾害、保护环境、保障工程安全提供科学依据。

同时,变形监测还可以帮助科学家了解地球的运动规律和地下水资源的变化情况,为地球科学研究提供重要数据。

未来,随着技术的进一步发展和应用的推广,变形监测将在更广泛的领域发挥重要作用。

变形监测技术报告

变形监测技术报告

变形监测技术报告第一篇:变形监测技术报告时代广场项目变形观测技术报告辽宁科技大学测绘教研室2010年11月报告编写人:***基坑支护监测方案工程概况及周围环境1.1工程概况基坑尺寸约100x100m。

该工程主体建筑由辽宁科技大学建筑设计研究院设计,主楼24层,其余范围均为全地下室,地下室计3层,设计±0.000标高相当于黄海高程7.950m,地下三层各部分的楼板标高均有错位,基础底板板面标高分别为-13.050,地下二层板面标高分别为-9.850,地下一层板面标高为-6.650,地下室顶板标高分别为-1.850。

主楼基础的承台厚度一般为2m,底板厚度0.9m;其余范围基础的承台厚度一般为1.55m,底板厚度0.8m。

工程桩采用钻孔灌注桩,自然地坪及周边道路人行道的绝对标高在6.670m~7.770m之间变化,设计分别取7.100m及7.800m作为设计室外地坪标高,综合考虑地下室基础及垫层厚度后:该基坑设计开挖深度分别为13m、13.55m、13.9m、14.25m。

为有效控制基坑的变形,沿竖向设置三道钢筋混凝土支撑。

1.2 周围环境本工程地下室南侧部分地下室外墙距离千山路道路边线最近处约18m,千山路下埋设有大量的市政、电力、煤气管道,但距离基坑均比较远。

基坑东侧为千山街,地下室距离千山街道路边线约13m,路下埋有电缆、煤气、自来水、雨水、污水等管线。

基坑西侧为小学教学楼,4层框架,地下室距离学校建筑最近处约13m,距离学校围墙约11.6m。

方案依据及技术标准(1)辽宁科技大学建筑设计研究院《时代广场基坑支护设计说明》;(2)《建筑基坑支护技术规程》(JGJ120-99);(3)《建筑基坑工程技术规范》(YB9258-97);(4)《建筑变形测量规程》(JGJ/T8-97);监测目的及内容3.1测试目的在基坑施工过程中,只有对基坑支护结构、基坑周围的土体和相邻的构筑物进行全面、系统的监测,才能对基坑工程的安全性和对周围环境的影响程度有全面的了解,以确保工程的顺利进行,在出现异常情况时及时反馈,并采取必要的工程应急措施,甚至调整施工工艺或修改设计参数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章变形监测概述一、什么是工程建筑物的变形?对工程建筑物进行变形监测的意义何在?工程建筑物的变形:由于各种相关因素的影响,工程建筑物及精密设备都有可能随时间的推移发生沉降、位移、挠曲、倾斜及裂缝等现象,这些现象统称为变形。

变形监测:利用专门的仪器和设备测定建(构)筑物及其地基在建(构)筑物荷载和外力作用下随时间而变形的测量工作。

内部变形监测内容主要有工程建筑物的内部应力、温度变化的测量,动力特性及其加速度的测定等;外部变形监测又称变形观测,其主要内容有建(构)筑物的沉降观测、位移观测、倾斜观测、裂缝观测、挠度观测等。

意义:通过变形监测,可以检查各种工程建筑物及其地质构造的稳定性,及时发现问题,确保工程建立正原因:分类:形任务:目的:防止(1(1)观测点的布置;(2)观测的精度与频率;(3)观测所进行的时间。

六、确定变形监测精度的目的和原则?变形监测的精度,取决于建筑物预计的允许变形值的大小和进行观测的目的。

如何根据允许变形值来确定观测的精度,因其与观测条件和待测建(构)筑物的类型以及观测的目的相关。

七、确定变形监测的频率主要由哪些因素决定?应遵循什么原则?(一)因素:观测的频率取决于变形值的大小和变形速度,同时与观测目的也有关系。

(二)原则:1.变形监测的频率应以既能系统地反映所测变形的变化过程,又不遗漏其变化的时刻为原则,根据单位时间内变形量的大小及外界因素的影响来确定。

2.当实际观测中发现异常情况时,则应及时相应地增加观测次数。

八、简述变形监测的主要技术和数据处理分析的主要内容。

主要技术:(1) 地面测量方法:包括常规几何水准测量、三角高程测量、方向角度测量、距离测量等; (2)空间测量技术:包括卫星定位、合成孔径雷达干涉等;(3) 摄影测量和地面激光扫描;(4) 专门测量手段:包括激光准直、各类传感器测量和应变计测量等。

数据处理分析:1.成因分析(定性分析):成因分析是对结构本身(内因)与作用在结构物上的荷载(外因),加以分析、研究,确定变形值变化的原因和规律性。

2.统计分析(定量分析):根据成因分析的结果和其他相关影响,对实测数据进行统计分析,剔除粗差和系统误差的影响,找出分布规律,从而导出变形值与引起变形的有关因素之间的函数关系。

九、我国开展变形监测工作的主要内容。

【沉降观测】(1)基坑回弹测量(2)地基分层沉降观测(3)建筑场地沉降观测(4)建筑物的沉降观测8)1(1(2(1(2)(32(12)标志)可安置34(1(2(3要适当,标志之间通视良好,便于观测。

(4)标志头上应有可微动的装置,以便将标志中心移到设计的位置。

5.高程基准点为何采用双金属标志?试用公式推导说明双金属标志的原理。

为了避免由于温度变化对标志高程的影响,可设计并埋设双金属标志。

利用钢管和铝管具有不同的温度膨胀系数,在变形监测的同时,测定两管长度的变化差值并加以改正,即可达到消除由于温度变化对标志高程影响的目的。

推导:假设钢管和铝管原长为L0,其膨胀系数为:661024,1012--⨯=⨯=铝钢αα实测时由于温度变化的影响,钢管和铝管的实际长度变化为:钢钢钢L L t L L L ∆+=+=000α因为温度t 未知,且难以测定;故实际测量时,测定钢、铝两管的伸缩差值,即)(0铝钢铝钢αα-⋅⋅=-=∆t L L L由前面的假设和推导,得tL L t L L 铝铝钢钢αα00,=∆=∆ )(0铝钢铝钢αα-⋅⋅=-=∆t L L L根据上面两式,可得:⎪⎪⎩⎪⎪⎨⎧-=-=∆∆-=-=∆∆铝铝钢铝铝钢铝钢铝钢钢铝钢钢ααααααααααααt L t L L t L t L L 0000)()(12⨯=钢α67 和地质条件不良之处也要布置观测点。

对于电视塔、水塔、烟囱、油罐、高炉等高耸建(构)筑物,应沿周边在与基础轴线相交的对称位置上布点,且点位不少于4个。

当建筑物比较重要而地基情况复杂时,为了研究各土层压实情况,应布置分层沉降观测点。

布点时,以布设在基础中心线上为宜,条件不允许时,也可布设在基础边缘。

分层沉降观测点埋设得最大深度应达到理论计算的受压层的底部,其余各层观测点的深度和数量应根据土层和应力的大小而定。

8.什么是沉降水准测量?沉降观测有哪几种方法?为测定建筑物沉陷量所进行的水准测量工作称为沉降水准测量。

几何水准测量、液体静力水准测量、短视线三角高程测量。

9.沉降水准测量的精度等级是如何确定的?沉降水准测量精度等级的选取,取决于观测对象预计沉降量的大小和观测目的。

由下列换算公式计算出单程观测测站高差中误差μ,则可得沉降水准测量等级精度指标m 0。

250d M ∆=μ 10.沉降水准测量的主要误差来源?测站中误差如何确定?1.观测误差(1)照准误差(2)符合水准器气泡居中的误差(3)读数误差;2.仪器误差(1)调焦误差(2)水准尺分划误差(3)尺底不平的误差(4)水准仪的i 角误差;3.外界条件的影响(水准尺立尺不直的误差和其他外界条件的影响)(1)单转点法每测站的高差中误差 (2)11(3)站m h 2=∆(4)f h 限∆±=12i i 13m m i H ±=14要求:1注意事项:1.工程开测前,应对水准仪和水准尺进行检验和校正。

2.观测前应检查各观测点和水准点是否符合要求,有无松动情况,以便作业顺利进行。

3.观测时采取措施减少温度和大气折光的影响。

4.施工阶段进行沉降观测时,应纪录观测时的施工进度,以便绘制沉降量与荷载关系曲线图。

5.沉降观测中应采取“三固定”的办法来提高观测点沉降量的精度,即在沉降观测中固定观测人员,固定所用仪器和在施测中固定施测路线(镜位与转点)。

15.为什么要进行地基分成层沉降观测? 当建筑物比较重要而地基情况复杂时,为了研究各土层压实情况,应布置分层沉降观测点。

布点时,以布设在基础中心线上为宜,条件不允许时,也可布设在基础边缘。

分层沉降观测点埋设得最大深度应达到理论计算的受压层的底部,其余各层观测点的深度和数量应根据土层和应力的大小而定。

16.三角高程测量的基本原理?有哪些误差?如何消除或减小误差的影响? 球气差改正包括:球差改正f 1和气差改正f 2RD f h 221=∆= R D K f 222-= 式中: K -大气垂直折光系数;R-地球曲率半径,取R=6371km 。

22212)1(cD RD K f f =-=+ RK c 21-= 14.0717====R R rR K 17.倾斜测量的概念?地面倾斜测量主要有哪几种方法?倾斜测量应包括两类:(1)相对于水平面的倾斜测量;(2)相对于垂直面的倾斜测量。

相对于水平面倾斜测量的主要方法有三种:(1)精密水准测量方法(2)倾斜仪测量方法(3)液体静力水准测量方法18.倾斜测量仪如何分类?主要有哪几种?倾斜仪按用途分为两类:(1)测量水平度的倾斜仪;(2)测量垂直度的倾斜仪。

19. 、液面所根据贝努利方程:12上下方,时,该法效率低。

34采用控制电路装置带动触针上下移动,当针尖与液面(此时液体必须是导电液)接触的瞬间,电路自动记录信号,经处理后可计算出液面的位置,精度可达±0.02mm 。

20.液体静力水准测量主要误差来源?适用场合?误差来源1.观测误差 — 有读数、目视、接触判断误差等2.仪器误差①仪器的零点误差②仪器安置误差③观测头倾斜误差④量测设备的误差⑤观测系统联结部件温度变形误差⑥液体流失造成的误差3.外界条件的影响①外界振动的影响②温度的影响③气压的影响④液体蒸发的影响⑤液体污染的影响具体应用: 1.液体的选用,在液体静力水准系统中,可使用的液体包括: 水、汞(水银)、酒精和油等,各有优缺点。

2.应用场合①大型水电枢纽的沉降位移观测(廊道内);②现代大型实验设备的安装、调试和监测; ③高速轨道和大型平面的抄平;④地震预报及地质构造和固体潮的测定;⑤辐射、污染地区和场所的自动遥测等。

第2章 垂直位移与水平位移观测一、简述基准线法进行水平位移观测的基本原理,及需注意的主要问题。

视准线法又称基准线法,测量的原理是以通过建筑物轴线或平行于建筑轴线的固定不变的铅直平面为基准面,并以此为根据测定建筑物的水平位移。

视准线法进行水平位移观测的主要问题:1. 保证基准面稳定(1) 端点强制对中,对中误差<0.1mm(2) 检核端点变化,并施加改正2. 提高观测精度(1) 精密设计测量标志点的照准觇牌(2) 选择良好的观测时段,优化观测程序二、基准线法主要有哪几种具体观测方法?【各有何优缺点?主要误差来源?✍无】1. 活动觇牌法:活动觇牌法又称移动觇牌法,是利用直接安置在观测点上的移动觇牌来测量偏离值。

2. i i s ⋅=∆3.4. 1. 点iB 假设P i P i 对上述中误差计算公式进行分析:(1)当观测点在基准线中点时,取21==AB iB i S S K ✍ 222212端测m m m id += (2)当观测点靠近任一端点时,取近似值 : 10==i i K K 或✍ 2222端测m m m id += 对基准线法的精度进行分析:(1)当观测点在基准线中点时:222212端测m m m id +=(2)当观测点靠近任一端点时:2222端测m m m id += 由此可见,观测点越靠近基准线端点,则端点位移对变形观测的影响越大。

但此时,实际测定观测点偏离值的精度较高,因此,在实际变形观测工作中,仍认为在整条基准线上测定观测点位移值的精度均匀一致,即整条测线上任意点位移值的精度比较接近。

四、推导并分析测小角法的精度公式,如何确定测小角法的观测测回数? 测小角法基本公式: i ii s ρα=∆ 中误差:1.对距离的测量精度要求i S ρ1S i m 假设假设2.2im =∆m =α40倍的s ρα=∆✍S m m ρα=∆ 测量小角度必须满足的精度25.05.01000200520626''±=⨯⨯''±==∆m S M ρα小角度观测一测回的中误差 5.14006''±=''±==v m m α 所以要使小角度达到规定的精度,则小角度观测的测回数n 应满足nm M αα= 3.852.05.12222==≥ααM m n 取测回9=n五、绘图说明前方交会法进行水平位移观测的基本原理,并计算位移值。

前方交会法的基本原理是利用两个或两个以上稳定的已知点作为测站点和定向点,分别用高精度光学经纬仪(或电子全站仪)测定观测点方向与定向点方向之间的水平角,从而求出待定观测点的坐标。

不同周期观测所得到的坐标差,即为该点的位移量。

相关文档
最新文档