等腰三角形典型例题练习(含答案)

合集下载

人教版八年级上册数学等腰三角形知识点及对应练习(附参考解析)

人教版八年级上册数学等腰三角形知识点及对应练习(附参考解析)

等腰三角形一、知识梳理:专题一:等腰三角形概念及性质;等腰三角形的判定.二、考点分类考点一:等腰三角形的概念有两边相等的三角形是等腰三角形。

【类型一】利用等腰三角形的概念求边长或周长【例1】如果等腰三角形两边长是6cm和3cm,那么它的周长是()A.9cm B.12cm C.15cm或12cm D.15cm解析:当腰为3cm时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm 时,6-3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15(cm).故选D.方法总结:在解决等腰三角形边长的问题时,如果不明确底和腰时,要进行分类讨论,同时要养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.考点二:等腰三角形的性质1、等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).2、解题方法:设辅助未知数法与拼凑法.3、重要的数学思想方法:方程思想、整体思想和转化思想.【类型一】利用“等边对等角”求角度【例2】等腰三角形的一个内角是50°,则这个三角形的底角的大小是()A .65°或50° B.80°或40° C .65°或80° D.50°或80°解析:当50°的角是底角时,三角形的底角就是50°;当50°的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是65°.故选A.方法总结:等腰三角形的两个底角相等,已知一个内角,则这个角可能是底角也可能是顶角,要分两种情况讨论.【类型二】 利用方程思想求等腰三角形角的度数【例3】 如图①,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,求△ABC 各角的度数.解析:设∠A =x ,利用等腰三角形的性质和三角形内角和定理即可求得各角的度数.解:设∠A =x .∵AD =BD ,∴∠ABD =∠A =x .∵BD =BC ,∴∠BCD =∠BDC =∠ABD +∠A=2x .∵AB =AC ,∴∠ABC =∠BCD =2x .在△ABC 中,∠A +∠ABC +∠ACB =180°,∴x +2x+2x =180°,∴x =36°,∴∠A =36°,∠ABC =∠ACB =72°.方法总结:利用等腰三角形的性质和三角形外角的性质可以得到角与角之间的关系,当这种等量关系或和差关系较多时,可考虑列方程解答,设未知数时,一般设较小的角的度数为x .① ②【类型三】 利用“等边对等角”的性质进行证明【例4】 如图②,已知△ABC 为等腰三角形,BD 、CE 为底角的平分线,且∠DBC =∠F ,求证:EC ∥DF .解析:先由等腰三角形的性质得出∠ABC =∠ACB ,根据角平分线定义得到∠DBC =12∠ABC ,∠ECB =12∠ACB ,那么∠DBC =∠ECB ,再由∠DBC =∠F ,等量代换得到∠ECB =∠F ,于是根据平行线的判定得出EC ∥DF .证明:∵△ABC 为等腰三角形,AB =AC ,∴∠ABC =∠ACB .又∵BD 、CE 为底角的平分线,∴∠DBC =12∠ABC ,∠ECB =12∠ACB ,∴∠DBC =∠ECB .∵∠DBC =∠F ,∴∠ECB =∠F ,∴EC ∥DF .方法总结:证明线段的平行关系,主要是通过证明角相等或互补.【类型四】 利用等腰三角形“三线合一”的性质进行证明【例5】 如图①,点D 、E 在△ABC 的边BC 上,AB =AC .(1)若AD =AE ,求证:BD =CE ;(2)若BD =CE ,F 为DE 的中点,如图②,求证:AF ⊥BC .解析:(1)过A 作AG ⊥BC 于G ,根据等腰三角形的性质得出BG =CG ,DG =EG 即可证明;(2)先证BF =CF ,再根据等腰三角形的性质证明.证明:(1)如图①,过A 作AG ⊥BC 于G .∵AB =AC ,AD =AE ,∴BG =CG ,DG =EG ,∴BG-DG =CG -EG ,∴BD =CE ;(2)∵BD =CE ,F 为DE 的中点,∴BD +DF =CE +EF ,∴BF =CF .∵AB =AC ,∴AF ⊥BC .方法总结:在等腰三角形有关计算或证明中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线.【类型五】 与等腰三角形的性质有关的探究性问题【例6】 如图①,已知△ABC 是等腰直角三角形,∠BAC =90°,BE 是∠ABC 的平分线,DE⊥BC ,垂足为D .(1)请你写出图中所有的等腰三角形;(2)请你判断AD 与BE 垂直吗?并说明理由.(3)如果BC =10,求AB +AE 的长.解析:(1)由△ABC 是等腰直角三角形,BE 为角平分线,可证得△ABE ≌△DBE ,即AB =BD ,AE =DE ,所以△ABD 和△ADE 均为等腰三角形;由∠C =45°,ED ⊥DC ,可知△EDC 也符合题意;(2)BE 是∠ABC 的平分线,DE ⊥BC ,根据角平分线定理可知△ABE 关于BE 与△DBE对称,可得出BE ⊥AD ;(3)根据(2),可知△ABE 关于BE 与△DBE 对称,且△DEC 为等腰直角三角形,可推出AB +AE =BD +DC =BC =10.解:(1)△ABC ,△ABD ,△ADE ,△EDC .(2)AD 与BE 垂直.证明:由BE 为∠ABC 的平分线,知∠ABE =∠DBE ,∠BAE =∠BDE =90°,BE =BE ,∴△ABE ≌△DBE ,∴△ABE 沿BE 折叠,一定与△DBE 重合,∴A 、D 是对称点,∴AD ⊥BE .(3)∵BE 是∠ABC 的平分线,DE ⊥BC ,EA ⊥AB ,∴AE =DE .在Rt △ABE 和Rt △DBE 中,∵⎩⎪⎨⎪⎧AE =DE ,BE =BE ,∴Rt △ABE ≌Rt △DBE (HL),∴AB =BD .又∵△ABC 是等腰直角三角形,∠BAC =90°,∴∠C =45°.又∵ED ⊥BC ,∴△DCE 为等腰直角三角形,∴DE =DC ,∴AB +AE =BD +DC =BC=10.① ②考点三:等腰三角形的判定方法(1)根据定义判定;(2)两个角相等的三角形是等腰三角形.【类型一】 确定等腰三角形的个数 【例7】 如图②,在△ABC 中,AB =AC ,∠A =36°,BD 、CE 分别是∠ABC 、∠BCD 的角平分线,则图中的等腰三角形有( )A .5个B .4个C .3个D .2个解析:共有5个.(1)∵AB =AC ,∴△ABC 是等腰三角形;(2)∵BD 、CE 分别是∠ABC 、∠BCD的角平分线,∴∠EBC =12∠ABC ,∠ECB =12∠BCD .∵△ABC 是等腰三角形,∴∠EBC =∠ECB ,∴△BCE 是等腰三角形;(3)∵∠A =36°,AB =AC ,∴∠ABC =∠ACB =12(180°-36°)=72°.又∵BD 是∠ABC 的角平分线,∴∠ABD =12∠ABC =36°=∠A ,∴△ABD 是等腰三角形;同理可证△CDE 和△BCD 也是等腰三角形.故选A.方法总结:确定等腰三角形的个数要先找出相等的边和相等的角,然后确定等腰三角形,再按顺序不重不漏地数出等腰三角形的个数.【类型二】 在坐标系中确定三角形的个数【例8】 已知平面直角坐标系中,点A 的坐标为(-2,3),在y 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )A .3个B .4个C .5个D .6解析:因为△AOP 为等腰三角形,所以可分三类讨论:(1)AO =AP (有一个).此时只要以A 为圆心AO 长为半径画圆,可知圆与y 轴交于O 点和另一个点,另一个点就是点P ;(2)AO=OP (有两个).此时只要以O 为圆心AO 长为半径画圆,可知圆与y 轴交于两个点,这两个点就是P 的两种选择;(3)AP =OP (一个).作AO 的中垂线与y 轴有一个交点,该交点就是点P 的最后一种选择.综上所述,共有4个.故选B. 方法总结:解决此类问题的方法主要是线段垂直平分线与辅助圆的灵活运用以及分类讨论时做到不重不漏.【类型三】 判定一个三角形是等腰三角形【例9】如图,在△ABC中,∠ACB=90°,CD是AB边上的高,AE是∠BAC的角平分线,AE与CD交于点F,求证:△CEF是等腰三角形.解析:根据直角三角形两锐角互余求得∠ABE=∠ACD,然后根据三角形外角的性质求得∠CEF=∠CFE,根据等角对等边求得CE=CF,从而求得△CEF是等腰三角形.证明:∵在△ABC中,∠ACB=90°,∴∠B+∠BAC=90°.∵CD是AB边上的高,∴∠ACD+∠BAC=90°,∴∠B=∠ACD.∵AE是∠BAC的角平分线,∴∠BAE=∠EAC,∴∠B+∠BAE=∠ACD+∠EAC,即∠CEF=∠CFE,∴CE=CF,∴△CEF是等腰三角形.方法总结:“等角对等边”是判定等腰三角形的重要依据,是先有角相等再有边相等,只限于在同一个三角形中,若在两个不同的三角形中,此结论不一定成立.【类型四】等腰三角形性质和判定的综合运用【例10】如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=50°时,求∠DEF的度数.解析:(1)根据等边对等角可得∠B=∠C,利用“边角边”证明△BDE和△CEF全等,根据全等三角形对应边相等可得DE=EF,再根据等腰三角形的定义证明即可;(2)根据全等三角形对应角相等可得∠BDE=∠CEF,然后求出∠BED+∠CEF=∠BED+∠BDE,再利用三角形的内角和定理和平角的定义求出∠B=∠DEF.(1)证明:∵AB =AC ,∴∠B =∠C .在△BDE 和△CEF 中,∵⎩⎪⎨⎪⎧BD =CE ,∠B =∠C ,BE =CF ,∴△BDE ≌△CEF (SAS),∴DE =EF ,∴△DEF 是等腰三角形;(2)解:∵△BDE ≌△CEF ,∴∠BDE =∠CEF ,∴∠BED +∠CEF =∠BED +∠BDE .∵∠B +∠BDE =∠DEF +∠CEF ,∴∠B =∠DEF .∵∠A =50°,AB =AC ,∴∠B =12×(180°-50°)=65°,∴∠DEF =65°.方法总结:等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.经典例题考点一:等腰三角形的概念【例1】等腰三角形的两边长分别为4和9,则这个三角形的周长为考点二:等腰三角形的性质【例3】已知等腰△ABC 中,AB=AC ,D 是BC 边上一点,连接AD ,若△ACD 和△ABD 都是等腰三角形,求∠C 的度数。

等腰三角形的性质与判定(6类热点题型讲练)(解析版) 八年级数学下册

等腰三角形的性质与判定(6类热点题型讲练)(解析版) 八年级数学下册

第01讲等腰三角形的性质与判定(6类热点题型讲练)1.经历“探索一发现一猜想一证明”的过程,逐步掌握综合法证明的方法,发展推理能力.2.进一步了解作为证明基础的几条基本事实的内容,能证明等腰三角形的性质.3.有意识地培养学生对文字语言、符号语言和图形语言的转换能力,关注证明过程及其表达的合理性.知识点01等腰三角形的性质(1)等腰三角形性质1:等腰三角形的两个底角相等(简称:等边对等角)(2)等腰三角形性质2:文字:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称:等腰三角的三线合一)图形:如下所示;符号:在ABC ∆中,AB =AC ,1212,,;,,;,12.BD CD AD BC AD B BD CD AD BC C BD CD ∠=∠⎧⎪=⊥∠=∠⊥∠=∠⎨⎪⊥⎩==若则若则若,则知识点02等腰三角形的判定(1)等腰三角形的判定方法1:(定义法)有两条边相等的三角形是等腰三角形;(2)等腰三角形的判定方法2:有两个角相等的三角形是等腰三角形;(简称:等角对等边)题型01根据等腰三角形腰相等求第三边或周长【例题】(2023上·河南商丘·八年级商丘市实验中学校考阶段练习)一个等腰三角形的两条边长分别为8cm 和4cm ,则第三边的长为cm .【答案】8【分析】本题考查等腰三角形的性质及三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,是解题的关键.【详解】解:①若一腰长为8cm ,则底边为4cm ,则第三边的长为8cm ,488+>,故能组成三角形;②若一腰长为4cm ,则底边为8cm ,则第三边的长为4cm ,448+=,故不能组成三角形.故答案为:8.【变式训练】1.(2023上·甘肃陇南·八年级校考阶段练习)一个等腰三角形有两边分别为3cm 和8cm ,则周长是cm .【答案】19【分析】本题考查了等腰三角形的性质和三角形的三边关系.等腰三角形两边的长为3cm 和8cm ,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】解:①当腰是3cm ,底边是8cm 时:338+<,不满足三角形的三边关系,因此舍去.②当底边是3cm ,腰长是8cm 时,388+>,能构成三角形,则其周长()38819cm =++=.故答案为:19.2.(2023上·山东潍坊·八年级校考阶段练习)若()2450a b -+-=,则以a ,b 为边长的等腰三角形的周长为.【答案】13或14【分析】本题考查了等腰三角形的概念,非负数的性质,以及三角形的三边关系,注意利用分类讨论思想解题.根据非负数的和为零,可得每个非负数同时为零,可得a ,b 的值,根据等腰三角形的概念进行分类讨论,可得答案.【详解】解:∵()2450a b -+-=,且()240a -≥,50b -≥,∴40a -=,50b -=,解得:4a =,5b =,当4为等腰三角形的腰长,5为等腰三角形的底边时,则等腰三角形的周长为44513++=,当5为等腰三角形的腰长,4为等腰三角形的底边时,则等腰三角形的周长为55414++=,故答案为:13或14.题型02根据等腰三角形等边对等角求角的度数题型03根据等腰三角形三线合一进行求解【答案】25【详解】解:如图,作BE ∵AB BC =,∴AE CE =,∵AC CD ⊥,90BAD ∠=︒∴EBA BAE BAE ∠+∠=∠+EBA CAD BAE ∠=∠∠=,【答案】10【详解】解:AB 5BD CD ∴==,210BC BD ∴==,故答案为:10.2.两个同样大小的含(1)求AF 的长.(2)求CD 的长.【详解】(1)解:连接AF ,如下图,根据题意,90BAC ∠=︒,AB ∴222(2)BC AB AC =+=∴190452B ACB ∠=∠=⨯︒=︒,∵F 为BC 中点,题型04根据等腰三角形三线合一进行证明(1)若106BAC DAE ∠∠=︒,(2)求证:BD EC =.【详解】(1)解:∵AB AC =(1180ADE AED ∠=∠=︒∵,AB AC AD AE ==,∴,BF CF DF EF ==,∴BD CE =.【变式训练】1.(2023上·山东威海·七年级校联考期中)如图,已知AB AE ABC AED BC ED =∠=∠=,,,点F 是CD 的中点,连接AF ,请判断AF 与CD 的位置关系.【答案】垂直【分析】此题考查全等三角形的判定和性质,等腰三角形三线合一的性质:连接AC AD ,,证明ABC AED ≌△△,得到AC AD =,根据等腰三角形三线合一的性质得到AF CD ⊥,熟练掌握全等三角形的判定定理及等腰三角形的性质是解题的关键.【详解】答:AF CD⊥连接AC AD,∵AB AE ABC AED BC ED=∠=∠=,,∴ABC AED≌△△∴AC AD=又∵点F 是CD 的中点∴AF CD ⊥.2.如图,在ABC 中,AB AC =,40BAC ∠︒=,AD 是BC 边上的高.线段AC 的垂直平分线交AD 于点E ,交AC 于点F ,连接BE .(1)试问:线段AE 与BE 的长相等吗?请说明理由;(2)求EBD ∠的度数.【详解】(1)解:线段AE 与BE 的长相等,理由如下:连接CE ,如图所示:=,AD∵AB AC=,∴BD CD∴AD为BC的垂直平分线,∵点E在AD上,=,∴BE CE又∵线段AC的垂直平分线交题型05根据等角对等边证明等腰三角形∠,【例题】(2023上·广西玉林·八年级统考期中)如图,点E在BA的延长线上,已知AD平分CAE ∥.求证:ABCAD BC是等腰三角形.【答案】证明见解析【分析】本题主要考查了等角对等边,平行线的性质与角平分线的定义,先根据平行线的性质得到EAD B CAD C ∠=∠∠=∠,,再由角平分线的定义和等量代换得到B C ∠=∠,即可证明ABC 是等腰三角形.【详解】证明:∵AD BC ∥,∴EAD B CAD C ∠=∠∠=∠,,∵AD 平分CAE ∠,∴EAD CAD ∠=∠,∴B C ∠=∠,∴ABC 是等腰三角形.【变式训练】【答案】ABC 是等腰三角形,理由见解析【分析】本题主要考查了等腰三角形的判定,三角形外角的性质,角平分线的定义,设4ACD x ∠=,3ECD x =∠,由角平分线的定义得到13BEC x ABC =-∠∠,A =∠【答案】证明见解析【分析】本题考查了平行线的性质,等腰三角形的性质和判定,证明根据角平分线的定义可得,以及直线平行的性质证明题型06等腰三角形的性质和判定综合应用【例题】如图,在ABC 中,AB AC =,D 是BC 边的中点,连接AD ,BE 平分ABC ∠交AC 于点E .(1)若40C ∠=︒,求BAD ∠的度数;(2)过点E 作EF BC ∥交AB 于点F ,求证:BEF △是等腰三角形.(3)若BE 平分ABC 的周长,AEF △的周长为15,求ABC 的周长.【详解】(1)解:AB AC = ,C ABC ∴∠=∠,∵40C ∠=︒,∴40ABC ∠=︒,AB AC = ,D 为BC 的中点,AD BC ∴⊥,90BDA ∴∠=︒,∴90904050BAD ABC ︒︒︒︒∠=-∠=-=;(2)证明:BE 平分ABC ∠,ABE EBC ∴∠=∠,又∵EF BC ∥,∴EBC BEF ∠=∠,∴EBF FEB ∠=∠,BF EF ∴=,BEF ∴ 是等腰三角形;(3)解:AEF 的周长为15,15AE AF EF ∴++=,BF EF = ,15AE AF BF ∴++=,即15AE AB +=,BE 平分ABC 的周长,=15AE AB BC CE ∴++=,ABC ∴ 的周长+1515=30AE AB BC CE ++=+.【变式训练】1.如图,在ABC 中,AB AC =,D 为CA 延长线上一点,DE BC ⊥于点E ,交AB 于点F .(1)求证:ADF △是等腰三角形(2)若6,3,4AD BE EF ===,求线段AB 的长.(1)试判断折叠后重叠部分△的面积.(2)求重叠部分AFC△【详解】(1)解:AFC∵四边形ABCD是长方形,∥,∴AD BC一、单选题1.(2023上·河南许昌·八年级统考期中)等腰三角形的一个底角为80︒,则这个等腰三角形的顶角为().A .20︒B .80︒C .100︒D .20︒或100︒【答案】A【分析】本题主要查了等腰三角形的性质.根据“等腰三角形两底角相等”,即可求解.【详解】解:∵等腰三角形的一个底角为80︒,∴等腰三角形的顶角为180808020︒-︒-︒=︒.故选:A2.(2024下·全国·七年级假期作业)如图,在ABC 中,,AB AC AD =为BC 边上的中线,30B ∠=︒,则CAD ∠的度数为()A .50︒B .60︒C .70︒D .80︒【答案】B【解析】略3.(2023上·广东珠海·八年级校考阶段练习)下列条件中,可以判定ABC 是等腰三角形的是()A .40B ∠=︒,80C ∠=︒B .123A BC ∠∠∠=::::C .2A B C∠=∠+∠D .三个角的度数之比是2:2:1【答案】D 【分析】本题考查了等腰三角形的判定,三角形内角和定理,熟练掌握等腰三角形的判定是解题的关键.利用三角形内角和定理,等腰三角形的判定,进行计算并逐一判断即可解答.【详解】解:A .∵40B ∠=︒,80C ∠=︒,A .16【答案】A 【分析】此题考查的是全等三角形的判定与性质、等腰三角形的性质,解题关键是掌握并会运用全等三角形的判定与性质、等腰三角形性质定理.先得出ABD ACF ∠=∠,进而得到AF 长,求出AB 出即可.【详解】CE BD ⊥ ,90BEF ∴∠=︒,90BAC ∠=︒ ,90CAF ∴∠=︒,90FAC BAD ∴∠=∠=︒ABD ACF ∴∠=∠.在ABD △和ACF △中【答案】10︒,80︒,140︒或20︒【详解】本题考查了等腰三角形的性质,先利用三角形内角和定理可得:AP AB =时;当AP AB =时;当BA BP =解:∵130ABC ∠=︒,30ACB ∠=︒,+∵BAC ∠是ABP 的一个外角,∴20BAC APB ABP ∠=∠+∠=︒,∵AB AP =,∵AB AP=,20BAP∠=︒,∴180802BAPABP APB︒-∠∠=∠==︒;当BA BP=时,如图:∵BA BP=,∴20BAP BPA∠=∠=︒,∴180140ABP BAP BPA∠=︒-∠-∠=︒;当PA PB=时,如图:∵PA PB=,∴20BAP ABP∠=∠=︒;综上所述:当ABP是等腰三角形时,故答案为:10︒,80︒,140︒或20︒.11.(2023上·广东汕尾·八年级校联考阶段练习)用一条长为21cm的细绳围成一个等腰三角形.(1)如果腰长是底边长的3倍,那么各边的长是多少?(2)能围成有一边的长为5cm的等腰三角形吗?如果能,请求出另两边长.【答案】(1)三角形的三边分别为3cm9cm9cm、、(2)能围成一个底边是5cm,腰长是8cm的等腰三角形【分析】本题考查了等腰三角形的性质,三角形的周长,难点在于要分情况讨论并利用三角形的三边关系进行判断.(1)设底边长为x cm,表示出腰长,然后根据周长列出方程求解即可;(1)求BD的长.(2)求BE的长.【答案】(1)4 (2)5,AE CD ⊥Q ,AD AC =,AE ∴平分CAD ∠,CAE DAE ∴∠=∠,在CAE V 和DAE 中,AC AD CAE DAE AE AE =⎧⎪∠=∠⎨⎪=⎩,()SAS CAE DAE ∴ ≌,CE DE ∴=,90ADE ACE ∠=∠=︒,设BE x =,则8CE DE x ==-,由勾股定理可得:222DE BD BE +=,()22284x x ∴-+=,解得:5x =,5BE ∴=.14.(2023上·浙江宁波·八年级统考期末)如图,在ABC 中,AB AC =,ED AB ∥,分别交BC 、AC 于点D 、E ,点F 在BC 的延长线上,且CF DE =,(1)求证:CEF △是等腰三角形;(2)连接AD ,当AD BC ⊥,8BC =,CEF △的周长为16时,求DEF 的周长.【答案】(1)证明见解析(2)20【分析】本题考查了等腰三角形的判定与性质,掌握等腰三角形的性质,等腰三角形的三线合一,是解答本题的关键.(1)利用等腰三角形的性质得到B ACB ∠=∠,然后推出EDC ECD ∠=∠,DE EC =,结合已知条件,得到结论.当AD BC ⊥时,AB AC =,∴142BD CD BC ===, DEF 的周长DE DF EF =++,∴DEF 的周长CE EF CD =+++15.(2023上·湖北武汉·八年级校联考阶段练习)的平分线,DF AB 交AE 的延长线于(1)若120BAC ∠=︒,求BAD ∠(2)求证:ADF △是等腰三角形.【答案】(1)60度(2)见解析(1)求证:BD CE =;(2)若BD AD =,B DAE ∠=∠,求【答案】(1)见解析(2)108BAC ∠=︒【答案】(1)等腰;(2)3;(3)12;(4)30;(5)5cm【分析】本题考查平行线的性质,角平分线的定义,对角对等边.(1)平行线的性质结合角平分线平分角,得到B C ∠=∠,即可得出结果;(2)平行线的性质结合角平分线平分角,得到A ABC CB =∠∠,进而得到AB AC =即可;(3)同法(2)可得:BD DE =,利用AB AD BD =+,求解即可;(5)同法(2)得到,PD BD PE CE ==,推出PDE △的周长等于BC 的长即可.掌握平行线加角平分线往往存在等腰三角形,是解题的关键.【详解】解:(1)∵AE BC ∥,∴,DAE B CAE C ∠=∠∠=∠,∵AE 平分DAC ∠,∴DAE CAE ∠=∠,∴B C ∠=∠,∴ABC 是等腰三角形;故答案为:等腰;(2)∵BC 平分ABD ∠,AC BD ∥,∴,ABC DBC ACB DBC ∠=∠∠=∠,∴A ABC CB =∠∠,∴3AB AC ==;故答案为:3;(3)同法(2)可得:7BD DE ==,∴5712AB AD BD =+=+=;故答案为:12;(4)同法(2)可得:,FD BD CE EF ==,∴ADE V 的周长30AD AE DE AD AE DF EF AD AE BD CE AB AC =++=+++=+++=+=;故答案为:30;(5)同法(2)可得:,PD BD PE CE ==,∴PDE △的周长5cm PD PE DE BD CE DE BC =++=++==;故答案为:5cm .18.(2023上·福建龙岩·八年级校考期中)概念学习规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.(3)当ACD 是等腰三角形,DA DC =时,如图,则50ACD A ∠=∠=︒,50BCD A ∠=∠=︒∴100ACB ACD BCD ∠=∠+=︒∠;当ACD 是等腰三角形,DA AC =时,如图,则65ACD ADC ∠=∠=︒,50BCD A ∠=∠=︒,∴5065115ACB ∠=︒+︒=︒;当ACD 是等腰三角形,CD AC =的情况不存在;当BCD △是等腰三角形,DC BD =时,如图,则1803ACD BCD B ︒-∠=∠=∠=∴2603ACB ACD BCD ∠=+=∠∠当BCD △是等腰三角形,DB =则BDC BCD ∠=∠,设BDC BCD x ∠=∠=,则B ∠=则1802ACD B x ∠=∠=︒-,由题意得,180250x x ︒-+︒=,解得,2303x ︒=,∴8018023ACD x ︒∠=︒-=,∴3103ACB ︒∠=,综上所述:ACB ∠的度数为100。

八年级数学从等腰三角形看分类讨论专题练习(含答案)

八年级数学从等腰三角形看分类讨论专题练习(含答案)

八年级数学从等腰三角形看分类讨论专题练习试卷简介:分类讨论在中招试题中十分常见,这类题目不仅考查了学生对数学基础知识和方法的掌握,也考查了学生思维的深刻度。

而解决这类问题时,因考虑不全导致的失分现象十分严重,针对这个问题,本套题目以等腰三角形为依托,详细介绍了何时分类、如何分类的思想与方法,希望能对大家有所启发。

学习建议:分类不全面、不知如何分类是同学们在解决分类讨论型问题时的常见问题,如何才能做到最终结果的不重不漏,同学们需要重点注意一下几点:1、熟悉不同图形间的差异,并根据图形做出分类的初始判断;2、准确把握题目告知的信息,从问题中找到分类的依据;3、了解常见问题的分类准则;4、永远比其他人多想一步。

一、单选题(共12道,每道10分)1.某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cmB.12cmC.15cmD.12cm或15cm答案:C解题思路:此题属于腰或底边不确定时注意分类讨论,两条边长轮流做三角形的腰长:(1)6cm做腰长时(如图):周长为6+6+3=15(cm)(2)3cm做腰长时:周长为3+3+6=12(cm)验证,第一种情况:最短边+较短边>最长边(3+6>6),可以构成三角形. 第二种情况:由于3+3=6,不符合最短边+较短边>最长边,构不成三角形. 综上:C选项正确试题难度:一颗星知识点:三角形三边关系2.若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A.50°B.80°C.65°或50°D.50°或80°答案:D解题思路:解题思路:此题属于角不确定时注意50°可能是顶角,可能是底角:(1)50°为顶角时(如图),这个等腰三角形的顶角为50°(2)50°为底角时(如图),可知等腰三角形的两个底角相等,均为50°,由三角形内角和为180°,可求得顶角度数为:80°.综上,D选项正确试题难度:一颗星知识点:等腰三角形的性质3.等腰三角形的两角之差为30°,求该三角形顶角的度数为()A.80°B.40°C.40°或80°D.50°或80°答案:C解题思路:此题属于角不确定时,设顶角为x度,底角为y度,注意分类讨论:(1)顶角-底角=30°此时,满足方程组:解得:(2)底角-顶角=30°,此时满足方程组解得:综上:顶角度数为40°或80°,所以,C 选项正确试题难度:二颗星知识点:等腰三角形的性质4. 如图,在等腰三角形ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连结BE,则∠CBE等于()A.80°B.70°C.60°D.50°答案:C解题思路:此题直接给出了图形,所以不用再分类讨论了.由三角形内角和为180°得∠A+∠ABC+∠C=180°,已知∠A=20°得,∠ABC+∠A=160°,又因为三角形ABC为等腰三角形,即∠ABC=∠C,所以∠ABC=80°,因为DE为线段AB的垂直平分线,所以∠A=∠ABE=20°,从而∠CBE=∠ABC-∠ABE=60°.所以:C选项正确试题难度:二颗星知识点:等腰三角形的性质5. 等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A.60°B.120°C.60°或150°D.60°或120°答案:D解题思路:此题属于高的位置关系不确定时, 要考虑两种情况(1)(如图)已知△ABC中AB=AC,BD为AC线的高,即∠ABD=30°则∠A=90°-30°=60°(2)(如图)已知△ABC 中AB=AC,BD垂直于AC交CA的延长线于点D,其中∠ABD=30°,则∠ABD=60°,从而∠BAC=180°-60°=120°综上,顶角度数为60°或120°,D选项正确试题难度:二颗星知识点:等腰三角形的性质6. 在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A.7B.11C.7或11D.15答案:C解题思路:先根据题意做出图形,如图:设AD长为x,BC长为y则CD的长为x,AB为2x,则中线BD分三角形周长两部分为x+2x=3x,x+y从而应有两种情况,即:或解得或最后要检验:最短边+较短边>第三边,此题经过检验,均符合题意,所以底边长为7或11,答案为C试题难度:二颗星知识点:等腰三角形的性质7. 在△ABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,则底角∠B=( )A.70°B.50°C.70°或20°D.20°答案:C解题思路:根据题意作图:题干中说的是AB的中垂线与AC所在直线相交所得的锐角为50°,所以分两种情况:(1)如图与AC线段相交所得锐角为50°,即∠1=50°,则此时∠A=40°,∠B=∠C=(180°-40°)/2=70°(2)如图与AC线段所在直线相交所得锐角为50°,即∠1=50°,则此时∠BAE=40°,所以,∠B=∠C=(180°-140°)/2= 20°综上,C选项正确.试题难度:三颗星知识点:等腰三角形的性质8.等腰三角形的周长是16,其中两边之差为2,求它的腰长为()A.B.6D.6或答案:D解题思路:设腰长为x,底边长为y,因不知腰长与底边长的大小关系,注意分类讨论:(1)x>y时,此时有以下方程组成立:,解得:(2)x<y时,此时有以下方程组成立:,解得:验证:最短边+较短边>最长边,由4+4>6知第一种情况成立,即:腰长为6. 由+>知第二种情况也成立,即:腰长为. 综上:答案为D试题难度:三颗星知识点:等腰三角形的性质9.已知线段AB,以点A和点B为其中两个点作位置不同的等腰直角三角形,一共可以作( )A.2个B.4个C.6个D.8个答案:C解题思路:此题属于腰或底边不确定时,分两种情况:(1)线段AB为腰时,此时如图:有等腰直角三角形ABC,等腰直角三角形ABD,等腰直角三角形ABG,等腰直角三角形ABF (2)线段AB为底边时,此时如图:有等腰三角形ABI,有等腰三角形ABK 综上共有6个,从而答案为C试题难度:三颗星知识点:等腰三角形的性质10. 等腰三角形周长是29,其中一边是7,则等腰三角形的底边长是()A.15B.15或7C.7D.11答案:C解题思路:此题属于腰或底边不确定时,分两种情况讨论(1)7为底时,腰=(29-7)/2=11 (2)7为腰时,底=29-7-7=15,此时7+7=14小于15不满足构成三角形的条件,舍去正确答案:C试题难度:二颗星知识点:等腰三角形的性质11. 已知一等腰三角形的两个内角的度数之比为1:4,求等腰三角形底角的度数()A.30°B.80°C.30°或80°D.90°答案:C解题思路:此题属于角不确定时(1)顶角与底角之比为1:4,由三角形内角和定理可得底角+底角+顶角=180°求得底角=80°(2)底角与顶角之比为1:4,同样可求得底角=30°正确答案:C试题难度:二颗星知识点:等腰三角形的性质12.等腰三角形一腰上的高与一边的夹角为50°,则该等腰三角形的底角度数()A.50°B.40°或20°或70°C.70°或20°D.40°或70°答案:B解题思路:此题属于高的位置关系不确定时,如图图一不符合实际,舍去正确答案:B试题难度:三颗星知识点:等腰三角形的性质。

2020年秋人教版八年级数学上册第13章《等腰三角形》(讲义、随堂测试、习题及答案)

2020年秋人教版八年级数学上册第13章《等腰三角形》(讲义、随堂测试、习题及答案)

人教版八年级数学上册第13章等腰三角形(讲义)➢ 课前预习1. 已知:如图,在△ABC 中,AB =AC .(1)若∠1=∠2,则BD ____DC (填“>”,“<”或“=”); (2)若BD =CD ,则AD ____BC (填“⊥”或“∥”); (3)若AD ⊥BC ,则∠1____∠2(填“>”,“<”或“=”).D CB A 212. 已知等腰三角形的两边长分别为5和8,则这个三角形的周长为_________.➢ 知识点睛1. ______________的三角形叫做等腰三角形.2. 等腰三角形是_________图形.等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“__________”),它们所在的直线都是等腰三角形的_________.3. 等腰三角形的两个底角________,简称______________.如果一个三角形有两个角相等,那么它们所对的边也______,简称_________________.4. 三边都______的三角形是等边三角形.等边三角形三边都相等,三个内角都是________. 5. “三线合一”模块书写:已知:如图,在△ABC 中,AB =AC ,AD 平分∠BAC 交BC 于点D .求证:BD =CD . 证明:➢ 精讲精练1. 在下面的等腰三角形中,∠A 是顶角,请分别将它们底角的度数标注在相应的图上.CB C B C B AAA108°60°2. 如图,在△ACD 中,AD =BD =BC ,若∠C =25°,则∠ADB =____.D CB ADCBAEDCBA第2题图第3题图3. 如图,在△ABC 中,AB =AC ,BD 平分∠ABC ,BD =BE ,∠A =100°,则∠DEC =________.4. 如图,在等腰三角形ABC 中,AB =AC ,D 为边BC 上一点,CD =AC ,AD =BD ,则∠BAC =______.CD B AABCE第4题图第5题图5. 如图,在△ABC 中,AB =AC ,点D 是BC 的中点,点E 在AC 上,AD =AE ,若∠BAD =50°,则∠CDE =________.6. 如图,在△ABC 中,已知AB =AC ,AD ⊥BC 于点D ,过点D 作DE ∥AB 交AC 于点E .求证:AE =ED .7. 已知:如图,在△ABC 中,AB =AC ,点D 在△ABC 外,CD ⊥AD于点D ,12CD BC.求证:∠ACD =∠B . E CB AAB CD8. 已知:如图,△ABC 是等边三角形,D 是BC 的中点,DF ⊥AC 于F ,延长DF 到E ,使EF =DF ,连接AE .求∠E 的度数.FE DCBA9. 若等腰三角形的周长为13 cm ,其中一边长为3 cm ,则该等腰三角形的底边长为_______________.10. 若等腰三角形的一个内角为40°,则此等腰三角形的顶角为______________.11.若等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,则此等腰三角形的顶角为______________.12.已知:如图,线段AB的端点A在直线l上(AB与l不垂直),请在直线l上另找一点C,使△ABC是等腰三角形.这样的点能找几个?请你找出所有符合条件的点.13.已知:如图,线段AB的端点A在直线l上,AB与l的夹角为60°,请在直线l上另找一点C,使△ABC是等腰三角形.这样的点能找几个?请你找出所有符合条件的点.➢课前预习1.(1)=(2)⊥(3)=2.18或21➢知识点睛1.有两边相等2.轴对称,三线合一,对称轴3.相等,等边对等角相等,等角对等边4.相等,60°5.证明:如图∵AB=AC,AD平分∠BAC∴D为BC的中点(等腰三角形三线合一)∴BD=CD➢精讲精练1.60°,60°;45°,45°;36°,36°2.80°3.100°4.108°5.25°6.证明略提示:根据等腰三角形三线合一可得∠BAD=∠CAD,再由平行可以得到∠CAD=∠BAD=∠ADE,从而AE=DE7.证明略提示:过点A作AE⊥BC于点E,根据等腰三角形三线合一可得BE=CD,再证△ABE≌△ACD即可.8.∠E=60°提示:连接AD,利用垂直平分线定理得AD=AE,从而∠E=∠ADE9.3cm10.40°或100°11.50°或130°12.这样的点能找4个,作图略13.这样的点能找2个,作图略等腰三角形(随堂测试)1.如图,在△ABC中,D为AC边上一点,且AD=BD=BC.若∠A=40°,则∠DBC=______.CDB 2.已知等腰三角形的周长为28cm,其中一边长为10cm,则该等腰三角形的底边长为_______________.3. 已知:如图,在△ABC 中,E 为BC 边上一点,连接AE ,D 为AE 的中点,连接BD ,∠BAD =∠EAC +∠C .求证:AD ⊥BD .【参考答案】1. 20°2. 10cm 或8cm3. 证明略提示:利用外角可以得到∠AEB =∠BAD ,根据等角对等边,得BA =BE ,因为D 是AE 的中点,利用等腰三角形三线合一,可以得到AD ⊥BD等腰三角形(习题)➢ 例题示范E DCB A例1:如图,在△ABC 中,AB =AC ,点D 在△ABC 外,CD ⊥AD 于点D ,12CD BC =.求证:∠ACD =∠B . 【思路分析】 ① 读题标注:② 梳理思路:由条件12CD BC =,可尝试取BC 的中点E ,此时结合等腰构造三线合一的线AE ,如图所示.要证∠ACD =∠B ,可以证明△ABE ≌△ACD .【过程书写】证明:如图,取BC 的中点E ,连接AE .∵E 是BC 的中点∴12BE BC =∵12CD BC = ∴BE =CD∵AB =AC ,E 是BC 的中点 ∴AE ⊥BC ∴∠AEB =90° ∵CD ⊥AD ∴∠D =90°∴∠AEB =∠D =90°在Rt △ABE 和Rt △ACD 中 AB AC BE CD =⎧⎨=⎩(已知)(已证)∴Rt △ABE ≌Rt △ACD (HL ) ∴∠ACD =∠B例2:等腰三角形的周长为12cm ,其中一边长为5cm ,则该等腰三角形的底边长为__________cm .【思路分析】ACDEA B C D A CD等腰三角形一边长为5cm ,这一边可能是底,也可能是腰,故需分类讨论: ① 如果5cm 为底,则根据周长为12cm ,可知腰长为3.5cm .此时两边之和大于第三边,这个三角形存在.② 如果5cm 为腰,则根据周长为12cm ,可知底边长为2cm .此时两边之和大于第三边,这个三角形存在.综上,该等腰三角形的底边长为5cm 或2cm . ➢ 巩固练习1. 已知:如图,在△ABC 中,AB =AC ,∠A =80°,求∠C 的度数.2. 如图,在△ABC 中,AB =AC ,BE ∥AC ,∠BDE =100°,∠BAD =70°,则∠E =______.第2题图第3题图3. 已知:如图,在△ABC 中,AB =AC ,D 为AB 边上一点,若CD =AD =BC ,则∠A =_________.4. 如图,在△ABC 中,∠ABC 的平分线和∠ACB 的平分线相交于点E ,过点E作MN ∥BC ,交AB 于点M ,交AC 于点N .若BM +CN =9,则线段MN 的长为()CBAED CB ADB AA .6B .7C .8D .95. 已知:如图,在△ABC 中,AB =AC ,AD 是BC 边上的中线,点P 在AD 上.求证:PB=PC .6. 已知:如图,B ,D ,E ,C 在同一直线上,AB =AC ,AD =AE .求证:BD =CE .N M EC BADCBAPA B CD E7.已知等腰三角形的两边长分别为4和8,则该等腰三角形的周长为_________________.8.若等腰三角形的一个角比另一个角大30°,则该等腰三角形的顶角的度数为_____________.9.已知:如图,线段AB的端点A在直线l上,AB与l的夹角是30°,请在直线l上另找一点C,使△ABC是等腰三角形.这样的点能找几个?请找出所有符合条件的点.➢思考小结1.要证明边相等或角相等,可以考虑两种思路:①如果边或者角在两个三角形里面,则证明两个三角形__________;②如果边或角在一个三角形里面,证明三角形是_______三角形.2.将两个含30°角的三角板如图放置,则△ABD是_________三角形(“等腰”或“等边”),故AB_____BD,BC=____BD,所以BC=____AB,从而得到对于含有30°角的直角三角形,30°角所对的直角边是斜边的_______.【参考答案】➢巩固练习 1.50° 2.50° 3.36° 4. D5. 证明略提示:利用等腰三角形三线合一的性质,得AD 垂直平分BC ,从而得到PB =PC6. 证明略提示:根据等边对等角可得∠B =∠C ,∠ADE =∠AED ,进而可得∠BAD =∠CAE ,从而证明△ABD ≌△ACE ,根据全等三角形对应边相等,可得BD =CE7. 20 D C B A8.80°或40°9.这样的点能找4个,作图略➢思考小结1.①全等②等腰2.等边,=,12,12,一半。

等腰三角形 最短路径(含例题)

等腰三角形 最短路径(含例题)

1.等腰三角形的性质性质1:等腰三角形的两个底角__________(简写成“等边对等角”).性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互__________(简写成“三线合一”).等腰三角形的其他性质:(1)等腰三角形两腰上的中线、高分别相等.(2)等腰三角形两底角的平分线相等.(3)等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高.(4)当等腰三角形的顶角为90°时,此等腰三角形为等腰直角三角形,它的两条直角边相等,两个锐角都是45°.2.等腰三角形的判定判定等腰三角形的方法:(1)定义法:有两边__________的三角形是等腰三角形;(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对__________”).数学语言:在△ABC中,∵∠B=∠C,∴AB=AC(等角对等边).【注意】(1)“等角对等边”不能叙述为:如果一个三角形有两个底角相等,那么它的两腰也相等.因为在没有判定出它是等腰三角形之前,不能用“底角”“腰”这些名词,只有等腰三角形才有“底角”“腰”.(2)“等角对等边”与“等边对等角”的区别:由两边相等得出它们所对的角相等,是等腰三角形的性质;由三角形有两角相等得出它是等腰三角形,是等腰三角形的判定.3.等边三角形及其性质等边三角形的概念:三边都相等的三角形是__________三角形.等边三角形的性质:等边三角形的三个内角都相等,并且每一个角都等于__________.【注意】(1)等边三角形是轴对称图形,它有三条对称轴;(2)等边三角形是特殊的等腰三角形,它具有等腰三角形的一切性质.4.等边三角形的判定判定等边三角形的方法:(1)定义法:三边都相等的三角形是等边三角形.(2)三个角都相等的三角形是等边三角形.(3)有一个角是60°的__________三角形是等边三角形.5.含30°角的直角三角形的性质一在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的__________.【注意】(1)该性质是含30°角的特殊直角三角形的性质,一般的直角三角形或非直角三角形没有这个性质,更不能应用.(2)这个性质主要应用于计算或证明线段的倍分关系.(3)该性质的证明出自于等边三角形,所以它与等边三角形联系密切.(4)在有些题目中,若给出的角是15°时,往往运用一个外角等于和它不相邻的两个内角的和将15°的角转化后,再利用这个性质解决问题.6.最短路径问题1.求直线异侧的两点到直线上一点距离的和最小的问题,只要连接这两点,所得线段与直线的交点即为所求的位置.2.求直线同侧的两点到直线上一点距离的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,所得线段与该直线的交点即为所求的位置.K知识参考答案:1.相等,重合2.相等,等边3.等边,60°4.等腰5.一半K—重点等腰三角形的判定和性质,等边三角形的判定和性质K—难点等腰三角形中的分类讨论问题K—易错等腰三角形“三线合一”性质的应用一、等腰三角形的性质和判定1.应用“三线合一”性质的前提条件是在等腰三角形中,且必须是底边上的中线、底边上的高和顶角平分线,若是一腰上的高与中线就不一定重合.2.等腰三角形是轴对称图形,顶角平分线(或底边上的高、底边上的中线)所在的直线是它的对称轴.【例1】如图,AD⊥BC,D是BC的中点,那么下列结论错误的是A.△ABD≌△ACD B.∠B=∠CC.△ABC是等腰三角形D.△ABC是等边三角形【答案】D【解析】因为AD⊥BC,D是BC的中点,所以△ABD与△ACD关于直线AD对称,由轴对称的性质可知△ABD ≌△ACD,∠B=∠C,△ABC是等腰三角形,但不能得到△ABC是等边三角形,故选D.【例2】已知等腰三角形一腰上的高与另一腰的夹角为60︒,则这个等腰三角形的顶角是A.30︒B.60︒C.150︒D.30︒或150︒【答案】D【例3】如图,在△ABC中,AB=AC,AD⊥BC于D,E是AB上的一点,EF∥AD交CA的延长线于F.求证:△AEF是等腰三角形.【解析】∵AB=AC,AD⊥BC,∴∠BAD=∠CAD.又∵AD∥EF,∴∠F=∠CAD,∠FEA=∠BAD,∴∠FEA=∠F,∴△AEF是等腰三角形.二、等边三角形的性质和判定判定等边三角形时常用的选择方法:若已知三边关系,一般选用(1);若已知三角关系,一般选用(2);若已知该三角形是等腰三角形,一般选用(3).【例4】下列推理中,错误的是A.∵∠A=∠B=∠C,∴△ABC是等边三角形B.∵AB=AC,且∠B=∠C,∴△ABC是等边三角形C.∵∠A=60°,∠B=60°,∴△ABC是等边三角形D.∵AB=AC,∠B=60°,∴△ABC是等边三角形【答案】B【例5】如图,已知OA=5,P是射线ON上的一个动点,∠AON=60°.当OP=__________时,△AOP为等边三角形.【答案】5【解析】已知∠AON=60°,当OP=OA=5时,根据有一个角为60°的等腰三角形为等边三角形,可得△AOP 为等边三角形.故答案为:5.三、含30°角的直角三角形的性质含30°角的直角三角形的性质是求线段长度和证明线段倍分关系的重要依据.【例6】在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6 cm,那么CE等于A.4 cm B.2 cmC.3 cm D.1 cm【答案】C四、最短路径问题通常利用轴对称变换将不在一条直线上的两条或多条线段转化到一条直线上,从而作出最短路径的选择. 【例7】公园内两条小河MO,NO在O处汇合,两河形成的半岛上有一处景点P(如图所示).现计划在两条小河上各建一座小桥Q和R,并在半岛上修三段小路,连通两座小桥与景点,这两座小桥应建在何处才能使修路费用最少?请说明理由.【解析】如图,作P关于OM的对称点P′,作P关于ON的对称点P″,连接P′P″,分别交MO,NO于Q,R,连接PQ,PR,则P′Q=PQ,PR=P″R,则Q,R就是小桥所在的位置.理由:在OM上任取一个异于Q的点Q′,在ON上任取一个异于R的点R′,连接PQ′,P′Q′,Q′R′,P″R′,PR′,则PQ′=P′Q′,PR′=P″R′,且P′Q′+Q′R′+R′P″>P′Q+QR+RP″,所以△PQR的周长最小,故Q,R就是我们所求的小桥的位置.。

2021年中考数学专题训练:等腰三角形(含答案)

2021年中考数学专题训练:等腰三角形(含答案)

2021中考数学专题训练:等腰三角形一、选择题1. (2019•天水)如图,等边OAB △的边长为2,则点B 的坐标为A .(11),B .(13),C .(31),D .(33),2. (2020·福建)如图,AD 是等腰三角形ABC 的顶角平分线,5 BD ,则CD 等于( )A.10B.5C.4D.33. (2020·烟台)量角器测角度时摆放的位置如图所示,在△AOB中,射线OC交边AB 于点D ,则∠ADC 的度数为( )A .60°B .70°C .80°D .85°4. (2020·铜仁)已知等边三角形一边上的高为2,则它的边长为( )A .2B .3C .4D .45. (2020·河南)如图,在△ABC 中,AB =BC 3,∠BAC =30°,分别以点A ,C 为圆心,AC 的长为半径作弧,两弧交于点D ,连接DA ,DC ,则四边形ABCD 的面积为( )A.63B.9C.6D. 336. (2020自贡)如图,在R t△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50°B.40°C.30°D.20°7. (2020·玉林)如图,A,B,C三岛的平面图,C岛在A岛的北偏东35°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西55°方向,则A,B,C三岛组成一个()A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形8. (2020·无锡)如图,等边△ABC的边长为3,点D在边AC上,AD=12,线段PQ在边BA上运动,PQ=12,有下列结论:①CP与QD可能相等;②△AQD与△BCP可能相似;③四边形PCDQ面积的最大值为31316;④四边形PCDQ周长的最小值为3+37 2.其中,正确结论的序号为()A.①④B.②④C.①③D.②③DQPCBA二、填空题9. 如图,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B,C,D恰好在同一直线上,则∠B的度数为.10. 若等腰三角形的一个底角为72°,则这个等腰三角形的顶角为.11. (2019•哈尔滨)在ABC△中,50A∠=︒,30B∠=︒,点D在AB边上,连接CD,若ACD△为直角三角形,则BCD∠的度数为__________.12. (2020·湖北孝感)某型号飞机的机翼形状如图所示,根据图中数据计算AB 的长为________米.(结果保留根号)13. (2020·贵阳)(4分)如图,△ABC中,点E在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE的延长线于点D,BD=8,AC=11,则边BC的长为.14. (2019•黄冈)如图,AC BD,在AB的同侧,288AC BD AB===,,,点M为AB的中点,若120CMD∠=︒,则CD的最大值是__________.三、解答题15. 已知:如图,B ,E ,F ,C四点在同一条直线上,AB =DC ,BE =CF ,∠B=∠C .求证:OA =OD .16. (2020·广东)如题20图,在△ABC 中,点D 、E 分别是AB 、AC 边上的点,BD =CE ,∠ABE =∠ACD ,BE 与CD 相交于点F .求证:△ABC 是等腰三角形.FEAD17. 如图,已知BE 、CF 分别为ABC ∆中B ∠、C ∠的平分线,AM BE ⊥于M ,AN CF ⊥于N ,求证:MN BC ∥.NMEFCBA18. 如图,在四边形ABCD 中,∠DAB =∠ABC =90°,AB =BC ,E 是AB 的中点,CE ⊥BD ,连接AC 交DE 于点M .(1)求证:AD =BE ;(2)求证:AC 是线段ED 的垂直平分线; (3)△DBC 是等腰三角形吗?说明理由.2021中考数学专题训练:等腰三角形-答案一、选择题 1. 【答案】B【解析】如图,过点B 作BH AO ⊥于H 点,∵OAB △是等边三角形,∴1OH =,22=213BH -=.∴点B 的坐标为(13),.故选B .2. 【答案】B【解析】本题考查了等腰三角形三线合一的性质,∵AD 是等腰三角形ABC 的顶角平分线,5=BD ,∴CD=BD=5,因此本题选B . 3. 【答案】∵OA =OB ,∠AOB =140°, ∴∠A =∠B(180°﹣140°)=20°,∵∠AOC =60°,∴∠ADC =∠A +∠AOC =20°+60°=80°, 故选:C .4. 【答案】C【解析】设等边三角形的边长为2x ,过等边三角形的一个顶点作对边的高,由等边三角形“三线合一”的性质得直角三角形的一条直角边为x ,由勾股定理得x 2+(2)2=(2x )2,解得x =4,因此本题选C .5. 【答案】D【解析】∵分别以点A 、C 为圆心,AC 的长为半径作弧,两弧交于点D ,∴AD=AC=CD ,∴△ACD 是等边三角形,∴∠DAC=60°.∵AB=BC ,AD=CD ,连接BD 交AC 于点E ,∴BD 垂直平分AC ,∴∠AEB=90°.∵∠BAC=30°, AB= 3,∴BE=32,AE=32,∴AC=3.在R t △ADE 中,∵∠DAC=60°,∠AED=90°,AE=32,∴DE=332,∴BD=333232,∴四边形ABCD 的面积为:3333221=⨯⨯.6. 【答案】D .【解析】本题考查了直角三角形,圆,等腰三角形等知识,∵在R t △ABC 中,∠ACB =90°,∠A =50°,∴∠B =40°,∵BC =BD ,∴∠BCD =∠BDC (180°﹣40°)=70°,∴∠ACD =90°﹣70°=20°,因此本题选D .7. 【答案】A【解析】如图所示:∵C 岛在A 岛的北偏东35°方向,∴∠CAD =35°, ∵B 岛在A 岛的北偏东80°方向,∴∠BAD =80°,∴∠CAB =∠BAD -∠CAD =45°,∵C 岛在B 岛北偏西55°方向,∴∠CBE =55°,又∵DA ∥EB ,∴∠ABE +∠BAD =180°,∴∠ABE =100°, ∵∠CBE =55°,∴∠CBA =100°-55°=45°,∴∠CBA =∠CAB ,∴CA =CB , 在△ABC 中,∴∠C =180°-∠ABC -∠CAB =180°-45°-45°=90°,∴△ABC 为等腰直角三角形,故选:C . 8. 【答案】 D【解析】设AQ =x ,则BP =52—x①如图1,当点P 与B 重合时,此时QD 为最大,过点Q 作QE ⊥AC ,∵AQ =52,∴AE =54,QE =534,∴DE =34,∴此时QD =212,即0≤QD ≤212;而332≤CP ≤3,两个范围没有交集,即不可能相等;①错误②若△AQD ∽△BCP ,则AD BP =AQ BC ,代入得2x 2—5x +3=0,解得x 1=1,x 2=32,∴都存在,∴②正确;③如图2,过点D 作DE ⊥AB ,过点P 作PF ⊥BC ,S 四边形PCDQ =S △ABC —S △AQD —S△BPC=34×32-12⋅x ⋅34-12×3×34(52-x )=34 x +21316,∵52—x ≥0,即x ≤52,∴当x =52时面积最大为31316;③正确;④如图,将D 沿AB 方向平移12个单位得到E ,连接PE ,即四边形PQDE 为平行四边形,∴QD =PE ,四边形周长为PQ +QD +CD +CP =3+PE +PC ,即求PE +PC 的最小值,作点E 关于AB 的对称点F ,连接CF ,线段CF 的长即为PE +PC 的最小值;过点D 作DG ⊥AB ,∴AG =14,EN =FN =HM =34,∴CH =332+34=734,FH =MN =32-14-12=34,∴FC =392,∴四边形PCDQ 周长的最小值为3+392,④错误.二、填空题 9. 【答案】15° [解析]∵△ABC 绕点A 逆时针旋转150°得到△ADE , ∴∠BAD=150°,△ABC ≌△ADE ,AB=AD ,NMHG AB CD EFC B FE ABCP QDD Q C B(P)AE∴△BAD 是等腰三角形,∴∠B=∠ADB=(180°-∠BAD )=15°.10. 【答案】36°[解析]∵等腰三角形的一个底角为72°,∴这个等腰三角形的顶角为180°-72°×2=36°.11. 【答案】60︒或10︒【解析】分两种情况: ①如图1,当90ADC ∠=︒时,∵30B ∠=︒,∴903060BCD ∠=︒-︒=︒; ②如图2,当90ACD ∠=︒时,∵50A ∠=︒,30B ∠=︒,∴1803050100ACB ∠=︒-︒-︒=︒, ∴1009010BCD ∠=︒-︒=︒,综上,则BCD ∠的度数为60︒或10︒.故答案为:60︒或10︒.12. 【答案】(533-1.6).【解析】如图,过点A 作AMCM 于M ,则CM=5m ,在R t △BCM 中,∠BCM=30°,所以BM=CM tan 30°53.由题意可知△DCN 是等腰直角三角形,所以CN=CD=3.4m ,所以MN=5-3.4=1.6(m ),因为△AMN 是等腰直角三角形,所以MN=AM=1.6m ,所以AB=BM-AM=(533-1.6)m .故答案为(533-1.6).13. 【答案】4【解析】解:延长BD 到F ,使得DF =BD ,∵CD ⊥BF ,∴△BCF 是等腰三角形,∴BC =CF ,过点C 点作CH ∥AB ,交BF 于点H ∴∠ABD =∠CHD =2∠CBD =2∠F ,∴HF =HC ,∵BD =8,AC =11,∴DH =BH ﹣BD =AC ﹣BD =3,∴HF =HC =8﹣3=5, 在R t △CDH ,∴由勾股定理可知:CD =4,在R t △BCD 中,∴BC 4,故答案为:414. 【答案】14【解析】如图,作点A 关于CM 的对称点A',点B 关于DM 的对称点B'.∵120CMD ∠=︒,∴60AMC DMB ∠+∠=︒, ∴60CMA'DMB'∠+∠=︒, ∴60A'MB'∠=︒, ∵MA'MB'=,∴A'MB'△为等边三角形,∵14CD CA'A'B'B'D CA AM BD ≤++=++=,∴CD 的最大值为14,故答案为:14.三、解答题15. 【答案】证明:∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE.在△ABF 和△DCE 中,⎩⎨⎧AB =DC ,∠B =∠C ,BF =CE ,∴△ABF ≌△DCE.∴AF =DE ,∠AFB =∠DEC. ∴OF =OE.∴AF -OF =DE -OE ,即OA =OD.16. 【答案】证明:在△BFD 和△CFE 中,∠ABE=∠ACD ,∠DFB=∠CFE ,BD=CE , ∴△BFD ≌△CFE (AAS ).∴∠DBF=∠ECF.∵∠ABE=∠ACD ∴∠DBF+∠ABE=∠ECF+∠ACD.∴∠ABC=∠ACB.∴ AB=AC.∴ △ ABC 是等腰三角形.【解析】先利用三角形边边角的判定方法证明∠DBF=∠ECF ,再根据等式的性质,加上相等角得到∠ABC=∠ACB ,等角对等边,得到AB=AC.根据等腰三角形定义得到△ ABC 是等腰三角形.17. 【答案】延长AM 、AN 交BC 于点Q 、R .由等腰三角形三线合一可得AM QM =、AN RN =再由三角形中位线可得MN BC ∥.18. 【答案】解:(1)证明:∵∠ABC =90°, ∴∠ABD +∠DBC =90°. ∵CE ⊥BD ,∴∠BCE +∠DBC =90°. ∴∠ABD =∠BCE. 在△DAB 和△EBC 中,⎩⎨⎧∠ABD =∠BCE ,AB =BC ,∠DAB =∠EBC =90°,∴△DAB ≌△EBC(ASA). ∴AD =BE.(2)证明:∵E 是AB 的中点,∴AE =BE. ∵BE =AD ,∴AE =AD.∴点A 在线段ED 的垂直平分线上. ∵AB =BC ,∠ABC =90°, ∴∠BAC =∠BCA =45°.∵∠BAD =90°,∴∠BAC =∠DAC =45°.在△EAC 和△DAC 中,⎩⎨⎧AE =AD ,∠EAC =∠DAC ,AC =AC ,∴△EAC ≌△DAC(SAS).∴CE =CD.∴点C 在线段ED 的垂直平分线上. ∴AC 是线段ED 的垂直平分线.(3)△DBC 是等腰三角形.理由:由(1)知△DAB ≌△EBC ,∴BD =CE. 由(2)知CE =CD.∴BD =CD.∴△DBC 是等腰三角形.。

2021年中考数学一轮复习 等腰三角形的性质 专项练习题(含答案解析)

2021年中考数学一轮复习 等腰三角形的性质 专项练习题(含答案解析)

2021年中考数学一轮复习等腰三角形的性质专项练习题1.等腰三角形,一腰上的中线将它的周长分成12和9两部分,则腰长为.2.如图,直线l经过⊙O的圆心O,且与⊙O交于A、B两点,点C在⊙O上,且∠AOC =30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于另一点Q,如果QP=QO,则∠OCP=.3.设锐角△ABC的边BC上有一点D,使得AD把△ABC分成两个等腰三角形,试求△ABC的最小内角的取值范围为.4.如图,在△ABC中,AB=AC,AD为BC上的高线,E为AC上一点,且有AE=AD.已知∠EDC=12°,则∠B=.5.如图,在四边形ABCD中,AB=AC=AD,若∠BAC=25°,∠CAD=75°,则∠BDC=度,∠DBC=度.6.已知△ABC中,AB=AC,线段AB的垂直平分线与直线AC相交形成的锐角是50°,则∠BAC=.7.等腰三角形两边长分别为4、7,则其周长等于.8.如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为.9.若n个等腰三角形的顶角α1、α2、…、αn两两不等,它们的共同特点是:被一条直线分得的两个较小三角形也是等腰三角形,则α1+α2+…+αn=.10.如图,已知△ABC中,AB=AC,D是BC上一点,且AD=DB,DC=CA,则∠BAC =°.11.如图,在△ABC中,AB=AC,∠BAD=30°,AE=AD,则∠EDC的度数是.12.如图,在△ABC中,∠ABC=100°,∠ACB=20°,CE是∠ACB的平分线,D 是AC上的一点且BD=ED,若∠CBD=20°,则∠CED的度数为.13.已知+|b﹣|=0,那么边长为a,b的等腰三角形的腰长为.14.有一个等腰三角形纸片,若能从一个底角的顶点出发,将其剪成两个等腰三角形纸片,则原等腰三角形纸片的顶角为.15.等腰三角形的一条腰上的高线等于该三角形某一条边的长度的一半,则其顶角的度数等于度,度,度.16.等腰△ABC的周长为10cm,底边长为y cm,腰长为x cm,则腰长x的取值范围是.17.如图,在△ABC中,AB=AC,AD=AE,∠BAD=60°,则∠EDC=.。

2022-2023学年北师大版八年级数学下册《1-1等腰三角形》知识点分类练习题(附答案)

2022-2023学年北师大版八年级数学下册《1-1等腰三角形》知识点分类练习题(附答案)

2022-2023学年北师大版八年级数学下册《1.1等腰三角形》知识点分类练习题(附答案)一.等腰三角形的性质1.等腰三角形的两条边长分别为8和4,则它的周长等于()A.12B.16C.20D.16或202.如图,一个小孩坐在秋千上,若秋千绕点O旋转了86°,小孩的位置也从A点运动到了A'点,则∠OA'A的度数为()A.33°B.37°C.43°D.47°3.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角的度数为()A.50°B.27°C.64°或27°D.63°或27°4.若实数m、n满足等式+|n﹣4|=0.且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是.5.如图,在△ABC中,AB=AC,∠A=50°,P是△ABC内一点,且∠ACP=∠PBC,则∠BPC的度数为.6.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D等于.7.如图,在等腰△ABC中,∠A=56°,AB=AC.在边AC上任取一点A1,延长BC到C1,使A1C=CC1,得到△A1CC1;在边A1C1上任取一点A2,延长CC1到C2,使A2C1=C1C2,得到A2C1C2,…,按此做法继续下去,则∠A2022C2022C2021的度数是()A.×62°B.×62°C.×62°D.×62°8.如图,在△ABC中,AD⊥BC,垂足为D,BD=CD,延长BC至E,使得CE=CA,连接AE.(1)若∠E=24°,求∠B;(2)若AB=5,AD=4,求△ABE面积.9.如图,△ABC中,AB=AC.O是△ABC内一点,OD是AB的垂直平分线,OF⊥AC,OD=OF.(1)当∠DOF=126°时,求:∠OBC的度数.(2)判断△AOC的形状,并证明.二.等腰三角形的判定10.如图,已知点P是射线MN上一动点,∠AMN=35°,当∠A为时,△AMP 是等腰三角形.11.如图,在△ABC中,AB=AC,∠BAC=36°,CD是∠ACB的平分线交AB于点D,(1)求∠ADC的度数;(2)过点A作AE∥BC,交CD的延长交于点E.①求证:△ADE是等腰三角形;②判断:△ACE是否是等腰三角形,请先写出结论,再说明理由.三.等腰三角形的判定与性质12.如图,D为△ABC内一点,CD平分∠ACB,BE⊥CD,垂足为D,交AC于点E,∠A =∠ABE,AC=10,BC=6,则BD的长为()A.1B.1.5C.2D.2.513.如图,已知S△ABC=24m2,AD平分∠BAC,且AD⊥BD于点D,则S△ADC m2.四.等边三角形的性质14.如图,在等边三角形ABC中,D是BC边上一点,以AD为边作等腰三角形ADE,使AD=AE,∠DAE=80°,DE交AC于点F,∠BAD=15°.(Ⅰ)求∠CAE的度数;(Ⅱ)求∠FDC的度数.五.等边三角形的判定15.在边长为9的等边三角形ABC中,点Q是BC上一点,点P是AB上一动点,以每秒1个单位的速度从点A向点B移动,设运动时间为t秒.(1)如图1,若BQ=6,PQ∥AC,求t的值;(2)如图2,若点P从点A向点B运动,同时点Q以每秒2个单位的速度从点B经点C 向点A运动,当t为何值时,△APQ为等边三角形?六.等边三角形的判定与性质16.如图,在等边△ABC中,点D在边BC上,过点D作DE∥AB交AC于点E,过点E 作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)求证:DC=CF.17.如图:在△ABC中,AB=BC=AC,AE=CD,AD与BE相交于点P,BQ⊥AD于Q.求证:①△ADC≌△BEA;②BP=2PQ.七.含30度角的直角三角形18.如图,在△ABC中,∠C=90°,∠B=15°,AB的垂直平分线交BC于点D,交AB 于点E.若DB=12cm,则AC=()A.4cm B.5cm C.6cm D.7cm19.若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是()A.75°或15°B.75°C.15°D.75°和30°20.在Rt△ABC中,∠C=90°,有一个锐角为30°,AB=6,若点P在直线AB上(不与点A,B重合),且∠PCB=30°,则AP的长为.21.已知△ABC为等边三角形,且边长为4,P为BC上一动点,且PD⊥AB,PE⊥AC,垂足分别为D,E两点,则PD+PE=.22.如图,在△ABC中,AB=AC,CE=6,直线ED是线段AC的垂直平分线,∠BAC=120°,求线段BE的长.八.反证法23.用反证法证明命题:“在△ABC中,∠A≠∠B,则AC≠BC”.应先假设()A.AC>BC B.AC<BC C.∠A=∠B D.AC=BC24.用反证法证明命题“若a2<4,则|a|<2”时,应假设.25.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”第一步应假设直角三角形中.26.用反证法证明命题“钝角三角形中必有一个内角小于45°”时,首先应该假设这个三角形中.参考答案一.等腰三角形的性质1.解:当4为腰时,三边为4,4,8,由三角形三边关系定理可知,不能构成三角形,当8为腰时,三边为8,8,4,符合三角形三边关系定理,周长为:8+8+4=20.故选:C.2.解:∵秋千旋转了86°,小林的位置也从A点运动到了A'点,∴AOA′=86°,OA=OA′,∴∠OAA'=(180°﹣86°)=47°.故选:D.3.解:在三角形ABC中,设AB=AC,BD⊥AC于D.①若是锐角三角形,∠A=90°﹣36°=54°,底角=(180°﹣54°)÷2=63°;②若三角形是钝角三角形,∠BAC=36°+90°=126°,此时底角=(180°﹣126°)÷2=27°.所以等腰三角形底角的度数是63°或27°.故选:D.4.解:∵+|n﹣4|=0.,∴+|n﹣4|=0,∴m﹣2=0,n﹣4=0,∴m=2,n=4,分两种情况:当等腰三角形的腰长为2,底边长为4时,∵2+2=4,∴不能组成三角形;当等腰三角形的腰长为4,底边长为2时,∴4+4+2=10;综上所述:△ABC的周长是10.故答案为:10.5.解:∵∠BAC=50°,∴∠ACB+∠ABC=180°﹣50°=130°,又∵∠ACB=∠ABC,∠ACP=∠CBP,∴∠PBA=∠PCB,∴∠ACP+∠ABP=∠PCB+∠PBC=130°×=65°,∴∠BPC=180°﹣65°=115°.故答案为:115°.6.解:∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4,∵∠ACE=∠A+∠ABC,即∠1+∠2=∠3+∠4+∠A,∴2∠1=2∠3+∠A,∵∠1=∠3+∠D,∴∠D=∠A=×30°=15°.故答案为:15°.7.解:∵∠A=56°,AB=AC,∴∠ABC=∠ACB=62°,∵A1C=CC1,∴∠A1C1C=∠C1A1C=∠ACB=×62°,∵A2C1=C1C2,∴∠A2C2C1=∠C2A2C1=∠A1C1C=()2×62°,同理,∠A3C3C2=∠C3A3C2=∠A2C2C1=()3×62°,∴∠A2022C2022C2021=()2022×62°.故选:C.8.解:(1)∵AD⊥BC,BD=CD,∴AD是BC的中垂线,∴AB=AC,∴∠B=∠ACB;∵CE=CA,∴∠E=∠CAE=24°,∴∠B=∠ACB=2∠E=48°;(2)在Rt△ADB中,,∴BD=CD=3,AC=AB=CE=5,∴BE=2BD+CE=2×3+5=11,∴.9.(1)解:∵∠DOF+∠BAC=180°,∠DOF=126°,∴∠BAC=54°,∵AB=AC,∴∠ABC=∠ACB=63°,∵OD⊥AB,OF⊥AC,OD=OF,∴∠DAO=∠BAC=27°,∵OD垂直平分AB,∴OA=OB,∴∠OBA=∠DAO=27°,∴∠OBC=∠ABC﹣∠OBA=63°﹣27°=36°;(2)△AOC是等腰三角形,证明:∵OD=OF,AO=AO,∴Rt△ADO≌Rt△AFO(HL),∴AF=AD=AB,∵CA=BA,∴AF=AC,∴OF垂直平分AC,∴OA=OC,∴△AOC是等腰三角形.二.等腰三角形的判定10.解:若△AMP为等腰三角形则有AM=AP、AM=MP和MP=AP三种情况,①当AM=AP时,则有∠M=∠APM=35°,∴∠A=110°;②当AM=MP时,则∠A=∠APM=72.5°;③当MP=AP时,则∠A=∠AMN=35°,综上可知∠A为110°或72.5°或35°,故答案为:110°或72.5°或35°.11.(1)解:∵AB=AC,∠BAC=36°∴∠B=∠ACB=(180°﹣∠BAC)=72°,∵CD是∠ACB的平分线∴∠DCB=∠ACB=36°,∴∠ADC=∠B+∠DCB=72°+36°=108°;(2)①证明:∵AE∥BC∴∠EAB=∠B=72°,∵∠B=72°,∠DCB=36°,∴∠ADE=∠BDC=180°﹣72°﹣36°=72°,∴∠EAD=∠ADE,∴AE=DE,即△ADE是等腰三角形;②解:结论:△ACE是等腰三角形.理由:∵CD是∠ACB的平分线,∴∠BCE=∠ACE,∵AE∥BC,∴∠BCE=∠E,∴∠ACE=∠E,∴AE=AC,∴△ACE是等腰三角形.三.等腰三角形的判定与性质12.解:∵CD平分∠ACB,∴∠BCD=∠DCE,∵BE⊥CD,∴∠BDC=∠EDC=90°,又∵CD=CD,∴△CDB≌△CDE(ASA),∴BD=DE,CE=BC=6,即△BCE为等腰三角形,∴AE=AC﹣CE=4,又∵∠A=∠ABE,∴BE=AE,∴,故选:C.13.解:如图,延长BD交AC于点E,∵AD平分∠BAE,AD⊥BD,∴∠BAD=∠EAD,∠ADB=∠ADE,在△ABD和△AED中,,∴△ABD≌△AED(ASA),∴BD=DE,∴S△ABD=S△ADE,S△BDC=S△CDE,∴S△ABD+S△BDC=S△ADE+S△CDE=S△ADC,∴S△ADC=S△ABC=×24=12(m2),故答案为:12;四.等边三角形的性质14.解:(Ⅰ)∵三角形ABC为等边三角形,∴∠BAE=60°,∵∠BAD=15°,∴∠DAC=60°﹣15°=45°,∵∠DAE=80°,∴∠CAE=80°﹣45°=35°;(Ⅱ)∵∠DAE=80°,AD=AE,∴∠ADE=(180°﹣80°)=50°,∠ADC=∠BAD+∠B=15°+60°=75°,又∵∠ADE=50°∴∠FDC=∠ADC﹣∠ADE=75°﹣50°=25°.五.等边三角形的判定15.解:(1)如图1,∵△ABC是等边三角形,PQ∥AC,∴∠BQP=∠C=60°,∠BPQ=∠A=60°,又∠B=60°,∴∠B=∠BQP=∠BPQ,∴△BPQ是等边三角形,∴BP=BQ,由题意可知:AP=t,则BP=9﹣t,∴9﹣t=6,解得:t=3,∴当t的值为3时,PQ∥AC;(2)如图2,①当点Q在边BC上时,此时△APQ不可能为等边三角形;②当点Q在边AC上时,若△APQ为等边三角形,则AP=AQ,由题意可知,AP=t,BC+CQ=2t,∴AQ=BC+AC﹣(BC+CQ)=9+9﹣2t=18﹣2t,即:18﹣2t=t,解得:t=6,∴当t=6时,△APQ为等边三角形.六.等边三角形的判定与性质16.(1)解:∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠B=∠EDC=60°,∵DE⊥EF,∴∠DEF=90°,∴∠F=90°﹣∠EDF=90°﹣60°=30°;(2)证明:∵△ABC是等边三角形,∴∠B=∠ACB=60°,∵DE∥AB,∴∠B=∠EDC=60°,∴∠EDC=∠ECD=∠DEC=60°,∴△DEC是等边三角形,∴CE=CD,∵∠ECD=∠F+∠CEF,∠F=30°,∴∠CEF=∠F=30°,∴EC=CF,∴CD=CF.17.证明:(1)∵AB=BC=AC,∴△ABC是等边三角形.∴∠BAC=∠C=60°.∵AB=AC,AE=CD,∴△ADC≌△BEA.(2)∵△ADC≌△BEA,∴∠ABE=∠CAD.∵∠CAD+∠BAD=60°,∴∠ABE+∠BAD=60°.∴∠BPQ=60°.∵BQ⊥AD,∴∠PBQ=30°.∴BP=2PQ.七.含30度角的直角三角形18.解:如图,连接AD,∵DE是AB的垂直平分线,DB=12cm,∴DA=DB=12cm,∵∠B=15°,∴∠DAB=∠B=15°,∴∠ADC=∠DAB+∠B=30°,在△ACD中,∠C=90°,∴.故选:C.19.解:分两种情况:当等腰三角形为锐角三角形时,如图:在△ABC中,AB=AC,BD⊥AC,∴∠BDA=90°,∵BD=AB,∴∠BAD=30°,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A)=75°,∴这个等腰三角形的底角是75°;当等腰三角形为钝角三角形时,如图:在△ABC中,AB=AC,BD⊥AC,∴∠BDA=90°,∵BD=AB,∴∠BAD=30°,∴∠ABC+∠C=30°,∵AB=AC,∴∠ABC=∠C=∠BAD=15°,∴这个等腰三角形的底角是15°;综上所述:这个等腰三角形的底角是75°或15°,故选:A.20.解:当∠A=30°时,∵∠C=90°,∠A=30°,∴∠CBA=60°,BC=AB=×6=3,由勾股定理得,AC=3,①点P在线段AB上,∵∠PCB=30°,∠CBA=60°∴∠CPB=90°,∴∠CP A=90°,在Rt△ACP中,∠A=30°,∴PC=AC=×3=.∴在Rt△APC中,由勾股定理得AP=.②点P在线段AB的延长线上,∵∠PCB=30°,∴∠ACP=90°+30°=120°,∵∠A=30°,∴∠CP A=30°.∵∠PCB=30°,∴∠PCB=∠CP A,∴BP=BC=3,∴AP=AB+BP=6+3=9.当∠ABC=30°时,∵∠C=90°,∠ABC=30°,∴∠A=60°,AC=AB=×6=3,由勾股定理得,BC=3,①点P在线段AB上,∵∠PCB=30°,∴∠ACP=60°,∴△ACP是等边三角形∴AP=AC=3.②点P在线段AB的延长线上,∵∠PCB=30°,∠ABC=30°,∴CP∥AP这与CP与AP交于点P矛盾,舍去.综上所得,AP的长为,9或3.故答案为:,9或3.21.解:连接AP,过A点作AF⊥BC于F,∵S△ABC=S△ABP﹣S△ACP,∴BC•AF=AB•PD﹣AC•PE,∵△ABC为等边三角形,且边长为4,∴AB=AC=BC=4,BF=CF=BC=2,∴AF==2,∴×4×2=×4PD﹣×4PE,∴PD+PE=2.故答案为:2.22.解:连接AE,∵AB=AC,∠BAC=120°,∴∠B=∠C=(180°﹣∠BAC)=30°,∵直线ED是线段AC的垂直平分线,∴EA=EC=6,∴∠EAC=∠C=30°,∴∠BAE=∠BAC﹣∠EAC=90°,∴BE=2AE=12,∴线段BE的长为12.八.反证法23.解:反证法证明命题:“在△ABC中,∠A≠∠B,则AC≠BC”,先假设AC=BC.故选:D.24.解:用反证法证明“若a2<4,则|a|<2”时,应假设|a|≥2.故答案为:|a|≥2.25.解:反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”,第一步假设直角三角形中每个锐角都大于45°,故答案为:每个锐角都大于45°.26.解:反证法证明命题“钝角三角形中必有一个内角小于45°”时,假设这个三角形中每一个内角都大于或等于45°,故答案为:每一个内角都大于或等于45°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等腰三角形典型例题练习一.选择题(共 2 小题)1.如图,∠ C=90°,AD 平分∠ BAC 交 BC 于 D,若 BC=5cm , BD=3cm ,则点 D 到 AB 的距离为()A .5cmB .3cm C.2cm D.不能确定2.如图,已知 C 是线段 AB 上的任意一点(端点除外),分别以 AC 、 BC 为边并且在 AB 的同一侧作等边△ ACD 和等边△ BCE,连接 AE 交 CD 于 M ,连接 BD 交 CE 于 N.给出以下三个结论:①AE=BD②CN=CM③MN ∥ AB其中正确结论的个数是()A .0B .1C.2D.3二.填空题(共 1 小题)3.如图,在正三角形ABC 中, D, E, F 分别是 BC, AC , AB 上的点, DE⊥ AC , EF⊥ AB , FD⊥ BC ,则△ DEF 的面积与△ABC 的面积之比等于_________.三.解答题(共15 小题)4.在△ ABC 中, AD 是∠ BAC 的平分线, E、 F 分别为 AB 、 AC 上的点,且∠ EDF+ ∠EAF=180 °,求证DE=DF .5.在△ ABC 中,∠ ABC 、∠ ACB 的平分线相交于点 O,过点 O 作 DE ∥ BC,分别交 AB 、AC 于点 D 、E.请说明DE=BD+EC .6.>已知:如图, D 是△ABC 的 BC 边上的中点, DE ⊥ AB ,DF ⊥ AC ,垂足分别为 E,F,且 DE=DF .请判断△ABC 是什么三角形?并说明理由.7.如图,△ ABC 是等边三角形,BD 是 AC 边上的高,延长BC 至 E,使 CE=CD .连接 DE.(1)∠ E 等于多少度?(2)△ DBE 是什么三角形?为什么?8.如图,在△ ABC 中,∠ ACB=90 °, CD 是 AB 边上的高,∠A=30 °.求证: AB=4BD .9.如图,△ ABC 中, AB=AC ,点 D 、E 分别在 AB 、 AC 的延长线上,且BD=CE , DE 与 BC 相交于点 F.求证:DF=EF .10.已知等腰直角三角形ABC , BC 是斜边.∠ B 的角平分线交AC 于 D,过 C 作 CE 与 BD 垂直且交 BD 延长线于E,求证: BD=2CE .11.(2012?牡丹江)如图①,△ ABC 中. AB=AC , P 为底边 BC 上一点, PE⊥ AB , PF⊥ AC , CH ⊥AB ,垂足分别为 E、 F、 H.易证 PE+PF=CH .证明过程如下:如图①,连接 AP.∵PE⊥AB , PF⊥ AC , CH ⊥ AB ,∴S△ABP= AB ?PE, S△ACP = AC ?PF, S△ABC= AB ?CH .又∵ S△ABP+S△ACP=S△ABC,∴AB ?PE+ AC ?PF= AB ?CH .∵AB=AC ,∴PE+PF=CH .( 1)如图②,P 为 BC 延长线上的点时,其它条件不变, PE、 PF、 CH 又有怎样的数量关系?请写出你的猜想,并加以证明:( 2)填空:若∠A=30 °,△ ABC 的面积为49,点 P 在直线 BC 上,且 P 到直线 AC 的距离为PF,当 PF=3 时,则AB 边上的高CH= _________.点P到AB边的距离PE= _________.12.数学课上,李老师出示了如下的题目:“在等边三角形ABC 中,点 E 在 AB 上,点 D 在 CB 的延长线上,且ED=EC ,如图,试确定线段AE 与 DB 的大小关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:( 1)特殊情况,探索结论当点 E 为 AB 的中点时,如图 1,确定线段AE 与 DB 的大小关系,请你直接写出结论: AE _________DB(填“>”,“<”或“=”).( 2)特例启发,解答题目解:题目中, AE 与 DB 的大小关系是:AE _________ DB (填“>”,“<”或“=”).理由如下:如图2,过点 E 作EF∥ BC,交 AC 于点 F.(请你完成以下解答过程)( 3)拓展结论,设计新题3在等边三角形ABC 中,点 E 在直线 AB 上,点 D 在直线 BC 上,且 ED=EC .若△ ABC 的边长为1,AE=2 ,求 CD的长(请你直接写出结果).13.已知:如图, AF 平分∠ BAC , BC ⊥ AF 于点 E,点 D 在 AF 上, ED=EA ,点 P 在 CF 上,连接 PB 交 AF 于点M .若∠ BAC=2 ∠ MPC ,请你判断∠ F 与∠ MCD 的数量关系,并说明理由.14.如图,已知△ ABC 是等边三角形,点D、 E 分别在 BC 、AC 边上,且AE=CD , AD 与 BE 相交于点F.(1)线段 AD 与 BE 有什么关系?试证明你的结论.(2)求∠ BFD 的度数.15.如图,在△ ABC 中, AB=BC ,∠ ABC=90 °, F 为 AB 延长线上一点,点 E 在 BC 上, BE=BF ,连接 AE 、EF 和CF,求证: AE=CF .16.已知:如图,在△ OAB 中,∠ AOB=90 °, OA=OB ,在△ EOF 中,∠ EOF=90 °, OE=OF,连接 AE 、 BF.问线段 AE 与 BF 之间有什么关系?请说明理由.17.( 2006?郴州)如图,在△ ABC 中, AB=AC ,D 是 BC 上任意一点,过 D 分别向 AB ,AC 引垂线,垂足分别为E,F,CG 是 AB 边上的高.(1) DE , DF, CG 的长之间存在着怎样的等量关系?并加以证明;(2)若 D 在底边的延长线上,( 1)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由.18.如图甲所示,在△ ABC 中, AB=AC ,在底边 BC 上有任意一点 P,则 P 点到两腰的距离之和等于定长(腰上的高),即 PD+PE=CF ,若 P 点在 BC 的延长线上,那么请你猜想 PD 、PE 和 CF 之间存在怎样的等式关系?写出你的猜想并加以证明.等腰三角形典型例题练习参考答案与试题解析一.选择题(共 2 小题)1.如图,∠ C=90°,AD 平分∠ BAC 交 BC 于 D,若 BC=5cm , BD=3cm ,则点 D 到 AB 的距离为()A .5cmB .3cm C.2cm D.不能确定考点:角平分线的性质.分析:由已知条件进行思考,结合利用角平分线的性质可得点 D 到 AB 的距离等于 D 到 AC 的距离即CD 的长,问题可解.解答:解:∵∠ C=90°, AD 平分∠ BAC 交 BC 于 D∴D 到 AB 的距离即为CD 长 CD=5 ﹣ 3=2 故选 C.2.如图,已知 C 是线段 AB 上的任意一点(端点除外),分别以 AC 、 BC 为边并且在 AB 的同一侧作等边△ ACD 和等边△ BCE,连接 AE 交 CD 于 M ,连接 BD 交 CE 于 N.给出以下三个结论:① AE=BD ② CN=CM ③ MN ∥AB 其中正确结论的个数是()B .1C.23A .D.考点:平行线分线段成比例;全等三角形的判定与性质;等边三角形的性质.分析:由△ ACD 和△ BCE 是等边三角形,根据SAS 易证得△ ACE ≌△ DCB ,即可得①正确;由△ACE ≌△ DCB ,可得∠ EAC= ∠ NDC ,又由∠ ACD= ∠ MCN=60 °,利用 ASA ,可证得△ACM ≌△ DCN ,即可得②正确;又可证得△ CMN 是等边三角形,即可证得③正确.解答:解:∵△ ACD 和△BCE 是等边三角形,∴∠ ACD= ∠ BCE=60 °, AC=DC ,EC=BC ,∴∠ ACD+ ∠ DCE= ∠ DCE+ ∠ECB ,即∠ ACE= ∠DCB ,∴△ ACE ≌△ DCB ( SAS),∴AE=BD ,故①正确;∴∠ EAC= ∠NDC ,∵∠ ACD= ∠ BCE=60 °,∴∠ DCE=60 °,∴∠ ACD= ∠ MCN=60 °,∵AC=DC ,∴△ ACM ≌△ DCN ( ASA ),∴ CM=CN ,故②正确;又∠ MCN=180 °﹣∠ MCA ﹣∠ NCB=180 °﹣ 60°﹣ 60°=60°,∴△ CMN 是等边三角形,∴∠NMC= ∠ACD=60 °,∴ MN ∥ AB ,故③正确.故选 D .二.填空题(共 1 小题)3.如图,在正三角形 ABC 中, D, E, F 分别是 BC, AC , AB 上的点, DE⊥ AC , EF⊥ AB , FD⊥ BC ,则△ DEF 的面积与△ABC 的面积之比等于1:3.考点:相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质.分析:首先根据题意求得:∠ DFE= ∠ FED=∠ EDF=60 °,即可证得△ DEF 是正三角形,又由直角三角形中,30°所对的直角边是斜边的一半,得到边的关系,即可求得DF: AB=1 :,又由相似三角形的面积比等于相似比的平方,即可求得结果.解答:解:∵△ ABC 是正三角形,∴∠ B=∠ C=∠ A=60 °,∵DE ⊥ AC , EF⊥ AB , FD ⊥BC,∴∠ AFE= ∠ CED= ∠ BDF=90 °,∴∠ BFD= ∠ CDE= ∠AEF=30 °,∴∠ DFE= ∠ FED= ∠EDF=60 °,,∴△ DEF 是正三角形,∴ BD : DF=1 :①, BD: AB=1 : 3②,△ DEF ∽△ ABC ,①÷②, =,∴ DF : AB=1 :,∴△ DEF 的面积与△ ABC 的面积之比等于 1: 3.故答案为: 1: 3.三.解答题(共15 小题)4.在△ ABC 中, AD 是∠ BAC 的平分线, E、 F 分别为 AB 、 AC 上的点,且∠ EDF+ ∠EAF=180 °,求证DE=DF .考点:全等三角形的判定与性质;角平分线的定义.分析:过 D 作 DM ⊥AB ,于 M ,DN ⊥ AC 于 N ,根据角平分线性质求出DN=DM ,根据四边形的内角和定理和平角定义求出∠AED= ∠CFD ,根据全等三角形的判定AAS 推出△ EMD ≌△ FND 即可.解答:证明:过 D 作 DM ⊥ AB ,于 M , DN ⊥AC 于 N,即∠ EMD= ∠ FND=90 °,∵AD 平分∠ BAC ,DM ⊥AB , DN ⊥ AC ,∴ DM=DN (角平分线性质),∠ DME= ∠DNF=90 °,∵∠ EAF+ ∠ EDF=180 °,∴∠ MED+ ∠ AFD=360 °﹣ 180°=180°,∵∠ AFD+ ∠NFD=180 °,∴∠ MED= ∠ NFD ,在△ EMD 和△ FND 中,∴△ EMD ≌△ FND ,∴ DE=DF .5.在△ ABC 中,∠ ABC 、∠ ACB 的平分线相交于点 O,过点 O 作 DE ∥ BC,分别交 AB 、AC 于点 D 、E.请说明DE=BD+EC .考点:等腰三角形的判定与性质;平行线的性质.分析:根据 OB 和 OC 分别平分∠ ABC 和∠ ACB ,和 DE ∥ BC ,利用两直线平行,内错角相等和等量代换,求证出 DB=DO , OE=EC .然后即可得出答案.解答:解:∵在△ABC 中, OB 和 OC 分别平分∠ ABC 和∠ ACB ,∴∠ DBO= ∠ OBC,∠ ECO= ∠ OCB,∵DE ∥ BC ,∴∠ DOB= ∠OBC= ∠DBO ,∠ EOC= ∠OCB= ∠ECO ,∴DB=DO , OE=EC ,∵ DE=DO+OE ,∴ DE=BD+EC .6.>已知:如图, D 是△ABC 的 BC 边上的中点, DE ⊥ AB ,DF ⊥ AC ,垂足分别为 E,F,且 DE=DF .请判断△ABC 是什么三角形?并说明理由.考点:等腰三角形的判定;全等三角形的判定与性质.分析:用( HL )证明△ EBD ≌△ FCD ,从而得出∠ EBD= ∠FCD ,即可证明△ ABC 是等腰三角形.解答:△ABC 是等腰三角形.证明:连接AD ,∵ DE ⊥AB , DF⊥ AC ,∴∠ BED= ∠ CFD=90 °,且 DE=DF ,∵D 是△ABC 的 BC 边上的中点,∴BD=DC ,∴Rt△ EBD ≌ Rt△ FCD (HL ),∴∠ EBD= ∠ FCD ,∴△ ABC 是等腰三角形.7.如图,△ ABC 是等边三角形,BD 是 AC 边上的高,延长BC 至 E,使 CE=CD .连接 DE.( 1)∠ E 等于多少度?(2)△ DBE 是什么三角形?为什么?考点:等边三角形的性质;等腰三角形的判定.分析:(1)由题意可推出∠ ACB=60 °,∠ E=∠ CDE ,然后根据三角形外角的性质可知:∠ ACB= ∠E+ ∠CDE ,即可推出∠ E 的度数;(2)根据等边三角形的性质可知,BD 不但为 AC 边上的高,也是∠ABC 的角平分线,即得:∠DBC=30 °,然后再结合( 1)中求得的结论,即可推出△ DBE 是等腰三角形.解答:解:( 1)∵△ ABC 是等边三角形,∴∠ ACB=60 °,∵CD=CE ,∴∠ E=∠ CDE,∵∠ ACB= ∠ E+∠ CDE ,∴,(2)∵△ ABC 是等边三角形, BD ⊥ AC ,∴∠ ABC=60 °,∴,∵∠ E=30°,∴∠ DBC= ∠ E,∴△ DBE 是等腰三角形.8.如图,在△ ABC 中,∠ ACB=90 °, CD 是 AB 边上的高,∠A=30 °.求证: AB=4BD .考点:含30度角的直角三角形.分析:由△ ABC 中,∠ ACB=90 °,∠ A=30 °可以推出AB=2BC ,同理可得BC=2BD ,则结论即可证明.解答:解:∵∠ ACB=90 °,∠ A=30 °,∴ AB=2BC ,∠ B=60 °.又∵ CD⊥ AB ,∴∠ DCB=30 °,∴ BC=2BD .∴ AB=2BC=4BD .9.如图,△ ABC 中, AB=AC ,点 D 、E 分别在 AB 、 AC 的延长线上,且BD=CE , DE 与 BC 相交于点 F.求证:DF=EF .考点:全等三角形的判定与性质;等腰三角形的性质.分析:过 D 点作 DG ∥AE 交 BC 于 G 点,由平行线的性质得∠1=∠ 2,∠ 4=∠ 3,再根据等腰三角形的性质可得∠ B=∠ 2,则∠ B= ∠ 1,于是有 DB=DG ,根据全等三角形的判定易得△ DFG ≌△ EFC,即可得到结论.解答:证明:过 D 点作 DG∥ AE 交 BC 于 G 点,如图,∴∠ 1=∠ 2,∠ 4=∠ 3,∵AB=AC ,∴∠ B= ∠2,∴∠ B= ∠ 1,∴ DB=DG ,而 BD=CE ,∴ DG=CE ,9在△ DFG 和△ EFC 中,∴△ DFG ≌△ EFC ,∴ DF=EF .10.已知等腰直角三角形ABC , BC 是斜边.∠ B 的角平分线交AC 于 D,过 C 作 CE 与 BD 垂直且交 BD 延长线于E,求证: BD=2CE .考点:全等三角形的判定与性质.分析:延长 CE, BA 交于一点F,由已知条件可证得△ BFE全≌△ BEC,所以FE=EC,即CF=2CE,再通过证明△ ADB ≌△ FAC 可得 FC=BD ,所以 BD=2CE .解答:证明:如图,分别延长CE, BA 交于一点 F.∵BE ⊥EC,∴∠ FEB= ∠CEB=90 °,∵ BE 平分∠ ABC ,∴∠ FBE= ∠ CBE ,又∵ BE=BE ,∴△ BFE≌△ BCE (ASA ).∴ FE=CE .∴ CF=2CE .∵A B=AC ,∠ BAC=90 °,∠ ABD+ ∠ ADB=90 °,∠ ADB= ∠ EDC ,∴∠ ABD+ ∠EDC=90 °.又∵∠ DEC=90 °,∠ EDC+ ∠ ECD=90 °,∴∠ FCA= ∠ DBC= ∠ ABD .∴△ ADB ≌△ AFC .∴ FC=DB ,∴ BD=2EC .11.(2012?牡丹江)如图①,△ ABC 中. AB=AC , P 为底边 BC 上一点, PE⊥ AB , PF⊥ AC , CH ⊥AB ,垂足分别为 E、 F、 H.易证 PE+PF=CH .证明过程如下:如图①,连接 AP.∵PE⊥AB , PF⊥ AC , CH ⊥ AB ,∴ S△ABP= AB ?PE,S△ACP = AC ?PF, S△ABC= AB ?CH .又∵ S△ABP+S△ACP=S△ABC,∴AB ?PE+ AC ?PF= AB ?CH.∵ AB=AC ,∴ PE+PF=CH .( 1)如图②,P 为 BC 延长线上的点时,其它条件不变, PE、 PF、 CH 又有怎样的数量关系?请写出你的猜想,并加以证明:( 2)填空:若∠ A=30 °,△ ABC 的面积为 49,点 P 在直线 BC 上,且 P 到直线 AC 的距离为 PF,当 PF=3 时,则 AB 边上的高 CH= 7 .点 P 到 AB 边的距离 PE= 4 或 10 .考点:等腰三角形的性质;三角形的面积.分析:(1)连接 AP .先根据三角形的面积公式分别表示出S△ABP,S△ACP,S△ABC,再由S△ABP=S△ACP+S△ABC即可得出 PE=PF+PH ;(2)先根据直角三角形的性质得出AC=2CH ,再由△ ABC 的面积为 49,求出 CH=7 ,由于 CH > PF,则可分两种情况进行讨论:① P 为底边 BC 上一点,运用结论 PE+PF=CH ;② P 为 BC 延长线上的点时,运用结论 PE=PF+CH .解答:解:( 1)如图②, PE=PF+CH .证明如下:∵PE⊥AB , PF⊥ AC , CH⊥ AB ,∴ S△ABP= AB ?PE,S△ACP = AC ?PF, S△ABC= AB ?CH ,∵S△ABP=S△ACP+S△ABC,∴ AB ?PE= AC ?PF+ AB ?CH,又∵ AB=AC ,∴ PE=PF+CH ;(2)∵在△ ACH 中,∠ A=30 °,∴ AC=2CH .∵S△ABC = AB ?CH ,AB=AC ,∴×2CH ?CH=49,∴ CH=7.分两种情况:① P 为底边 BC 上一点,如图① .∵P E+PF=CH ,∴ PE=CH ﹣ PF=7﹣ 3=4;② P 为 BC 延长线上的点时,如图② .∵PE=PF+CH ,∴ PE=3+7=10 .故答案为7;4 或 10.12.数学课上,李老师出示了如下的题目:“在等边三角形 ABC 中,点 E 在 AB 上,点 D 在 CB 的延长线上,且 ED=EC ,如图,试确定线段 AE 与 DB 的大小关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:( 1)特殊情况,探索结论当点 E 为 AB 的中点时,如图 1,确定线段 AE 与 DB 的大小关系,请你直接写出结论: AE = DB(填“>”,“<”或“=”).( 2)特例启发,解答题目解:题目中, AE 与 DB 的大小关系是:AE = DB(填“>”,“<”或“=”).理由如下:如图2,过点 E 作EF∥ BC ,交AC 于点F.(请你完成以下解答过程)( 3)拓展结论,设计新题在等边三角形ABC 中,点 E 在直线 AB 上,点 D 在直线 BC 上,且 ED=EC .若△ ABC 的边长为1,AE=2 ,求 CD的长(请你直接写出结果).考点:等边三角形的判定与性质;三角形的外角性质;全等三角形的判定与性质;等腰三角形的性质.分析:(1)根据等边三角形性质和等腰三角形的性质求出∠D=∠ ECB=30 °,求出∠ DEB=30 °,求出 BD=BE 即可;(2)过 E 作 EF∥ BC 交 AC 于 F,求出等边三角形AEF ,证△ DEB 和△ ECF 全等,求出 BD=EF 即可;(3)当 D 在 CB 的延长线上, E 在 AB 的延长线式时,由( 2)求出 CD=3 ,当 E 在 BA 的延长线上,D 在 BC 的延长线上时,求出 CD=1 .解答:解:( 1)故答案为: =.(2)过 E 作 EF∥ BC 交 AC 于 F,∵等边三角形ABC ,∴∠ ABC= ∠ ACB= ∠ A=60 °, AB=AC=BC ,∴∠ AEF= ∠ABC=60 °,∠ AFE= ∠ ACB=60 °,即∠ AEF= ∠ AFE= ∠ A=60 °,∴△ AEF 是等边三角形,∴AE=EF=AF ,∵∠ ABC= ∠ ACB= ∠AFE=60 °,∴∠ DBE= ∠EFC=120 °,∠ D+∠ BED= ∠ FCE+∠ ECD=60 °,∵DE=EC ,∴∠ D=∠ ECD,∴∠ BED= ∠ ECF,在△ DEB 和△ ECF 中,∴△ DEB ≌△ ECF ,∴ BD=EF=AE ,即 AE=BD ,故答案为:=.(3)解: CD=1 或 3,理由是:分为两种情况:①如图 1过A 作 AM ⊥BC 于 M ,过 E 作 EN⊥ BC 于 N ,则 AM ∥EM ,∵△ ABC 是等边三角形,∴ AB=BC=AC=1 ,∵AM ⊥BC ,∴ BM=CM= BC=,∵ DE=CE,EN⊥BC,∴ CD=2CN,12∵AM ∥EN ,∴△ AMB ∽△ ENB ,∴=,∴=,∴B N= ,∴ CN=1+ = ,∴ CD=2CN=3 ;②如图 2,作 AM ⊥ BC 于 M ,过 E 作 EN⊥BC 于 N ,则 AM ∥EM ,∵△ ABC 是等边三角形,∴AB=BC=AC=1,∵AM ⊥BC ,∴ BM=CM= BC=,∵ DE=CE,EN⊥BC,∴ CD=2CN,∵AM ∥EN ,∴=,∴=,∴ MN=1,∴ CN=1﹣=,∴ CD=2CN=113.已知:如图, AF 平分∠ BAC , BC ⊥ AF 于点 E,点 D 在 AF 上, ED=EA ,点 P 在 CF 上,连接 PB 交 AF 于点M .若∠ BAC=2 ∠ MPC ,请你判断∠ F 与∠ MCD 的数量关系,并说明理由.考点:全等三角形的判定与性质;等腰三角形的性质.分析:根据全等三角形的性质和判定和线段垂直平分线性质求出AB=AC=CD ,推出∠CDA= ∠ CAD= ∠ CPM ,求出∠ MPF= ∠ CDM ,∠ PMF= ∠ BMA= ∠ CMD ,在△ DCM 和△ PMF中根据三角形的内角和定理求出即可.解答:解:∠ F=∠MCD ,理由是:∵ AF 平分∠ BAC , BC⊥ AF ,∴∠ CAE= ∠BAE ,∠ AEC= ∠AEB=90 °,在△ ACE 和△ ABE 中∵,∴△ ACE ≌△ ABE (ASA )∴ AB=AC ,∵∠ CAE= ∠CDE ∴ AM 是 BC 的垂直平分线,∴CM=BM ,CE=BE ,∴∠ CMA= ∠BMA ,∵A E=ED , CE⊥ AD ,∴ AC=CD ,∴∠ CAD= ∠ CDA ,∵∠ BAC=2 ∠ MPC ,又∵∠ BAC=2 ∠ CAD ,∴∠ MPC= ∠ CAD ,∴∠ MPC= ∠CDA ,∴∠ MPF= ∠ CDM ,∴∠ MPF= ∠CDM (等角的补角相等),∵∠ DCM+ ∠ CMD+ ∠ CDM=180 °,∠ F+∠ MPF+ ∠PMF=180 °,又∵∠ PMF= ∠ BMA= ∠ CMD ,∴∠ MCD= ∠F.14.如图,已知△ ABC 是等边三角形,点D、 E 分别在 BC 、AC 边上,且AE=CD , AD 与 BE 相交于点F.(1)线段 AD 与 BE 有什么关系?试证明你的结论.(2)求∠ BFD 的度数.考点:等边三角形的性质;全等三角形的判定与性质.分析:(1)根据等边三角形的性质可知∠BAC= ∠ C=60°,AB=CA ,结合 AE=CD ,可证明△ ABE ≌△ CAD ,从而证得结论;(2)根据∠ BFD= ∠ ABE+ ∠ BAD ,∠ ABE= ∠ CAD ,可知∠ BFD= ∠ CAD+ ∠ BAD= ∠ BAC=60 °.解答:(1)证明:∵△ABC 为等边三角形,∴∠BAC= ∠ C=60 °, AB=CA .在△ ABE 和△ CAD 中,∴△ ABE ≌△ CAD ∴ AD=BE .(2)解:∵∠ BFD= ∠ABE+ ∠BAD ,又∵△ ABE ≌△ CAD ,∴∠ ABE= ∠ CAD .∴∠ BFD= ∠CAD+ ∠ BAD= ∠ BAC=60 °.15.如图,在△ ABC 中, AB=BC ,∠ ABC=90 °, F 为 AB 延长线上一点,点 E 在 BC 上, BE=BF ,连接 AE 、EF和CF,求证: AE=CF .考点:全等三角形的判定与性质.分析:根据已知利用SAS 即可判定△ ABE ≌△ CBF,根据全等三角形的对应边相等即可得到AE=CF .解答:证明:∵∠ ABC=90 °,∴∠ ABE= ∠ CBF=90 °,又∵ AB=BC , BE=BF ,∴△ ABE ≌△ CBF ( SAS).∴ AE=CF .16.已知:如图,在△ OAB 中,∠ AOB=90 °, OA=OB ,在△ EOF 中,∠ EOF=90 °, OE=OF,连接 AE 、 BF.问线段 AE 与 BF 之间有什么关系?请说明理由.考点:全等三角形的判定与性质;等腰直角三角形.分析:可以把要证明相等的线段AE ,CF 放到△AEO ,△ BFO 中考虑全等的条件,由两个等腰直角三角形得 AO=BO ,OE=OF ,再找夹角相等,这两个夹角都是直角减去∠BOE 的结果,当然相等了,由此可以证明△AEO ≌△ BFO ;延长 BF 交 AE 于 D ,交 OA 于 C,可证明∠ BDA= ∠ AOB=90 °,则 AE ⊥ BF.解答:解: AE 与 BF 相等且垂直,理由:在△AEO 与△ BFO 中,∵R t△ OAB 与 Rt△OEF 等腰直角三角形,∴ AO=OB , OE=OF ,∠ AOE=90 °﹣∠ BOE= ∠ BOF,∴△ AEO ≌△ BFO ,∴ AE=BF .延长 BF 交 AE 于 D,交 OA 于 C,则∠ ACD= ∠BCO ,由( 1)知∠ OAE= ∠OBF ,∴∠ BDA= ∠ AOB=90 °,∴ AE ⊥ BF .17.( 2006?郴州)如图,在△ ABC 中, AB=AC ,D 是 BC 上任意一点,过 D 分别向 AB ,AC 引垂线,垂足分别为E,F,CG 是 AB 边上的高.(1) DE , DF, CG 的长之间存在着怎样的等量关系?并加以证明;(2)若 D 在底边的延长线上,( 1)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由.考点:等腰三角形的性质.分析:(1)连接 AD ,根据三角形ABC 的面积 =三角形 ABD 的面积 +三角形 ACD 的面积,进行分析证明;(2)类似( 1)的思路,仍然用计算面积的方法来确定线段之间的关系.即三角形ABC 的面积 =三角形 ABD 的面积﹣三角形ACD 的面积.解答:解:( 1) DE+DF=CG .证明:连接AD ,则 S△ABC =S△ABD +S△ACD,即AB ?CG= AB ?DE+AC ?DF,∵ AB=AC ,∴ CG=DE+DF .(2)当点 D 在 BC 延长线上时,( 1)中的结论不成立,但有DE ﹣ DF=CG .理由:连接AD ,则 S△ABD =S△ABC +S△ACD,即AB ?DE= AB ?CG+AC ?DF∵A B=AC ,∴ DE=CG+DF ,即 DE ﹣DF=CG .同理当 D 点在 CB 的延长线上时,则有DE ﹣ DF=CG ,说明方法同上.18.如图甲所示,在△ ABC 中, AB=AC ,在底边 BC 上有任意一点 P,则 P 点到两腰的距离之和等于定长(腰上的高),即 PD+PE=CF ,若 P 点在 BC 的延长线上,那么请你猜想 PD 、PE 和 CF 之间存在怎样的等式关系?写出你的猜想并加以证明.考点:等腰三角形的性质;三角形的面积.分析:猜想: PD、 PE、 CF 之间的关系为 PD=PE+CF .根据∵ S△PAB= AB ?PD, S△PAC=AC ?PE,S△CAB = AB ?CF, S△PAC= AC ?PE, AB ?PD= AB ?CF+ AC ?PE,即可求证.解答:解:我的猜想是: PD、PE、 CF 之间的关系为 PD=PE+CF .理由如下:连接 AP,则 S△PAC+S△CAB =S△PAB,∵S△PAB= AB ?PD, S△PAC= AC ?PE,S△CAB =AB ?CF,又∵ AB=AC ,∴ S△PAC= AB ?PE,∴AB ?PD= AB ?CF+AB ?PE,即AB (PE+CF)= AB ?PD,∴ PD=PE+CF .。

相关文档
最新文档