湘教版七年级上册数学期末考试试卷含答案

合集下载

湘教版七年级上册数学期末考试试卷及答案

湘教版七年级上册数学期末考试试卷及答案

湘教版七年级上册数学期末考试试题一、单选题1.已知a 的相反数是12021,则a 等于()A .2021B .12021C .-2021D .12021-2.下列各式中是一元一次方程的()A .243x x -<B .31x x -=C .5-4=1D .3xy -3.下列调查适合采用全面调查的是()A .为增加环保意识,调查我市平均每个家庭一年内产生可回收垃圾的数量B .了解某班学生视力情况C .为守护好一江碧水,调查长江水质情况D .电视台对晚会收视率的调查4.在下列单项式中与23x y -是同类项的是()A .22y -B .213x y C .23xy -D .23x -5.如图,下列语句描述正确的是()A .点O 在直线AB 上B .点B 是直线AB 的一个端点C .点O 在射线AB 上D .射线AO 和射线OA 是同一条射线6.下列等式变形正确的是()A .如果11x y -=-,那么x y =B .如果ma mb =,那么a b=C .如果113a b =-,那么31a b =-D .如果142x =,那么18x =7.下列大小关系判断正确的是()A .(3)|2|--<--B .225(4)->-C .3423-<-D .15.151515'=︒︒8.已知a ,b 为实数,满足ab>0,且||20a b +-=,当a -b 为整数时,ab 的值为()A .14或34B .1或14C .34或1D .14或129.将下列平面图形绕轴旋转一周,可得到图中所示的立体图形的是()A .B .C .D .10.有理数a ,b 在数轴上的对应点如图所示,则下列式子中错误的是()A .ab >0B .a+b <0C .a ﹣b <0D .b ﹣a <0二、填空题11.如果收入1000元表示为+1000元,那么支出200元可表示为_______元.12.将39000000000用科学记数法表示为____________13.“植树时只要栽下两棵树,就可以把同一行树栽在同一条直线上”,可以用来解释这一生活现象的基本事实是:__________.14.已知3a ﹣2b =﹣4,则6a ﹣4b+2=___.15.如果一个角的余角是30°,那么这个角的补角是______度.16.已知关于x 的方程32mx +=的解满足20x -=,则m 的值是_________.17.a ,b 在数轴上的位置如图所示,且||||a b <,其中正确结论的序号是________.①0a b +>;②ab<0;③2211a b >;④若x =m 是关于x 的方程0ax b +=的解,则m 是正数.18.若方程3212x a +=和方程2412x -=的解相同,则a 的值为________.三、解答题19.计算:(1)6(5)(2)(3)--+-⨯-(2)2313(1)|36|-+⨯-+-20.先化简再求值()22554222xy x y xy x ⎛⎫-+-+ ⎪⎝⎭,其中3x =,2y =-.21.解方程:(1)132x x--=-(2)22346x x +-=22.如图,直线AB 和直线CD 相交于点O ,OB 平分∠EOD .(1)若∠EOC =110°,求∠BOD 的度数;(2)若∠DOE ∶∠EOC =2∶3,求∠AOC 的度数.23.某超市为了解顾客对白面馒头、大肉包、水饺、米粉、葱油饼(以下分别用A ,B .C ,D ,E 表示)这五种早点的喜爱情况,对顾客进行了调查,并将调查结果绘制成如下两幅不完整统计图.根据以上统计图解答问题:(1)本次被调查的顾客共有_________人次;补全条形统计图;(2)扇形统计图中白面馒头对应的圆心角是_________度;(3)若某天有1200人次购买了这五种早点,估计其中喜爱大肉包的有多少人次?24.列方程解应用题.冬季取暖要确保防火安全.为了满足顾客的需要,某购物广场用25000元购进A ,B 两种新型防火取暖器共50个,这两种取暖器的进价、标价如下表所示:价格类型A 型B 型进价(元/个)400650标价(元/个)600m(1)A ,B 两种新型取暖器分别购进多少个?(2)若A 型取暖器按标价的七五折出售,B 型取暖器每台在标价的基础上降价75元出售,这批取暖器全部售完后商场共获利4000元,请求出表格中m 的值.25.背景知识:数轴是数学中的一个重要工具,利用数轴可以将数与形完美结合。

湘教版初一数学上册期末试卷(含答案)

湘教版初一数学上册期末试卷(含答案)

七年级(上)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题只有一个正确答案)1.气温由﹣2℃上升3℃后是()℃.A.1B.3C.5D.﹣52.下列方程是一元一次方程的是()A.B.3x﹣2y=6C.D.x2+2x=03.下列调查中,适宜采用全面调查(普查)方式的是()A.了解我国民众对乐天集团“萨德事件”的看法B.了解湖南卫视《人们的名义》反腐剧的收视率C.调查我校某班学生喜欢上数学课的情况D.调查某类烟花爆竹燃放的安全情况4.下列各式运算结果为正数的是()A.﹣22×5B.(1﹣4)2×5C.(1﹣22)×5D.1﹣(3×5)25.下列运算正确的是()A.a2•a3=a6B.a3+a2=a5C.(a3)2=a5D.a3÷a2=a6.x=1是关于x的方程2x﹣a=0的解,则a的值是()A.﹣2B.2C.﹣1D.17.若代数式6a x b6与a5b y是同类项,则x﹣y的值是()A.11B.﹣11C.1D.﹣18.鸡兔同笼问题是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?经计算可得()A.鸡23只,兔12只B.鸡12只,兔23只C.鸡15只,兔20只D.鸡20只,兔15只9.如图,不同的线段的条数是()A.3B.4C.5D.610.已知线段AB=6cm,C是AB的中点,D是AC的中点,则DB等于()A.1.5cm B.4.5cm C.3cm D.3.5cm二、填空题(本大题共8个小题,每小题3分,共24分)11.﹣2017的绝对值是.12.刚刚过去的2017年的“双11”网上促销活动中,天猫和淘宝的支付交易额突破168200000000元,将168200000000元用科学记数法表示为.13.若x﹣3与1互为相反数,则x=.14.苹果原价是每千克x元,按8折优惠出售,该苹果现价是每千克元(用含x 的代数式表示).15.要了解5000件商品的质量问题,从中任意抽取40件商品进行试验,在这个问题中,样本容量是.16.照如图所示的操作步骤,若输入x的值为5,则输出的值为.17.如图,OC⊥OD,∠1=50°,则∠2的度数是.18.不论x取何值等式2ax+b=4x﹣3恒成立,则a+b=.三、解答题(本大题共8个小题,共66分,要写出必要的解题过程)19.计算:(1)8﹣(﹣5)﹣23(2)×(﹣2)3+(﹣)×2420.解方程:(1)4x﹣3=2(x﹣1)(2)﹣=121.(7分)化简求值:5ab﹣7a2b2+8ab+5a2b2,其中a=﹣2,b=﹣22.(7分)某中学开展“阳光体育一小时”活动,根据学校实际情况,决定开设A:踢毽子;B:篮球:C:跳绳;D:乒乓球四种运动项目.为了解学生最喜欢哪一种运动项目,随机抽取了一部分学生进行调查,并将调查结果绘制成如两个统计图.请结合图中的信息解答下列问题:(1)本次共调查了多少名学生?(2)请将两个统计图补充完整.(3)求图中“A”层次所在扇形的圆心角的度数.23.(7分)如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOB的度数.24.(7分)设a,b,c,d为有理数,现规定一种新的运算:=ad﹣bc,那么当=7时,x的值是多少?25.(9分)已知|m|=3,|n|=2,求m2+mn+n2的值.26.(9分)甲乙两车间共120人,其中甲车间人数比乙车间人数的4倍少5人.(1)求甲、乙两车间各有多少人?(2)若从甲、乙两车间分别抽调工人,组成丙车间研制新产品,并使甲、乙、丙三个车间的人数比为13:4:7,那么甲、乙两车间要分别抽调多少工人?参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题只有一个正确答案)1.气温由﹣2℃上升3℃后是()℃.A.1B.3C.5D.﹣5【分析】根据有理数的加法,可得答案.【解答】解:由题意,得﹣2+3=+(3﹣2)=1,故选:A.【点评】本题考查了有理数的加法,异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减较小的绝对值.2.下列方程是一元一次方程的是()A.B.3x﹣2y=6C.D.x2+2x=0【分析】依据分式方程、二元一次方程、一元一次方程、一元二次方程的定义解答即可.【解答】解:A、2x+5=是分式方程,故A错误;B、3x﹣2y=6是二元一次方程,故B错误;C、=5﹣x是一元一次方程,故C正确;D、x2+2x=0是一元二次方程,故D错误.故选:C.【点评】本题主要考查的是分式方程、二元一次方程、一元一次方程、一元二次方程的定义,熟练掌握相关定义是解题的关键.3.下列调查中,适宜采用全面调查(普查)方式的是()A.了解我国民众对乐天集团“萨德事件”的看法B.了解湖南卫视《人们的名义》反腐剧的收视率C.调查我校某班学生喜欢上数学课的情况D.调查某类烟花爆竹燃放的安全情况【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、了解我国民众对乐天集团“萨德事件”的看法调查范围广适合抽样调查,故A不符合题意;B、了解湖南卫视《人们的名义》反腐剧的收视率调查范围广适合抽样调查,故B不符合题意;C、调查我校某班学生喜欢上数学课的情况适合普查,故C符合题意;D、调查某类烟花爆竹燃放的安全情况调查具有破坏性适合抽样调查,故D不符合题意;故选:C.【点评】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考察的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.下列各式运算结果为正数的是()A.﹣22×5B.(1﹣4)2×5C.(1﹣22)×5D.1﹣(3×5)2【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解答】解:∵﹣22×5=﹣4×5=﹣20,故选项A不符合题意,∵(1﹣4)2×5=(﹣3)2×5=9×5=45,故选项B符合题意,∵(1﹣22)×5=(1﹣4)×5=(﹣3)×5=﹣15,故选项C不符合题意,∵1﹣(3×5)2=1﹣152=1﹣225=﹣224,故选项D不符合题意,故选:B.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.5.下列运算正确的是()A.a2•a3=a6B.a3+a2=a5C.(a3)2=a5D.a3÷a2=a【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、a2•a3=a5,错误;B、a3与a2不是同类项,不能合并,错误;C、(a3)2=a6,错误;D、a3÷a2=a,正确;故选:D.【点评】此题考查了合并同类项,幂的乘方与,以及同底数幂的除法,熟练掌握运算法则是解本题的关键.6.x=1是关于x的方程2x﹣a=0的解,则a的值是()A.﹣2B.2C.﹣1D.1【分析】根据方程的解的概念即可求出a的值.【解答】解:将x=1代入2x﹣a=0中,∴2﹣a=0,∴a=2故选:B.【点评】本题考查一元一次方程的解,解题的关键是正确理解方程的解的概念,本题属于基础题型.7.若代数式6a x b6与a5b y是同类项,则x﹣y的值是()A.11B.﹣11C.1D.﹣1【分析】根据同类项是字母相同,且相同的字母的指数也相同,可得x、y的值,进而解答即可.【解答】解:因为代数式6a x b6与a5b y是同类项,可得:x=5,y=6,所以x﹣y=5﹣6=﹣1,故选:D.【点评】本题考查了同类项,关键是根据同类项是字母相同,且相同的字母的指数也相同解答.8.鸡兔同笼问题是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?经计算可得()A.鸡23只,兔12只B.鸡12只,兔23只C.鸡15只,兔20只D.鸡20只,兔15只【分析】设笼中有鸡x只,兔y只,根据“从上面数,有35个头;从下面数,有94只脚”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:设笼中有鸡x只,兔y只,根据题意得:,解得:.故选:A.【点评】本题考查了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.9.如图,不同的线段的条数是()A.3B.4C.5D.6【分析】分别以A、C、D为起点可得出线段的数量.【解答】解:以A为起点的线段有:AC,AD,AB;以C为起点的线段有:CD,CB;以D为起点的线段有:DB.综上可得共有6条.故选:D.【点评】本题考查直线射线及线段的知识,属于基础题,注意按顺序查找避免遗漏.10.已知线段AB=6cm,C是AB的中点,D是AC的中点,则DB等于()A.1.5cm B.4.5cm C.3cm D.3.5cm【分析】根据题意可得AC和CB的长,又D是AC的中点,可得DC的长,从而可求出答案.【解答】解:∵线段AB=6cm,C是AB的中点,∴AC=BC=3cm,又D是AC的中点,∴DC=1.5cm,故DB=DC+CB=4.5cm.故选:B.【点评】本题考查了比较线段的长短的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.二、填空题(本大题共8个小题,每小题3分,共24分)11.﹣2017的绝对值是2017.【分析】根据绝对值的定义可得﹣2017的绝对值是表示﹣2017这个数的点到原点的距离,进而可得是2017.【解答】解:﹣2017的绝对值是2017,故答案为:2017.【点评】此题主要考查了绝对值的定义,关键是掌握数轴上某个数与原点的距离叫做这个数的绝对值.12.刚刚过去的2017年的“双11”网上促销活动中,天猫和淘宝的支付交易额突破168200000000元,将168200000000元用科学记数法表示为 1.682×1011.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:168200000000=1.682×1011,故答案为:1.682×1011.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.若x﹣3与1互为相反数,则x=2.【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:x﹣3+1=0,解得:x=2,故答案为:2【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.14.苹果原价是每千克x元,按8折优惠出售,该苹果现价是每千克0.8x元(用含x的代数式表示).【分析】按8折优惠出售,就是按照原价的80%进行销售.【解答】解:依题意得:该苹果现价是每千克80%x=0.8x.故答案是:0.8x.【点评】本题考查了列代数式.解题的关键是理解“按8折优惠出售”的含义.15.要了解5000件商品的质量问题,从中任意抽取40件商品进行试验,在这个问题中,样本容量是40.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:要了解5000件商品的质量问题,从中任意抽取40件商品进行试验,在这个问题中,样本容量是40,故答案为:40.【点评】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.16.照如图所示的操作步骤,若输入x的值为5,则输出的值为97.【分析】根据题目所给程序依次计算即可.【解答】解:(x+5)2﹣3=(5+5)2﹣3=100﹣3=97,故答案为97.【点评】本题考查了代数式求值,弄清运算程序是解题的关键.17.如图,OC⊥OD,∠1=50°,则∠2的度数是40°.【分析】由OC⊥OD,推出∠COD=90°,推出∠1+∠2=90°,即可解决问题.【解答】解:∵OC⊥OD,∴∠COD=90°,∴∠1+∠2=90°,∵∠1=50°,∴∠2=40°.故答案为40°【点评】本题考查垂直的定义、互为余角的性质等知识,属于中考基础题.18.不论x取何值等式2ax+b=4x﹣3恒成立,则a+b=﹣1.【分析】根据等式恒成立的条件可知,当x取特殊值0或1时都成立,可将条件代入,即可求出a与b的值.【解答】解:∵不论x取何值等式2ax+b=4x﹣3恒成立,∴x=0时,b=﹣3,x=1时,a=2,即a=2,b=﹣3,∴a+b=2+(﹣3)=﹣1.故答案为﹣1.【点评】本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.三、解答题(本大题共8个小题,共66分,要写出必要的解题过程)19.计算:(1)8﹣(﹣5)﹣23(2)×(﹣2)3+(﹣)×24【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解答】解:(1)原式=8+5﹣23=13﹣23=﹣10;(2)原式=×(﹣8)+9﹣4=﹣4+9﹣4=1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.解方程:(1)4x﹣3=2(x﹣1)(2)﹣=1【分析】(1)直接去括号再移项合并同类项解方程得出答案;(2)首先去分母,再去括号移项合并同类项解方程得出答案.【解答】解:(1)4x﹣3=2(x﹣1)4x﹣3=2x﹣2,则2x=1,解得:x=;(2)﹣=12(x﹣3)﹣(x﹣4)=10,则2x﹣6﹣x+4=10,解得:x=12.【点评】此题主要考查了解一元一次方程,正确掌握解题方法是解题关键.21.(7分)化简求值:5ab﹣7a2b2+8ab+5a2b2,其中a=﹣2,b=﹣【分析】原式合并同类项得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=13ab﹣2a2b2,当a=﹣2,b=﹣时,原式=13﹣2=11.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.22.(7分)某中学开展“阳光体育一小时”活动,根据学校实际情况,决定开设A:踢毽子;B:篮球:C:跳绳;D:乒乓球四种运动项目.为了解学生最喜欢哪一种运动项目,随机抽取了一部分学生进行调查,并将调查结果绘制成如两个统计图.请结合图中的信息解答下列问题:(1)本次共调查了多少名学生?(2)请将两个统计图补充完整.(3)求图中“A”层次所在扇形的圆心角的度数.【分析】(1)结合条形统计图和扇形统计图,利用A组频数80除以A组频率40%,即可得到该校本次调查中,共调查了多少名学生;(2)利用(1)中所求人数,减去A、B、D组的频数即可的C组的频数;B组频数除以总人数即可得到B组频率;(3)用360°乘以A对应的百分比可得.【解答】解:(1)80÷40%=200(人)故本次共调查200名学生.(2)200﹣80﹣30﹣50=40(人),30÷200×100%=15%,补全如图:(3)图中“A”层次所在扇形的圆心角的度数为360°×40%=144°.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.23.(7分)如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOB的度数.【分析】此题可以设∠AOC=x,进一步根据角之间的关系用未知数表示其它角,再根据已知的角列方程即可进行计算.【解答】解:设∠AOC=x,则∠BOC=2x.∴∠AOB=3x.又OD平分∠AOB,∴∠AOD=1.5x.∴∠COD=∠AOD﹣∠AOC=1.5x﹣x=20°.∴x=40°∴∠AOB=120°.【点评】本题考查了角平分线的定义及角的计算,设出适当的未知数,运用方程求出角的度数是解决此类问题的一般方法.24.(7分)设a,b,c,d为有理数,现规定一种新的运算:=ad﹣bc,那么当=7时,x的值是多少?【分析】已知等式利用题中新定义化简,计算即可求出x的值.【解答】解:根据题中新定义得:21﹣2(5﹣x)=7,去括号得:21﹣10+2x=7,移项合并得:2x=﹣4,解得:x=﹣2.【点评】此题考查了解一元一次方程,有理数的混合运算,以及新定义,解方程的步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.25.(9分)已知|m|=3,|n|=2,求m2+mn+n2的值.【分析】根据|m|=3,|n|=2,可以求得m、n的值,从而可以求得所求式子的值.【解答】解:∵|m|=3,|n|=2,∴m=±3,n=±2,当mn同号时,m2+mn+n2=9+6+4=19,当mn异号时,m2+mn+n2=9﹣6+4=7.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.26.(9分)甲乙两车间共120人,其中甲车间人数比乙车间人数的4倍少5人.(1)求甲、乙两车间各有多少人?(2)若从甲、乙两车间分别抽调工人,组成丙车间研制新产品,并使甲、乙、丙三个车间的人数比为13:4:7,那么甲、乙两车间要分别抽调多少工人?【分析】(1)设甲车间有x人,则乙车间有(120﹣x)人,根据“甲车间人数比乙车间人数的4倍少5人”列出方程并解答;(2)设甲车间有13y人,乙车间有4y人,丙车间有7y人.根据总人数是120人,求得甲、乙车间的人数,结合(1)的结果求得甲、乙两车间要分别抽调多少工人.【解答】解:(1)设甲车间有x人,则乙车间有(120﹣x)人,依题意,得4(120﹣x)﹣x=5,解得x=95,则120﹣x=25.答:甲车间有95人,乙车间有25人;(2)设甲车间有13y人,乙车间有4y人,丙车间有7y人,则13y+4y+7y=120,解得y=5,所以甲车间有65人,乙车间有20人,丙车间有35人,故甲车间要抽调:95﹣65=30(人).乙车间要抽调:25﹣20=5(人).答:甲车间要抽调30人,乙车间要抽调5人.【点评】考查了一元一次方程的应用,解题的关键是读懂题意,找准等量关系,列出方程并解答.1、三人行,必有我师。

湘教版七年级上册数学期末考试试卷带答案

湘教版七年级上册数学期末考试试卷带答案

湘教版七年级上册数学期末考试试题一、单选题1.下列四个数中,最小的数是()A .0B .12022-C .2022D .2022-2.方程360x +=的解是()A .2x =B .2x =-C .3x =D .3x =-3.下列式子:22132,4,,,5,07ab ab x x a c++-中,整式的个数是()A .6B .5C .4D .34.根据等式的性质,下列结论不正确的是()A .若a b y y =,则a b =B .若ax bx =,则a b=C .若33a n b n -=-,则a b=D .若22m m a b +=+,则a b =5.下列各式中,去括号正确的是()A .()22a b c a b c--+=--+B .()()2121x t a x t a --+-=---+C .()2121x x ⎡⎤⎣⎦---=+D .()321321x y x y +-+-=-+-6.有理数a ,b 在数轴上的位置如图所示,那么a ,a -,b ,b -之间的大小关系正确的是A .b a <B .a b <-C .a b -<D .a b-<-7.将一半圆绕其直径所在的直线旋转一周,得到的立体图形是()A .圆柱B .球C .圆台D .圆锥8.下列图形中,不是正方体的展开图形的是()A .B .C .D .9.某市按以下规定收取每月水费:若每月每户不超过20立方米,则每立方米按1.2元收费,若超过20立方米则超过部分每立方米按2元收费、如果某户居民在某月所交水费的平均水价为每立方米1.5元,那么这个月共用多少立方米的水设这个月共用x 立方米的水,下列方程正确的是()A .1.2×20+2(x ﹣20)=1.5xB .1.2×20+2x =1.5xC .1.22 1.52x x +=D .2x ﹣1.2×20=1.5x 10.如图所示,OB ,OC 是∠AOD 的任意两条射线,OM 平分∠AOB ,ON 平分∠COD ,若∠MON =α,∠BOC =β,则表示∠AOD 的代数式是()A .2α﹣βB .α﹣βC .α+βD .以上都不正确二、填空题11.a 与1互为相反数,那么a=______.12.数据5734000000用科学记数法表示是______.13.若单项式22m x y 与413-n x y 是同类项,则m n =_________.14.如图,C ,D 两点将线段AB 分为三部分,AC ∶CD ∶DB =3∶4∶5,且AC =6.M 是线段AB 的中点,N 是线段DB 的中点.则线段MN 的长为____________.15.如图,已知63AOB ∠=︒,2316BOC '∠=︒,那么AOC ∠=______.(用度、分、秒表示)16.学校决定修建一块长方形草坪,长为a 米,宽为b 米,并在草坪上修建如图所示的十字路,已知十字路宽x 米,则草坪的面积是________平方米.17.一个如图所示的长方形,恰好被分成6个正方形,已知最小的正方形的面积为1,则正方形F 的边长为____________.18.用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:则第10个图案中有白色地面砖块.三、解答题19.计算:(1)()()31257---+--(2)15643158⎛⎫-÷⨯- ⎪⎝⎭(3)411138824⎛---+⨯-⎫ ⎪⎝⎭20.化简:(1)()2222253x y xy x y xy -++(2)先化简,再求值:()()1223623x y x y x ---+,其中2x =,14y =-.21.解方程:(1)()328x +=(2)211132x x x -+-=+22.如图,已知B 、C 在线段AD 上,M 是AB 的中点,N 是CD 的中点,且AB CD =.(1)如图线段AD 上有6个点,则共有______条线段;(2)比较线段的大小:AC______BD (填“>”、“=”或“<”);(3)若12AD =,8BC =,求MN 的长度.23.对于任意一个三位数m ,若百位上的数字与个位上的数字之和是十位上的数字的2倍,则称这个三位数m 为“共生数”.例如:357m =,因为3725+=⨯,所以357是“共生数”;435m =,因为4523+≠⨯,所以435不是“共生数”.(1)根据题设条件,请你举例说出两个“共生数”:______,______;(2)若一个“共生数”的十位上的数字为4,设百位上的数字为x ,则个位上的数字用x 可表示为______,那么这个“共生数”用x 可表示为______.(结果要化简)(3)对于某个“共生数”,百位上的数字比个位上的数字小2,百位、十位与个位上的数字之和是9,求这个“共生数”是多少?24.(1)利用一副三角板可以画出一些特殊的角,在①135°,②120°,③75°,④50°,⑤35°,⑥15°,四个角中,利用一副三角板画不出来的特殊角是______;(填序号)(2)在图①中,写出一组互为补角的两角为______;(3)如图①,先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45°角()AOB ∠的顶点与60°角()COD ∠的顶点互相重合,且边OA 、OC 都在直线EF 上(图①),固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α(如图②),当OB 平分EOD ∠时,求旋转角度α.25.如图,在数轴上A 点表示数a ,B 点表示数b ,C 点表示数c ,且a ,c 满足以下关系式:()2390a c ++-=,1b =.(1)a=______;c=______;(2)若将数轴折叠,使得A 点与B 点重合,则点C 与数______表示的点重合;(3)若点P 为数轴上一动点,其对应的数为x ,当代数式x a x b x c -+-+-取得最小值时,此时x=______,最小值为______.26.目前节能灯已基本普及,某商场计划购进甲、乙两种节能灯共1200只,这两种节能灯的进价、售价如下表所示:进价(元/只)售价(元/只)甲型2530乙型4560(1)若进货款恰好为46000元,则购进甲种节能灯多少只?(2)若商场销售完节能灯时恰好获利30%,那么此时购进甲种节能灯又为多少只?并求此时利润为多少元?27.如图,平面内60,40AOB BOC ∠=︒∠=︒.(1)求AOC ∠的度数;(2)射线,OM ON 分别平分AOC ∠,BOC ∠,求MON ∠的度数.参考答案1.D2.B3.C4.B5.D6.C7.B8.C9.A10.A11.1-【详解】解:∵a 与1互为相反数,∴a+1=0,∴a=-1,故答案是:-1.12.95.73410⨯【详解】5734000000用科学记数法表示为95.73410⨯.故答案为:95.73410⨯.13.16【详解】∵单项式22m xy 与413-n x y 是同类项,∴n =2,m =4,∴m n =24=16.故答案为:16.【点睛】本题考查了同类项,解决本题的关键是熟记同类项定义中的两个“相同”:相同字母的指数相同.14.7【分析】先根据已知条件求出CD ,DB 的长,再根据中点的定义求出BM ,BN 的长,进而可求出MN 的长.【详解】解:∵AC ∶CD ∶DB =3∶4∶5,且AC =6,∴CD=6÷3×4=8,∴DB=6÷3×5=10,∴AB=6+8+10=24,∵M 是线段AB 的中点,∴MB=12AB=12×24=12,∵N 是线段BD 的中点,∴NB=12DB=12×10=5,∵MN=MB-NB ,∴MN=12-5=7.故答案为:7.【点睛】本题考查的是两点之间的距离,以及线段中点的定义,熟知各线段之间的和、差及倍数关系是解答此题的关键.15.3944'︒【分析】根据AOC AOB BOC ∠=∠-∠计算即可.【详解】63AOB ∠=︒ ,2316'BOC ∠=︒,∴AOC AOB BOC∠=∠-∠632316'=︒-︒3944'=︒.故答案为:3944'︒.【点睛】本题主要考查了度、分、秒的计算,熟练掌握角度之间的关系是解题的关键.16.ab -(a +b)x +x 2【分析】根据草坪的面积等于长方形草坪面积减去横向小路面积和纵向小路面积再加上两条小路重合部分的面积.【详解】根据题意可得:长方形草坪面积=ab 平方米,横向小路面积=ax 平方米,纵向小路面积=bx 平方米,两条小路重合部分面积=x 2平方米,所以剩余草坪面积=ab-ax-bx+x 2=ab -(a +b)x +x 2故答案为:ab -(a +b)x +x 2.【点睛】本题主要考查列代数式表示图形面积,解决本题的关键是要熟练分析图形中面积关系,根据面积关系正确用字母表示.17.4【分析】设正方形F 的边长为x ,根据长方形对边相等结合图形可列出关于x 的一元一次方程,求出x 即可.【详解】设正方形F 的边长为x ,∵正方形A 的面积为1,∴正方形A 的边长为1.根据图形可知正方形E 的边长为x ,正方形D 的边长为x+1,正方形C 的边长为x+1+1=x+2,正方形B 的边长为x+2+1=x+3,∴正方形F 的边长+正方形E 的边长+正方形D 的边长=正方形B 的边长+正方形C 的边长,即x+x+(x+1)=(x+2)+(x+3).解得x=4.故答案为:4.【点睛】本题考查正方形、长方形的性质以及一元一次方程在几何中的应用.根据长方形对边相等列出边的等量关系式是解答本题的关键.18.42【分析】观察发现:第1个图里有白色地砖6=4×1+2;第2个图里有白色地砖10=4×2+2;第3个图里有白色地砖14=4×3+2;……由此发现,第n 个图形中有白色地砖(4n+2)块.从而可得答案.【详解】解:根据题意得:第1个图里有白色地砖6=4×1+2;第2个图里有白色地砖10=4×2+2;第3个图里有白色地砖14=4×3+2;……则第n 个图形中有白色地砖(4n+2)块.∴当10n =时,4242.n +=故答案为42.【点睛】本题考查了图形的变化规律,解决此类题首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.19.(1)-3(2)152(3)-4【分析】(1)原式根据有理数加减法法则进行计算即可;(2)原式先计算括号内的,再把除法转换为乘法,最后进行乘法运算即可;(3)原式首先计算乘方、绝对值和括号内的,再进行乘法运算,最后进行加减运算即可.(1)()()31257---+--31257=-+--3=-(2)15643158⎛⎫-÷⨯- ⎪⎝⎭1636458⎛⎫=-÷⨯- ⎪⎝⎭5364168=⨯⨯152=(3)411138824⎛---+⨯-⎫⎪⎝⎭11158824=--+⨯-⨯1542=--+-4=-【点睛】本题主要考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.20.(1)224x y xy -+(2)32x y -,132【分析】(1)先去括号,然后根据整式的加减计算法则求解即可;(2)先去括号,然后根据整式的加减计算法则化简,最后代值计算即可.(1)解:原式2222253x y xy x y xy =--+224x y xy =-+(2)解:()()1223623x y x y x---+2422x y x y x=--++32x y=-当2x =,14y =-时,原式1113323226422x y ⎛⎫=-=⨯-⨯-=+= ⎪⎝⎭【点睛】本题主要考查了整式的加减计算,去括号和整式的化简求值,熟知相关计算法则是解题的关键.21.(1)23x =(2)7x =-【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解.(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.(1)()328x +=去括号得,368x +=移项得,386x =-合并,得,32x =系数化为1,得:23x =(2)211132x x x -+-=+去分母得:()()6221631x x x --=++,去括号得:642633x x x -+++=,移项合并得:7x =-.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.22.(1)15(2)=(3)10【分析】(1)根据线段有两个端点,得出所有线段的条数;(2)依据AB =CD ,即可得到AB +BC =CD +BC ,进而得出AC =BD ;(3)依据线段的和差关系以及中点的定义,即可得到MN 的长度.(1)∵线段AD 上有6个点,∴图中共有线段条数为6×(6−1)÷2=15;故答案为:15;(2)∵AB =CD ,∴AB +BC =CD +BC ,即AC =BD ;故答案为:=;(3)∵12AD =,8BC =,∴4AB CD AD BC +=-=,∵M 是AB 的中点,N 是CD 的中点,∴12BM AB =,12CN CD =,∴()114222BM CN AB CD +=+=⨯=,∴2810MN BM CN BC =++=+=.【点睛】本题主要考查了两点间的距离以及线段的和差关系,利用中点性质转化线段之间的倍分关系,在不同情况下灵活选用它的不同表示方法,有利于解题的简洁性.23.(1)123,234(2)8x -,9948x +(3)234【分析】(1)根据题意写出两个符合要求的数字即可;(2)根据题意先求出个位上的数字为:428x x ⨯-=-,由此即可表示出这个“共生数”;(3)设百位数字为a ,则个位上的数字为2a +,由“共生数”的定义可知十位上数字为1a +.则依题意得:()()129a a a ++++=,由此求解即可.(1)解:123m =,∵1322+=⨯,∴123是“共生数”;234m =,∵2432+=⨯,∴234是“共生数”;(2)解:由题意得个位上的数字为:428x x ⨯-=-,∴这个“共生数”用x 可表示为1004089948x x x ++-=+;(3)解:设百位数字为a ,则个位上的数字为2a +,由“共生数”的定义可知十位上数字为1a +.依题意得:()()129a a a ++++=,解得2a =.即百位上数字为2,十位为3,个位为4.所以这个“共生数”为234.【点睛】本题主要考查了列代数式和整式的加减计算,解一元一次方程,正确理解题意是解题的关键.24.(1)④⑤;(2)AOB ∠与BOC ∠,AOD ∠与COD ∠,BAE ∠与BAO ∠,DCO ∠与DCF ∠(写出一组即可);(3)15α=︒【分析】(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;(2)根据补角的定义解答即可;(3)根据已知条件得到180120EOD COD ∠=︒-∠=︒,根据角平分线的定义得到1602EOB EOD ∠=∠=︒,进一步得到结论.【详解】解:(1)1359045︒=︒+︒,1209030︒=︒+︒,754530︒=︒+︒,154530︒=︒-︒50︒和35︒不是15︒的倍数,不能写成90︒,60︒,45︒,30°的和或差,故画不出;故答案为:④⑤(2)根据平角的定义可得:180AOB BOC ∠+∠=︒,180AOD DOC ∠+∠=︒,180BA BAE O +=∠∠︒,180DCO DCF +=︒∠∠故答案为:AOB ∠与BOC ∠,AOD ∠与COD ∠,BAE ∠与BAO ∠,DCO ∠与DCF ∠(写出一组即可).(3)∵60COD ∠=︒,∴180120EOD COD ∠=︒-∠=︒,∵OB 平分EOD ∠,∴1602EOB EOD ∠=∠=︒,∵45AOB ∠=︒,∴15EOB AOB α=∠-∠=︒.25.(1)3-,9(2)11-(3)1,12【分析】(1)根据非负数的性质求解即可;(2)先求出AB 的中点表示的数,由此即可得到答案;(3)分图3-1,图3-2,图3-3,图3-4四种情况讨论求解即可.(1)解:∵()2390a c ++-=,30a +≥,()209c -≥,∴3090a c +=⎧⎨-=⎩,∴39a c =-⎧⎨=⎩,故答案为:-3;9;(2)解:∵点A 表示的数为-3,点B 表示的数为1,∴AB 中点表示的数为-1,∴点C 到AB 中点的距离为10,∴点C 与数-1-10=-11表示的点重合,故答案为:-11;(3)解:由题意得x a x b x c-+-+-119x x x =++-+-,∴代数式x a x b x c -+-+-的值即为点P 到A 、B 、C 三点的距离和,如图3-1所示,当点P 在A 点左侧时3316x a x b x c PA PB PC PA AB AC PA -+-+-=++=++=+如图3-2所示,当点P 在线段AB 上时,12x a x b x c PA PB PC PB -+-+-=++=+如图3-3所示,当点P 在线段BC 上时,12x a x b x c PA PB PC PB AC PB -+-+-=++=+=+如图3-4所示,当点P 在C 点右侧时,320x a x b x c PA PB PC PC -+-+-=++=+∴综上所述,当P 与B 点重合时,()=12x a x b x c -+-+-最小值.26.(1)购进甲型节能灯400只,购进乙型节能灯800只,进货款恰好为46000元(2)商场购进甲型节能灯450只,购进乙型节能灯750只时,利润为13500元【分析】(1)设商场购进甲型节能灯x 只,则购进乙型节能灯(1200-x)只,由题意可得等量关系:甲型的进货款+乙型的进货款=46000元,根据等量关系列出方程,再解方程即可;(2)设商场购进甲型节能灯a 只,则购进乙型节能灯(1200-a)只,根据商场销售完节能灯时恰好获利30%作为等量关系列方程即可.(1)解:设商场购进甲型节能灯x 只,则购进乙型节能灯()1200x -只,由题意得:()2545120046000x x +-=.解得:400x =.答:购进甲型节能灯400只,购进乙型节能灯800只,进货款恰好为46000元;(2)解:设商场购进甲型节能灯a 只,则购进乙型节能灯()1200a -只,由题意,得:()()()()3025604512002545120030a a a a -+--=+-⨯⎡⎤⎣⎦%.解得:450a =.()515120013500a a +-=.答:商场购进甲型节能灯450只,购进乙型节能灯750只时,利润为13500元.27.(1)20°;(2)30°【分析】(1)把6040AOB BOC ∠=︒∠=︒,代入=AOC AOB BOC ∠∠-∠,计算即可得到答案;(2)由,OM ON 分别平分AOC ∠,BOC ∠,得到11,,22MOC AOC NOC BOC ∠=∠∠=∠再利用=MON MOC NOC ∠∠+∠,从而可得答案.【详解】解:(1) 6040AOB BOC ∠=︒∠=︒,∴=20AOC AOB BOC ∠∠-∠=︒(2) ,OM ON 分别平分AOC ∠,BOC ∠,11,,22MOC AOC NOC BOC ∴∠=∠∠=∠60,AOB ∠=︒ ∴=MON MOC NOC∠∠+∠12AOC BOC =∠+∠()12AOC BOC =∠+∠12AOB =∠16030.2=⨯︒=︒。

湘教版(2024)七年级数学上册期末质量评价 答案版

湘教版(2024)七年级数学上册期末质量评价 答案版

湘教版(2024)七年级数学上册期末质量评价(考试时间120分钟,满分120分)姓名________ 班级________ 分数________一、单项选择题(本大题共12小题,每小题3分,共36分)1.-13的相反数是(A)A.13B.-13C.3 D.-32.第24届冬季奥林匹克运动会单板大跳台项目场馆坐落在北京市首钢园区的北京冬季奥林匹克公园,园区总占地面积171.2公顷即1 712 000 m2.将1 712 000用科学记数法表示应为(C)A.1 712×103 B.1.712×107 C.1.712×106 D.0.171 2×107 3.已知∠1与∠2互补,若∠2=29°20′,则∠1的度数为(C)A.151°40′ B.160°80′ C.150°40′ D.119°20′4.下列式子中计算正确的是(D)A.2x+y=2xy B.x+x=x2C.3x2-x2=2 D.5mn-5nm=05.解一元一次方程13(x-1)=2-16x时,去分母正确的是(D)A.2(x-1)=2-6x B.2(x-1)=12-5xC.3(x-1)=12-2x D.2(x-1)=12-x6.某班抽查了8名同学的期末质量评价成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+9,-3,+10,-2,-8,+7,+4,-1.则这8名同学的期末质量评价成绩的平均分是(C)A.96分 B.84分 C.82分 D.80分7.下列两个有理数的比较中,正确的是(C)A.-12>-(-\f(1,2)) B.-|-2|>-1C.-13>-12 D.(-\f(1,4))2>(-\f(1,3))28.已知正方体六个面上分别写了“校”“训”“公”“勇”“勤”“朴”这6个字,它的表面展开图如图所示,其中“公”字的相对面上的字是(A)A.校 B.勤 C.朴 D.勇9.由方程组{2x+m=1,y-4=m可得出x与y的关系是(B)A.2x-y=5 B.2x+y=5 C.2x+y=-5 D.2x-y=-5 10.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其意思:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程为前一天的一半,一共走了6天才到达目的地.若设此人第一天走了x里,则可列出方程为(D)A.x+2x+4x+8x+16x+32x=378B.x2+x4+x8+x16+x32+x64=378C.2x+4x+8x+16x+32x+64x=378D.x+x2+x4+x8+x16+x32=37811.若多项式3x2-2(5+y-2x2)+mx2的值与x的值无关,则m的值为(D)A.0 B.1 C.-1 D.-712.线段AB=12,C是线段AB的中点,若点D在线段AB上,AC=3CD,则线段BD的长为(C)A.4 B.8C.4或8 D.3或9二、填空题(本大题共6小题,每小题2分,共12分)13.单项式-5a2bc3的次数是6.14.把弯曲的公路改直,就能缩短路程,应用的数学知识是两点之间线段最短.15.方程(a-2)x|a|-1+3=0是关于x的一元一次方程,则a=-2. 16.如图,把长方形的一角折叠,得到折痕EF,已知∠EFB=35°,则∠BFC=110°.17.如图,小明把纸杯整齐地叠放在一起,根据图中的信息,若小明把50个纸杯整齐叠放在一起时,它的高度约是56cm.18.下列图案是用长度相同的小木棒按一定规律拼搭而成,图案①需8根小木棒,图案②需15根小木棒,图案③需22根小木棒,……,按此规律,第n个图案需要的小木棒的根数是7n+1.(用含n的式子表示)三、解答题(本大题共8小题,共72分)19.(6分)计算:(1)(-\f(3,4)+\f(7,12)-\f(5,8))×(-24);解:原式=18-14+15=19.(2)-12+|1+(-2)×3|-(-2)2÷4 5 .解:原式=-1+|1-6|-4×5 4=-1+5-5=-1.20.(6分)解下列方程:(1)4-x=x-(2-x);解:去括号,得4-x=x-2+x,移项,得-x-x-x=-2-4,合并同类项,得-3x=-6,系数化为1,得x=2.(2)2x-13-x+16=x-2.解:去分母,得2(2x-1)-(x+1)=6(x-2),去括号,得4x-2-x-1=6x-12,移项,得4x-x-6x=-12+2+1,合并同类项,得-3x=-9,系数化为1,得x=3.21.(10分)已知:a,b互为相反数(a≠0),c,d互为倒数,x=4(a+b)-2,y=2cd-b a .(1)填空:a+b=0,cd=1,ba=-1;(2)先化简,后求出2(2x-y)-(2x-3y)的值.解:(2)原式=4x-2y-2x+3y=2x+y,因为x=4(a+b)-2=-2,y=2cd-ba=2+1=3,所以原式=2×(-2)+3=-1.22.(10分)老师倡导同学们多读书,读好书,要求每天读课外书30 min,小伟由于种种原因,实际每天读课外书的时间与老师要求时间相比有出入,下表是小伟某周读课外书的情况(增加记为正,减少记为负).星期一二三四五六日增减/min+5-2-4+13-10+15-9(1)读课外书最多的一天比最少的一天多多少分钟?(2)根据记录的数据可知,小伟该周实际读课外书多少分钟?解:(1)15-(-10)=15+10=25(min).答:读课外书最多的一天比最少的一天多25 min .(2)5-2-4+13-10+15-9+30×7=8+210=218(min).答:小伟该周实际读课外书218 min.23.(10分)如图,直线AB ,CD 相交于点O ,OE 平分∠BOD ,OF 平分∠COE ,∠AOD =2∠BOD.(1)求∠BOE 的度数;解:因为∠AOD =2∠BOD ,∠AOD +∠BOD =180°.所以∠BOD =13×180°=60°,因为OE 平分∠BOD ,所以∠BOE =12∠BOD =12×60°=30°.(2)求∠BOF 的度数.解:∠COE =∠COD -∠DOE=180°-30°=150°.因为OF 平分∠COE ,所以∠EOF=12∠COE=12×150°=75°.所以∠BOF=∠EOF-∠BOE=75°-30°=45°.24.(10分)本学期某学校开展以“校外实践活动”为主题的研学活动,组织120名学生参观县文博园和县烈士陵园纪念馆,每一名学生只能参加其中一项活动,学校租车一次性支付车票2 200元.车票信息如下:(1)请问参观县烈士陵园纪念馆和县文博园的人数各是多少人?地点票价县烈士陵园纪念馆20元/人县文博园16元/人(2)若学生都去参观县文博园,则能节省车票票款多少元?解:(1)设参观县烈士陵园纪念馆的有x人,依题意,得20x+(120-x)×16=2 200,解得x=70.所以120-70=50(人),答:参观县文博园的有50人,参观县烈士陵园纪念馆的有70人.(2)由题意得2 200-120×16=280(元).答:若学生都去参观县文博园,则能节省车票票款280元.25.(10分)阅读材料,回答下列问题:对于未知数为x,y的二元一次方程组,如果方程组的解x满足|x-y|=1,我们就说方程组的解x与y具有“邻好关系”.的解x与y是(选填“是”或“不是”)具有“邻(1)方程组{x+2y=7,x-y=1好关系”?的解x与y具有“邻好关系”,求m的值.(2)若方程组{2x-y=6,4x+y=6m解:(2)方程组{2x-y=6①,4x+y=6m②,②+①得6x=6+6m,即x=1+m,把x=1+m代入①得y=2m-4,所以x-y=1+m-2m+4=5-m.因为方程组的解x,y具有“邻好关系”,所以|x-y|=1,即5-m=±1,所以m=6或m=4.26.(10分)【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴发现:在数轴上,点O为原点,点A,B表示的数分别是a和b,点B在点A的右边(即b>a),则A,B 两点之间的距离(即线段AB的长)AB=b-a.【问题情境】如图,数轴上点A表示的数a=-6,点B表示的数为b=4,线段AB 的中点C 表示的数为x.点M 从点A 出发,以每秒2个单位长度的速度沿数轴向右运动;同时点N 从点B 出发,以每秒3个单位长度的速度沿数轴向左运动.设运动时间为t s(t >0).【综合运用】根据“背景知识”和“问题情境”解答下列问题:(1)填空:①A ,B 两点之间的距离AB = 10,线段AB 的中点C 表示的数x = -1;②用含t 的代数式表示t s 后,点M 表示的数为2t -6 ;点N 表示的数为4-3t ;(2)求当t 为何值时,点M 运动到线段AB 的中点C ,并求出此时点N 所表示的数;(3)求当t 为何值时,MN =12AB.解:(2)当点M 运动到线段AB 的中点C 时,点M 与AB 的中点C 表示同一个数,即2t -6=-1,解得t =52.此时,点N 表示的数为4-3t =4-3×52=-72.(3)因为AB =10,MN =12AB ,所以MN =5.当点M 在点N 的左边时,(4-3t)-(2t-6)=5,解得t=1;当点M在点N的右边时,(2t-6)-(4-3t)=5,解得t=3.故当t=1或t=3时,MN=12 AB.。

湘教版七年级上册数学期末考试试卷含答案

湘教版七年级上册数学期末考试试卷含答案

湘教版七年级上册数学期末考试试题一、单选题1.-3的倒数的相反数是()A .13-B .13C .3D .92.下列各式中运算正确的是()A .336235x x x +=B .220a b ab -=C .(-18)÷(-9)=-2D .3(2)8-=-3.以下四个图中有直线、射线、线段,其中能相交的是()A .①②③④B .①③C .②③④D .①4.有理数a ,b 在数轴上的位置如图所示,那么下列式子中不一定成立的是()A .a >bB .b ﹣a <0C .ab <0D .|a|≥|b|5.若1a b -=-则223a b --等于()A .1-B .2-C .5-D .56.下列方程的变形中,正确的是()A .方程3221x x +=-移项得3212x -=-+B .方程625(1)x x -=--,去括号得6251x x -=--C .方程2332x =,方程两边都乘以32,得1x =D .方程1125x x--=可化为5(1)210x x --=7.若关于x 的方程230m mx m --+=是一元一次方程,则这个方程的解是()A .0x =B .3x =C .3x =-D .2x =8.下列调查中,最适合采用抽样调查的是()A .对旅客上飞机前的安检B .了解全班同学每周锻炼的时间C .企业招聘,对应聘人员面试D .对某水域的水质情况进行调查9.如图,线段15AB cm =,点C 在AB 上,23BC AC =,D 为BC 的中点,则线段AD 的长为()A .10cmB .13cmC .12cmD .9cm10.某种商品因换季准备打折出售.如果按定价的七五折出售将亏25元,而按定价的打九折出售,将赚20元,这种商品的定价为()A .250元B .300元C .280元D .285元11.如图,四个图形都是由6个大小相同的正方形组成,其中是正方体展开图的是()A .①②④B .①②③C .②④D .②③④12.如图所示,点O 在直线AB 上,∠EOD =90°,∠COB =90°,那么下列说法错误的是A .∠1与∠2相等B .∠AOE 与∠2互余C .∠AOE 与∠COD 互余D .∠AOC 与∠COB 互补二、填空题13.已知∠α=36°36′36″,则∠α的余角等于_____.14.如果单项式28m x y 和32n x y -是同类项则m n +=_________.15.若|m ﹣2|+(n+2)2=0,则m+2n 的值为______.16.修路时,通常把弯曲的公路改直,这样可以缩短路程,其根据的数学道理是______.17.将数据47050000用科学记数法表示为__________.18.观察下列单项式:3572,6,12,20,x x x x ……按此规律写出第n 个单项式________.三、解答题19.计算:(1)5-7+(-1)(2)43111(2)356()23-+-+--⨯-||20.解下列方程:(1)5(1)2(12)0x x --+=(2)12124x x +-=+21.先化简,再求值:222212[2()2]42m n m n mn m n mn mn ---++,其中3m =,12n =.22.如图,OC 是∠AOD 的平分线,OE 是∠BOD 的平分线.(1)若∠AOB=140°,求∠COE 的度数;(2)若∠COE=65°,∠COA=20°,求∠BOE 的度数.23.列方程解应用题:甲乙两位同学制作黑板报,甲单独制作需要4小时,乙单独制作需要2小时;(1)如果甲乙一起制作,多长时间能做完?(2)如果甲先制作3小时,剩下的由乙来制作,乙要用多少时间才能制作完?24.解答下列两题:(1)某新冠疫苗接种点,每天接种人数在500人左右,工作人员统计时,超过500人的人数记为正,不足500人的人数记为负.以下是10天内的记录数据:-10+8+10-6-2+15-7+3-20+7计算该接种点10天内接种的总人数.(2)已知A=2423x x +-,B=232x x --.计算A -2B .25.学习了统计知识后,王老师请班长就本班同学的上学方式进行了一次调查统计,图(1)和图(2)是班长和同学们通过收集和整理数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息,解答一下问题:(1)计算出扇形统计图中“步行”部分所对应的圆心角的度数;(2)求该班共有多少名学生;(3)在图(1)中,将表示“乘车”与“步行”的部分补充完整.26.某蔬菜基地今年收获大白菜24000千克,在收获前期共投入9000元的成本,今年大白菜的销售行情如下:方式一:直接在蔬菜基地销售,每千克为m 元:方式二:在市场上每千克为n 元,但平均每天只出售2000千克,且每天需人工费300元,每天还需缴纳管理费等其它费用100元.(1)分别用m .n 表示两种方式出售大白菜的纯收入:(2)若2m =元, 2.5n =元,选择怎样方式出售获利较多?说明你的理由:(3)当3n =元,m 为何值时,两种方式获利一样.27.数形结合是数学解题中的一种重要思想,利用数轴可以将数与形完美结合.一般地,数轴上表示数m 和数n 的两点之间的距离等于|m ﹣n|,如:数轴上表示4和1的两点之间的距离是|4﹣1|=3;表示﹣3和2两点之间的距离是|﹣3﹣2|=5.根据以上材料,结合数轴与绝对值的知识回答下列问题:(1)将数﹣5,﹣32,0,2.5在数轴上表示出来.(2)若数轴上表示数a 的点位于﹣3与2之间,那么|a+3|+|a ﹣2|的值是多少?(3)若A 是数轴上的一个点,它表示数a ,则|a+5|+|a ﹣3|的最小值是多少?当a 取多少时|a+5|+|a ﹣1|+|a ﹣3|有最小值?最小值是多少?参考答案1.B 【分析】根据倒数及相反数的定义解答即可.【详解】∵﹣3的倒数是﹣13,∴﹣3的倒数的相反数是13,故选B .【点睛】本题考查了倒数及相反数的定义,熟知倒数及相反数的定义是解决问题的关键.2.D 【分析】根据合并同类项,有理数的除法及乘方分析各选项即可.【详解】解:A 选项,333235x x x +=,故该选项计算错误,不符合题意;B 选项,2a b 与2ab 不是同类项,故该选项计算错误,不符合题意;C 选项,(-18)÷(-9)=2,故该选项计算错误,不符合题意;D 选项,3(2)8-=-,故该选项计算正确,符合题意;故选∶D【点睛】本题考查了合并同类项,有理数的除法及乘方,熟记乘方的意义是解题的关键.3.B 【分析】根据直线可以沿着两个方向延伸,射线可以沿着一个方向延伸,线段不能延伸依次判断即可.【详解】解:①射线和直线延伸后可以相交,符合题意;②线段不能向两端延伸,不能相交,不符合题意;③两条直线延伸后可以相交,符合题意;④射线和直线延伸后不能相交,不符合题意;故选:B .【点睛】题目主要考查直线、线段及射线的知识,掌握直线可以沿着两个方向延伸,射线可以沿着一个方向延伸,线段不能延伸是解题关键.4.D 【详解】试题分析:观察数轴可得:b <0<1<a ,∴a >b ,b ﹣a <0,a b<0,根据已知数轴不能判断|a|和|b|的大小.故选D .考点:1.有理数大小比较;2.数轴.5.C 【分析】将223a b --变形为2()3a b --,再将a-b=-1整体代入即可求解.【详解】∵a-b=-1,∴223a b --2()3a b =--2(1)3=⨯--5=-.故选:A .【点睛】本题考查了已知式子的值求代数式的值,注重整体代入的思想是解答本题的关键.6.D 【分析】解一元一次方程的步骤:去分母,去括号,移项,合并同类项,化系数为1.移项要变号;去括号时若括号前是负号,括号里面要变号;去分母时等式左右两边每一项都要乘以分母的最小公倍数.【详解】A :程3221x x +=-移项得3212x x -=--,故A 错误;B :方程625(1)x x -=--,去括号得6255x x -=-+,故B 错误;C ∶方程2332x =,方程两边都乘以32,得94x =D ∶正确故选:D【点睛】本题主要考查了解一元一次方程的步骤,熟练的掌握等式的性质,能够根据等式的性质正确的解一元一次方程是解题的关键.7.A【详解】解:由方程为一元一次方程得,m﹣2=1,即m=3,则这个方程是3x=0,解得:x=0.故选A.8.D【分析】根据普查及抽样调查的的适用范围(一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查)依次判断即可.【详解】解:A.∵对旅客上飞机前的安检非常重要,故宜采用普查;B.了解全班同学每周体育锻炼的时间工作量比较小,故宜采用普查;C.企业招聘,对应聘人员的面试工作量比较小,故宜采用普查;D.对某水域的水质情况进行调查,宜采用抽样调查;故选D.【点睛】题目主要考查抽样调查及普查的适用范围,理解抽样调查及普查的适用范围是解题关键.9.C【分析】直接根据题意表示出各线段长,进而得出答案.【详解】解:∵23BC AC,∴设BC=2x,则AC=3x,∵D为BC的中点,∴CD=BD=x,∵线段AB=15cm,∴AC+BC=5x=15,解得:x=3(cm),∴AD=3x+x=4x=12(cm).故选:C.【点睛】此题主要考查了两点之间的距离,正确表示出各线段长是解题关键.10.B【分析】七五折是定价的75%,九折是定价的90%,设定价为x元,则根据两种情况下的进价相等列方程,再解方程可得答案.【详解】解:设定价为x元,则0.75250.920,x x +=-解得:300,x =答:这种商品的定价为300元.故选B【点睛】本题关键是理解打折的含义,一元一次方程的应用,理解题意,确定相等关系是解本题的关键.11.A 【分析】由平面图形的折叠及正方体的展开图解题.【详解】由四棱柱四个侧面和上下两个底面的特征可知,①,②,④选项可以拼成一个正方体,而③选项,上底面不可能有两个,故不是正方体的展开图.故选A .【点睛】本题考查了几何体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.12.C 【分析】根据垂直的定义和互余解答即可.【详解】解:∵∠EOD =90°,∠COB =90°,∴∠1+∠DOC =∠2+∠DOC =90°,∴∠1=∠2,∴∠AOE+∠2=90°,∵∠1+∠AOE =∠1+∠COD ,∴∠AOE =∠COD ,故选:C .【点睛】本题考查了垂线的定义,关键是熟悉当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直;平角的度数是180°.13.532324︒'''【分析】根据互为余角的两个角的和为90度,列出算式,再根据度分秒的换算即可得出答案.【详解】解:α∠的余角是:90363636532324︒-︒'''=︒''',故答案为:532324︒'''.【点睛】此题主要考查了余角和度分秒的换算,解题的关键是主要记住互为余角的两个角的和为90度.14.5【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出n ,m 的值,再代入代数式计算即可.【详解】解:因为单项式8xmy 2和-2x 3yn 是同类项,所以m=3,n=2,所以m+n=3+2=5.故答案为:5.【点睛】本题考查了同类项的定义,熟记同类项定义是解答本题的关键.15.2-【分析】根据非负数的性质列式求出m 、n 的值,然后代入代数式进行计算即可求解.【详解】解:∵|m ﹣2|+(n+2)2=0,∴m ﹣2=0,n+2=0,解得m =2,n =﹣2,则m+2n =2+2×(﹣2)=2﹣4=﹣2.故答案为:﹣2.【点睛】本题考查了非负数的性质∶几个非负数的和为0时,这几个非负数都为0,掌握非负数的性质是解题的关键.16.两点之间线段最短【分析】根据“两点之间线段最短”解答即可.【详解】解:修路时,通常把弯曲的公路改直,这样可以缩短路程,其根据的数学道理是:两点之间线段最短.故答案为:两点之间线段最短.【点睛】本题考查了线段的性质,熟练掌握熟练掌握两点之间线段最短是解答本题的关键.17.4.705×710【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:47050000=4.705×107,故答案为:4.705×107.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.18.21(1)n n n x -+【分析】观察发现,单项式的指数部分为2n-1,系数部分为n (n+1),据此即可求解.【详解】解:∵2x=1×(1+1)x2×1-1,6x3=2×(2+1)x2×2-1,12x5=3×(3+1)x2×3-1,20x7=4×(4+1)x2×4-1,…,∴第n个单项式为:n(n+1)x2n-1.故答案为:n(n+1)x2n-1.【点睛】本题主要考查了单项式规律,解答的关键是由所给的单项式的总结出变化的规律.19.(1)-3(2)-8【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先算乘方及绝对值,再算乘法分配律,最后算加减即可得到结果.(1)解:原式=5-7-1=-2-1=-3;(2)解:原式=-1-8+2-6×12-6×(-13)=-1-8+2-3+2=-8.【点睛】此题考查了有理数的混合运算,其运算顺序为:先乘方,再乘除,最后加减,有括号先算括号里边的,同级运算从左到右依次进行.20.(1)x=7(2)x=0【分析】(1)方程去括号,移项,合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并,把x系数化为1,即可求出解.(1)解:去括号得:5x-5-2-4x=0,移项得:5x-4x=5+2,合并得:x=7;(2)解:去分母得:2(x+1)=4+(x-2),去括号得:2x+2=4+x-2,移项得:2x-x=4-2-2,合并得:x=0.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并同类项,未知数系数化为1.21.24mn ,3【分析】根据整式的运算顺序:先算小括号里面的,再算中括号里面的,最后算括号在面的;进行计算即可.【详解】解:原式=22222[22]4mn m n mn m n mn mn --+++=222224m n m n mn -+=24mn 当13,2m n ==时221443(32mn =⨯⨯=【点睛】本题主要考查了整式的加减法,按照运算顺序,同一级运算从左到右一次计算,有括号先算小括号里面的,再算中括号里面的,最后算大括号里面的进行计算是解题的关键.22.(1)70°(2)45°【分析】(1)直接根据角平分线的定义进行解答即可;(2)先根据(1)中所得结论∠COE=12∠AOB 求出∠AOB 的度数,再利用角的和差关系即可得出结论.(1)解:∵OC 是∠AOD 的平分线,OE 是∠BOD 的平分线,∠AOB=140°,∴∠COE=12∠BOD+12∠AOD =12(∠BOD+∠AOD )=12∠AOB=70°;(2)由(1)知∠COE=12∠AOB ,∵∠COE=65°,∴∠AOB=130°,∵∠COA=20°,∴∠BOE=∠AOB-∠AOC-∠COE=130°-20°-65°=45°.【点睛】本题考查的是角平分线的定义,几何图形中角度的计算,数形结合是解答此题的关键.23.(1)43(2)12【分析】(1)根据题意可得,甲的工作效率为14,乙的工作效率为12,利用工作总量除以总工作效率即可得出结果;(2)先求出甲完成的工作量,确定剩余工作量,然后除以乙的工作效率即可.(1)解:根据题意可得,甲的工作效率为14,乙的工作效率为12,∴1141423⎛⎫÷+= ⎪⎝⎭小时,故甲乙合作需要43小时完成;(2)甲先制作3小时,完成了13344⨯=,剩余工作量为:1-3144=,需要乙工作的时间为:111422÷=,故乙要用12小时才能制作完.24.(1)4998人(2)2281x x ++【分析】(1)先计算出超过或不足500人的数据的总数,然后再进行计算即可;(2)将代数式直接代入计算,然后合并同类项求解即可.(1)解:-10+8+10-6-2+15-7+3-20+7=-2,∴500×10-2=4998,∴该接种点10天内接种的总人数为4998人;(2)解:A=4x2+2x−3,B=x2−3x−2.A-2B=4x2+2x−3-2(x2−3x−2)=4x2+2x−3-2x2+6x+4=2x2+8x+1.25.(1)108°;(2)60(人);(3)见解析【分析】(1)扇形统计图中“步行”部分所对应的圆心角的度数=360°×对应的百分比;(2)总人数=骑车的人数是30人÷所占的百分比是50%;(3)分别分别求出乘车的人数和步行的人数,即可补全统计图.【详解】解:(1)扇形统计图中“步行”部分所对应的圆心角的度数是360°×(1﹣50%﹣20%)=108°;(2)该班学生数是:30÷50%=60(人);(3)乘车的人数是:60×20%=12(人),步行的人数是:60﹣30﹣12=18(人).26.(1)方式一:(24000m-9000)元,方式二:(24000n-13800)元(2)方式二的出售获利较多,理由见解析(3)m=2.8元【分析】(1)根据利润=总额-成本列出代数式;(2)把m=2,n=2.5代入(1)中所列的代数式并解答,然后比较即可;(3)根据题意列出关于m的方程,通过解方程得到m的值.(1)方式一:出售苹果的纯收入为(24000m-9000)元,方式二:24000÷2000=12天,12(300100)4800⨯+=,则出售苹果的纯收入为24000n-4800-9000=(24000n-13800)元,故方式一的纯收入为(24000m-9000)元,方式二的纯收入为(24000n-13800)元;(2)方式二的出售获利较多,理由如下:方式一:把m=2元代入24000m-9000,得到24000×2-9000=39000(元)方式二:把n=2.5元代入24000n-13800,得到24000×2.5-13800=46200(元)因为39000<46200,所以方式二的出售获利较多;(3)依题意得:24000m-9000=24000n-13800整理,得:5n-5m=1,把n=3代入,得:15-5m=1,解得:m=2.8,答:当n=3元,m=2.8元时,两种获利一样.【点睛】本题考查了列代数式,代数式求值,以及一元一次方程的应用,解题的关键是读懂题目意思,根据题目所给出的条件找到合适的等量关系再求解.27.(1)详见解析;(2)5;(3)8;a=1;8.【分析】(1)在数轴上标示出﹣5,﹣32,0,2.5即可求解;(2)由图可得﹣3<a<2,然后根据绝对值的意义对|a+3|+|a-2|进行化简,即可求解;(3)根据|a+5|+|a-1|+|a-3|表示A点到-5,1,3三点的距离的和确定当﹣5<a<3时,|a+5|+|a ﹣3|的值最小,然后根据绝对值的意义进行化简.【详解】解:(1)如图所示:(2)①∵﹣3<a<2,∴|a+3|+|a﹣2|=a+3+2-a=5;(3)∵|a+5|+|a-1|+|a-3|表示A点到-5,1,3三点的距离的和∴当﹣5<a<3时,|a+5|+|a﹣3|的值最小,且为a+5+3-a=8,是定值,∴a=1时,|a﹣1|最小为0,∴a=1时,|a+5|+|a﹣1|+|a﹣3|的最小值等于8.。

湘教版七年级上册数学期末考试试卷及答案

湘教版七年级上册数学期末考试试卷及答案

湘教版七年级上册数学期末考试试题一、选择题。

(每小题只有一个答案正确)1.已知m 的绝对值是3,则m 的值是()A .0B .3C .-3D .3±2.下列图形都是由六个相同的正方形组成的,经过折叠不能围成正方体的是()A .B .C .D .3.若23a =-,()1b =--,()32c =-,则a 、b 、c 的大小关系是()A .a b c <<B .a c b<<C .b c a<<D .b a c<<4.下列计算正确的是()A .2222x x x -=B .532--=-C .22232a b ab a b -=D .23a b ab +=5.一个角的补角是这个角的余角的4倍,则这个角的度数是()A .120°B .90°C .80°D .60°6.要调查下列问题,适合采用全面调查(普查)的是()A .中央电视台《开学第一课》的收视率B .即将发射的气象卫星的零部件质量C .某城市居民6月份人均网上购物的次数D .某品牌新能源汽车的最大续航里程7.下列说法正确的是()A .若32x y =,则 1.5x y =B .若a b =,则a bc c=C .若2331a b +=-,则234a b =-D .单项式213r h π的系数是13,次数是48.计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F 共16个计数符号,这些符号与十进制的数的对应关系如下表:十六进制0123456789A B C D E F 十进制123456789101112131415例如,十进制中261610=+,用十六进制表示为1A :用十六进制表示:1D F C +=,19F A -=,则A E ⨯,用A E ⨯十六进制可表示为()A .8CB .140C .32D .EO9.若方程2152x kx x -+=-的解为-1,则k 的值为()A .10B .-4C .-6D .-8二、填空题10.如果节约20m 的彩带记作20m +,那么浪费10m 的彩带记为________.11.已知423n x y 和26m x y -是同类项,则m n +的值是_________12.2020年6且23日,北斗三号最后一颗全球组网卫星从西昌发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道.将36000用科学记数法表示应为______.13.若m+n=-1,则(m+n )2-2m-2n 的值是___________.14.教育部规定,初中生每天的睡眠时间应为9个小时,皓皓记录了他一周的睡眠时间,并将统计结果绘制成如图所示的折线统计图,则皓皓这一周的睡眠够9个小时的有___________天.15.已知2x =是关于x 的一元一次方程250x m +-=的解,则m =_________.16.下列说法:①点C 是线段AB 的中点,则2AB AC =;②平面上有4个点,其中任意3个点都不在同一条直线上,经过每两点画一条直线,一共可以画4条直线;③锐角和钝角定互补;④35322435.54'''︒=︒,其中正确结论的序号是__________.17.化简:﹣3a ﹣a+b+2b 2+a+b ﹣2b 2=________.三、解答题18.计算(1)()172 1.25⎛⎫+---- ⎪⎝⎭(2)()()2202012 2.5 3.5120---+-÷19.先化简,再求值;()()222232522xxy y x xy y -+--+,其中1x =,2y =-.20.解方程:(1)4321x x +=-(2)12223x x--=21.某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“A 非常了解”、“B 比较了解”、“C 基本了解”、“D 不太了解”四个等级,划分等级后的数据整理成如下两幅不完整的统计图,请你根据图表信息回答下列问题:(1)学校这次调查共抽取了名学生,并请补全条形统计图;(2)求扇形统计图中B 选项所对应的圆心角度数.(3)若该校有学生1800人,那么“不太了解”垃圾分类知识的学生大约有多少人?22.如图,直线AB 与CD 相交于点O ,90AOE ∠=︒.(1)如果20AOC ∠=︒,求COE ∠和BOD ∠的度数.(2)如果2COE BOD ∠=∠,求BOC ∠的度数.23.列方程解应用题:双十一期间,某商店将某型号的彩电按标价的八折出售,若每台彩电的利润率是5%,已知该型号彩电的进价为每台4000元,求该型号彩电的标价.24.数轴上,两点之间的距离可以用这两点中右边的点所表示的数减去左边的点所表示的数来计算,例如:数轴上M 、N 两点表示的数分别是-1和2,那么M 、N 两点之间的距离就是()213MN =--=.如图,在数轴上点A 表示的数是-5,点B 表示最大的负整数,点C 和点B 表示的数互为相反数,已知P 为数轴上一动点,其表示的数是x .(1)AB =,BC =.(2)当点P 在线段AC 上时,①用含x 的代数式表示:PA=,PC=.②若7.4PA PB PC ++=,求x 的值.(3)若点P ,Q 分别从B ,C 同时向A 点运动,点P 的速度为2个单位秒,点Q 的速度为3个单位秒,点P 运动至A 点后停止运动,同时Q 点也停止运动,运动的时间为t 秒.①试说明2AP PQ=②当t 为多少时,Q 点刚好追上P 点,并求此时两者相遇的点在数轴上对应的数.25.(1)特例感知:如图1,OC 、OD 是AOB ∠内部的两条射线,若120AOD BOC ∠=∠=︒,30AOC ∠=︒,则BOD ∠=°.(2)知识迁移:如图2,OC 是AOB ∠内部的一条射线,若OM 、ON 分别平分AOC ∠和BOC ∠,且AON BOM ∠≠∠,则MOC NOCAON BOM∠-∠∠-∠的值为.(3)类比探究:如图3,OC 、OD 是AOB ∠内部的两条射线.若OM 、ON 分别平分AOD ∠和BOC ∠,且AOD BOC ∠≠∠,求的值MOC NODAOD BOC∠-∠∠-∠.参考答案1.D 【分析】由绝对值的定义,正数绝对值是正数,负数绝对值也是正数,可知m有正负两种情况.【详解】∵3=3 ,3=3-∴m =3±故答案选D .【点睛】本题主要考察绝对值知识点,准确理解记住它的定义是解题关键.2.D 【分析】由平面图形的折叠及正方体的展开图解题.【详解】解:选项A 、B 、C 经过折叠均能围成正方体,选项D 折叠后有两个面重叠,不能折成正方体.故选:D .【点睛】正方体展开图有11种特征,分四种类型,即:第一种:“1−4−1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2−2−2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3−3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1−3−2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.3.B 【分析】根据有理数的乘方运算将a 和c 算出结果,再比较大小.【详解】解:239a =-=-,()11b =--=,()328c =-=-,∵981-<-<,∴a c b <<.故选:B .【点睛】本题考查有理数的乘方运算,解题的关键是掌握有理数乘方的运算法则.4.A 【分析】根据整式的加减运算法则判断选项的正确性.【详解】A 选项正确,2222x x x -=;B 选项错误,538--=-;C 选项错误,不是同类项不可以加减;D 选项错误,不是同类项不可以加减.故选:A .【点睛】本题考查整式的加减运算,解题的关键是掌握整式的加减运算法则.5.D【分析】根据余角是两角之和是90o,补角是两角之和是180o,再根据等量关系列出方程,即可解出答案.【详解】解:设这个角为x,则它的余角是(90o-x),补角是(180o-x)依题意得:180o-x=4(90o-x)解得x=60o故答案选D.【点睛】本题主要考查了补角,余角等基础概念,准确理解记住它们的定义是解题关键.6.B【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、调查中央电视台《开学第一课》的收视率,适合抽查,故本选项不合题意;B、调查即将发射的气象卫星的零部件质量,适合采用全面调查(普查),故本选项符合题意;C、调查某城市居民6月份人均网上购物的次数,适合抽查,故本选项不合题意;D、调查某品牌新能源汽车的最大续航里程,适合抽查,故本选项不合题意.故选:B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.C【分析】根据等式的性质,单项式系数和次数的定义求解即可.【详解】解:A.错,是23x y =B.错,没说0c ≠C.对D.单项式的系数是13π,次数是3故答案选C .【点睛】本题主要考察了等式的性质,单项式等知识点,准确理解并记住它们的定义是解题关键.8.A 【分析】根据表格对应数据,先把16进制转换成十进制求结果,再把结果转换成十六进制,即可求出答案.【详解】解:∵A=10,E=14∴A×E=10×14=140∴140÷16=8⋯⋯12∵C=12∴A×E=8C 故答案选A .【点睛】本题主要考察了不同进制之间的转化,把我们陌生十六进制转换成我们熟悉的十进制去计算是解题关键.9.C 【分析】将1x =-代入原方程得到关于k 的方程,求解即可.【详解】将1x =-代入2152x kx x -+=-中,得2152k -++=--,解得6k =-,故选C.【点睛】本题考查了一元一次方程的解和解方程,明确方程的解的定义是本题关键.10.-10m 【分析】根据节约20m 记作+20m ,可以表示出浪费10m ,本题得以解决.【详解】解:∵节约20m 记作+20m ,∴浪费10m 记作-10m ,故答案为:-10m .【点睛】本题考查正数和负数,解题的关键是明确正数和负数在题目中的实际含义.11.5【分析】根据同类项的概念可得2,3m n ==,然后代入进行求解.【详解】解:由423n x y 和26m x y -是同类项可得:24,26m n ==,∴2,3m n ==,∴5m n +=;故答案为5.【点睛】本题主要考查同类项,熟练掌握同类项的概念是解题的关键.12.43.610⨯【分析】根据科学记数法的定义即可得.【详解】科学记数法:将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法,则436000 3.610=⨯,故答案为:43.610⨯.【点睛】本题考查了科学记数法,熟记定义是解题关键.13.3【解析】∵m+n=-1,∴(m+n )2-2m-2n =(m+n )2-2(m+n)=(-1)2-2×(-1)=1+2=3.14.2【分析】观察折线图即可得出答案.【详解】由折线图可知睡眠够9小时的只有周五,周六两天.故答案是:2.【点睛】本题主要考察了折线统计图,看清题目要求再找出符合条件答案是解题关键.15.1【分析】把2x =代入方程即可求出结果.【详解】解:把2x =代入250x m +-=得:2250m ⨯+-=解得:1m =故答案是1.【点睛】本题主要考察是一元一次方程的解,难度较小.16.①④【分析】根据角和线段、直线的有关性质判断即可.解:①点C 是线段AB 的中点,则2AB AC =,正确;②平面上有4个点,其中任意3个点都不在同一条直线上,经过每两点画一条直线,一共可以画6条直线,错误;③锐角和钝角不一定互补,错误;④35322435.54'''︒=︒,正确;故答案为:①④.【点睛】本题考查了线段的中点,两点确定一条直线,角的单位转换,互补的定义,解题关键是扎实掌握有关性质和定理,熟练进行单位转换.17.-3a+2b【分析】本题考查了同类项及合并同类项,先找出题目中的同类项,再合并同类项即可.【详解】−3a −a +b +2b ²+a +b −2b ²=(−3−1+1)a +(1+1)b +(2−2)b ²=−3a +2b【点睛】这类题目的解题关键是找出题目中的同类项,利用合并同类项法则,把各同类项的系数相加减,字母与字母的指数不变,求出结果.18.(1)6;(2)23【分析】根据计算的优先级顺序,先算乘方和绝对值,再算乘除加减,乘除同时有谁在前面先算谁,有括号的先算括号,逐个计算即可.【详解】(1)原式70.22 1.2=--+7 1.20.22=+--6=(2)原式41120=-+⨯320=+23=本题主要考察有理数计算,准确记住计算的优先级顺序规则即可准确算出各题.19.22x y +,5【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【详解】解:()()222232522x xy y x xy y -+--+2222325224x xy y x xy y =-+-+-22x y =+当1x =,2y =-时,原式()2212=+-5=【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.20.(1)2x =-;(2)1x =【分析】根据一元一次方程的解题步骤,去分母,去括号,移项合并同类项,系数化为1,即可解出答案.【详解】(1)移项得:4231x x -=--,24x =-,解得:2x =-;(2)去分母得:()()31222x x -=-,去括号得:3344x x-=-移项得3443x x +=+解得:1x =.【点睛】本题主要考察了一元一次方程的解法,准确记住解题步骤是解题关键.21.(1)200,图见解析;(2)108°;(3)180人【分析】(1)利用A 选项的人数除以A 选项的百分比即可解答;(2)利用总人数减去其他选项的人数得到B 选项的人数补全条形图,再求出B 选项的百分比在乘以360︒即可;(3)利用样本估计总体即可计算.【详解】(1)3015%200÷=所以学校这次调查共抽取了200人;B 选项人数:20030902060---=人,补全图形如下:(2)B 选项所占的百分比为60100%30%200⨯=B 选项所对应的圆心角度数为36030%108︒⨯=︒(3)D 不太了解的人数为20人所占百分比为20100%10%200⨯=180010%180⨯=(人)所以“不太了解”垃圾分类知识的学生大约为180人.【点睛】本题考查了条形统计图和扇形统计图综合运用,读懂统计图,能从统计图中得到想要的信息是解题关键.22.(1)70°,20°;(2)150°【分析】(1)根据题意及余角、对顶角的意义可直接进行求解;(2)设BOD x ∠=,则2COE x ∠=,则有290180x x +︒+=︒,进而根据角的和差关系可求解.【详解】解:(1)90AOE ∠=︒ ,20AOC ∠=︒,902070COE AOE AOC ∴∠=∠-∠=︒-︒=︒,20BOD AOC ∠=∠=︒;(2)设BOD x ∠=,则2COE x ∠=,180COE BOE BOD ∠+∠+∠=︒ ,即290180x x +︒+=︒,解得30x =︒,260x =︒,60COE ∴∠=︒,6090150BOC COE BOE ∴∠=∠+∠=︒+︒=︒.【点睛】本题主要考查余补角、对顶角的意义及一元一次方程的应用,熟练掌握余补角、对顶角的意义及一元一次方程的应用是解题的关键.23.该型号彩电的标价为5250元.【分析】根据利润公式:利润=售价-进价=进价×利润率,设未知数带入求解即可.【详解】解:设彩电标价为每台x 元,由题意得0.8400040005%x -=⨯解得5250x =所以该型号彩电的标价为5250元.【点睛】本题主要考察了一元一次方程销售问题,记住公式,找出等量关系是解题关键.24.(1)4,2;(2)①5x +,1x -;②-2.4或0.4;(3)①见解析;②当t 为2秒时,Q 点可以追上P 点,此时两者相遇的点在数轴上对应的数为-5.【分析】(1)由题意易得点B 表示的数为-1,点C 表示的数为1,然后根据数轴上的两点距离公式可进行求解;(2)①由题意可直接进行求解;②由题意及①可分当点P 在AB 上时和当点P 在BC 上时进行分类求解即可;(3)①由题意易得2BP t =,3CQ t =,则有42AP t =-,2PQ t =-,进而问题可求解;②由追及问题可得223t t +=,进而可得BP=4,然后问题可求解.【详解】解:(1)由题意得点B 表示的数为-1,点C 表示的数为1,∴AB=4,BC=2,故答案为4,2;(2)①由题意可得:5PA x =+,1PC x =-,故答案为5x +,1x -;②7.4PA PB PC ++= ,∴(Ⅰ)当点P 在线段AB 上时,51157.4PA PB PC x x x x ++=+--+-=-=,解得 2.4x =-;(Ⅱ)当点P 在线段BC 上时,51177.4PA PB PC x x x x ++=++++-=+=解得:0.4x =;综上所述,x 的值是-2.4或0.4;(3)①4AB =Q ,2BC =,2BP t =,3CQ t =,42AP AB BP t ∴=-=-,2232PQ BP BQ BP BC CQ t t t =+=+-=+-=-,2AP PQ ∴=;②由题意得:223t t +=,解得:2t =,24BP t ==此时,相遇点在数轴上对应的数为-4.∴当t 为2秒时,Q 点可以追上P 点,此时两者相遇的点在数轴上对应的数为-5.【点睛】本题主要考查数轴上的动点问题、一元一次方程的应用及线段的和差关系,熟练掌握数轴上的动点问题、一元一次方程的应用及线段的和差关系是解题的关键.25.(1)30;(2)1;(3)12【分析】(1)根据AOD BOC ∠=∠,可推出AOC BOD ∠=∠,即可求出结果.(2)根据OM 、ON 分别是AOC ∠和BOC ∠角平分线,可得出2AOC MOC ∠=∠,2BOC NOC ∠=∠,通过化简计算从而得到AON BOM MOC NOC ∠-∠=∠-∠,进而求出比值结果.(3)根据OM 、ON 分别是AOD ∠和BOC ∠角平分线,可得到12MOD AOD ∠=∠,12NOC BOC ∠=∠,()12MOC NOD AOD BOC ∠-∠=∠-∠,进而求出比值结果.【详解】(1)∵120AOD BOC ∠=∠=︒∴AOD COD BOC COD ∠∠=∠-∠-,∴AOC BOD∠=∠∵30AOC ∠=︒∴30BOD ∠=︒(2)∵OM 、ON 分别平分AOC ∠,BOC ∠,2AOC MOC ∴∠=∠,2BOC NOC ∠=∠,AON AOC NOC∠=∠+∠ BOM BOC MOC∠=∠+∠()()AON BOM AOC BOC NOC MOC ∴∠-∠=∠-∠+∠-∠22MOC NOC NOC MOC=∠-∠+∠-∠MOC NOC =∠-∠,AON BOM ∠≠∠ ,1MOC NOC AON BOM∠-∠∴=∠-∠(3)∵OM 、ON 分别平分AOD ∠和BOC ∠,12MOD AOD ∴∠=∠,12NOC BOC ∠=∠,又MOC MOD COD ∠=∠-∠,NOD NOC COD ∠=∠-∠,()()MOC NOD MOD COD NOC COD ∴∠-∠=∠-∠-∠-∠,MOD NOC=∠-∠1122AOD BOC =∠-∠()12AOD BOC =∠-∠12MOC NOD AOD BOC ∠-∠∴=∠-∠;【点睛】本题主要考察角平分线的性质,角的计算,准确找出题目中的等角,利用等角找出它们之间的联系是解题关键.。

湘教版七年级上册数学期末考试试卷附答案

湘教版七年级上册数学期末考试试卷附答案

湘教版七年级上册数学期末考试试题一、单选题1.下列说法正确的是( )A .-1的相反数为-1B .-1的倒数为1C .-1的绝对值为1D .(-1)3=1 2.某市今年6月份某日一天的温差为11℃,最高气温为t℃,则最低气温可表示为( ) A .(11+t)℃ B .(11-t)℃ C .(t -11)℃ D .(-t -11)℃3.如果向东走5米,记作+5米,那么向西走3米,记作( )A .3米B .-3米C .﹣5米D .+8米 4.关于整式的概念,下列说法正确的是( )A .2365x y π-的系数是65- B .233x y 的次数是6C .3是单项式D .27x y xy -+-是5次三项式 5.下列方程变形正确的是( )A .方程1125x x --=化成5(1)21x x --= B .方程325(1)x x -=--,去括号,得 3-x =2-5x -1C .方程3221x x -=+ 移项得3212x x -=+D .方程2332t =,未知数系数化为1,得 t=1 6.已知代数式2332x x -+的值为7,则代数式2x x -+的值为( )A .53- B .53 C .5 D .-5 7.将 2500000 用科学记数法表示应为( )A .70.2510⨯B .72.510⨯C .62.510⨯D .52510⨯ 8.单项式4116a b π-的系数与次数分别是( ) A .116-,5 B .116,6 C .116π-,5 D .116π-,6 9.下列两个生活、生产中现象:℃用两个钉子就可以把木条固定在墙;℃植树时,只要定出两棵树的位置就能确定同一行树所在直线;℃从A 地到B 地架设电线,总是尽可能沿着直线架设;℃把弯曲的公路修直就能缩短路程.其中可以用“两点之间线段最短”来解释现象为( )A .℃℃B .℃℃C .℃℃D .℃℃10.观察下列一组数:2-,43,85-,167,329-,…,它们是按照一定规律排列的,那么这组数的第n 个数是 ( )A .221n n -+B .(2)21nn -+ C .(2)21n n -- D .221n n --二、填空题11.112-的绝对值是______,相反数是_____,倒数是_____. 12.若()2230x y -++=,则()2020x y +=______.13.若多项式322321x x x -++与多项式3236x mx x +-相加后不含二次项,则m 的值为_______. 14.若35a x y 与310.2b x y --的和仍是单项式,则a =____,b =____.15.有理数a 、b 、c 在数轴上的位置如下图所示则a c a b b a a c +-+--+-=________.16.若一个角的补角比这个角的余角的3倍大10°,则这个角为________ 度.17.为了了解某县七年级8800名学生的视力情况,从中抽查了500名学生的视力情况进行统计分析,这个问题中的样本容量是______________.18.规定一种新运算:a b =a -b +1,请你根据新运算计算34的值是_______.三、解答题19.计算(1)111()12234-+-⨯ (2)4211(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦20.解方程:(1)3(1)2(1)x x -=+(2)211 36 x x+-=21.先化简,后求值:求代数式5(3a2b﹣ab2)﹣2(ab2+3a2b)的值,其中a=﹣1,b=2.22.为鼓励居民节约用电,某地实行居民生活用电按阶梯标准收费:℃若每户每月不超过60度的用电量,则按m元/度收费;℃若每户每月超过60度,但不超过100度,则超过60度的部分每度加价0.2元,未超过的部分按℃的标准收费;℃若每户每月超过100度,则超过100度的部分按每度在m元的基础上加价0.3元收费,未超过100度的部分按℃的标准收费.(1)用含m的式子表示用电90度时所需缴纳的电费.(2)小辉家今年9月份用电150度,缴纳电费203元,求m的值.23.某校为了解学生“课程选修”的情况,对报名参加“艺术鉴赏”、“科技制作”、“数学思维”、“阅读写作”这四个选修项目的学生(每人必须报且只能报一项)进行调查.下面是根据调查数据绘制的两幅不完整的统计图请根据图中提供的信息,解答下面的问题:(1)此次共调查了多少名学生;(2)扇形统计图中“艺术鉴赏”部分的圆心角是多少度;(3)选“数学思维”的人数比“科技制作”的人数多几分之几?24.已知90AOB∠=︒,(1)如图1,OE 、OD 分别平分AOB ∠和BOC ∠,若64EOD ∠=︒,则BOC ∠是______︒; (2)如图2,OE 、OD 分别平分AOC ∠和BOC ∠,若40BOC ∠=︒,求EOD ∠的度数(写推理过程).(3)若OE 、OD 分别平分AOC ∠和BOC ∠,(0180)BOC αα∠=︒<<︒,则EOD ∠的度数是________(在稿纸上画图分析,直接填空).25.定义:若a+b =2,则称a 与b 是关于2的平衡数.(1)3与 是关于2的平衡数,7﹣x 与 是关于2的平衡数.(填一个含x 的代数式)(2)若a =x 2﹣4x ﹣1,b =x 2﹣2(x 2﹣2x ﹣1)+1,判断a 与b 是否是关于2的平衡数,并说明理由.(3)若c =kx+1,d =x ﹣3,且c 与d 是关于2的平衡数,若x 为正整数,求非负整数k 的值.26.已知:b 是最小的正整数,且a 、b 满足()25c -+a b +=0,请回答问题: (1)请直接写出a 、b 、c 的值;(2)数轴上a 、b 、c 所对应的点分别为A 、B 、C ,点M 是A 、B 之间的一个动点,其对应的数为m ,请化简2m (请写出化简过程);(3)在(1)(2)的条件下,点A 、B 、C 开始在数轴上运动.若点A 以每秒1个单位长度的速度向左运动.同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动.假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC -AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.27.(1)填空:℃正数:35+= ,8= ; ℃负数:0.7-= ,12-= ;℃零:0= ;(2)根据(1)中的规律可以发现:无论什么数,它们的绝对值一定是 数,即0a ≥ (3)请认真阅读下列材料,求2x +的最小值 解:0x ≥,∴当0x =,即0x =时,2x +的最小值是2解答下列问题 ℃求2020x +的最小值;℃255a --有最大值还是最小值,求出这个值,并求出a 的值参考答案1.C【分析】根据相反数的定义,倒数的定义,绝对值的性质,有理数的乘方的运算法则计算即可求解.【详解】A 、-1的相反数是1,故此选项错误;B 、-1的倒数是-1,故此选项错误;C 、-1的绝对值为1,故此选项正确;D 、(-1)3=-1,故此选项错误. 故选:C【点睛】本题考查了倒数,相反数,绝对值的性质,有理数的乘方的概念.这些基本概念要求掌握.尤其是有关特殊数字1和-1的有关计算要熟悉.2.C【详解】设最低气温为x℃,则: t -x=11,x=t -11.故选:C .3.B【分析】根据正负数代表相反意义的量,解答即可.【详解】解:如果向东走5米,记作+5米,那么向西走3米,记作-3米,故选:B .【点睛】本题考查了正负数的意义,解题的关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量,在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.4.C【分析】根据整式的相关概念判断即可得到答案.【详解】解:A 、2365x y π-的系数为65π-,所以本选项错误,故不符合题意; B 、233x y 的次数是4,所以本选项错误,故不符合题意;C 、3是单项式,所以本选项正确,故符合题意;D 、多项式27x y xy -+-是三次三项式,所以本选项错误,故不符合题意;故选:C .【点睛】本题考查了单项式和多项式的知识,属于基础题,解答本题的关键是熟练掌握单项式、单项式次数、单项式的系数的定义.注意单项式的系数为其数字因数,次数是所有字母的次数的和,单个的数或字母也是单项式,多项式的次数是多项式中最高次项的次数,项数为所含单项式的个数.5.C【分析】根据一元一次方程的解法分别进行计算,即可得出结论.【详解】解:A 、方程1125x x --=化成5(1)210x x --=;故此选项变形错误,不符合题意; B 、方程325(1)x x -=--,去括号,得3255x x -=-+;故此选项变形错误,不符合题意; C 、方程3221x x -=+,移项得3212x x -=+;故此选项变形正确,符合题意;D 、方程2332t =,未知数系数化为1,得94t =;故此选项变形错误,不符合题意. 故选:C .【点睛】此题考查了解一元一次方程,掌握解一元一次方程的一般步骤及方法是解题的关键.6.A【分析】根据等式性质把原式变形,求出2x x -+的值即可.【详解】解:23327x x -+=, 2335x x -=,253x x -=, 253x x -+=-, 故选:A .【点睛】本题考查了等式的性质和代数式的值,解题关键是熟练运用等式的性质进行变形,得出所求代数式的值.7.C【详解】解:根据题意:2500000=2.5×106.故选C .8.C【分析】根据单项式系数与次数的定义即可求解.【详解】解:根据单项式系数与次数的定义可知, 单项式4116a b π-的系数为116π-,次数为415+=, 故答案为:C .9.D【分析】分别利用直线的性质以及线段的性质分析得出答案.【详解】解:℃用两个钉子就可以把木条固定在墙上,是两点确定一条直线,故此选项错误;℃植树时,只要定出两棵树的位置,就能确定同一行树所在的直线,是两点确定一条直线,故此选项错误;℃从A 地到B 地架设电线,总是尽可能沿着直线架设,是两点之间,线段最短,故此选项正确;℃把弯曲的公路改直,就能缩短路程,是两点之间,线段最短,故此选项正确;故选:D .【点睛】此题主要考查了直线的性质以及线段的性质,正确把握直线与线段的性质是解题关键.10.C【详解】解:首先观察序列是个分数,分子是﹣2,4,﹣8,16,﹣32....可变式为(﹣2)1,(﹣2)2,(﹣2)3,(﹣2)4,(﹣2)5,....可归纳为(﹣2)n ,分母是1,3,5,7,9,.....可归纳为2n -1. 可得答案为:(2)21nn --. 故选:C .【点睛】本题主要考查了数字变化规律,通过观察数字变化归纳为关于n 的通式,是解决问题的关键.11. 112; 112; 23-. 【分析】负数的绝对值是正数,负数的相反数是正数,互为倒数的两个数之积为1. 【详解】解:112-的绝对值是111122-=, 112-相反数是111122⎛⎫--= ⎪⎝⎭, 112-倒数是112133122=-=--. 故答案为:112,112,23-. 12.1【分析】先根据绝对值和平方的非负性求出x 和y 的值,再根据有理数的乘方运算计算出结果.【详解】解:℃()2230x y -++=,℃20x -=,30y +=,即2x =,3y =-, ℃()()()2020202020202311x y +=-=-=.故答案是:1.【点睛】本题考查绝对值和平方的非负性,有理数的乘方运算,解题的关键是掌握绝对值和平方的非负性.13.3.【分析】先进行整式相加,结果不含二次项说明二次项系数为0,据此列方程即可.【详解】解:3232322321(36)5(3)41x x x x mx x x m x x -++++-=+--+, 结果不含二次项,则30m -=,解得,3m =,故答案为:3.【点睛】本题考查了多项式不含某项和整式加减以及一元一次方程的解法,解题关键是熟练运用整式加减进行计算,根据系数为0列方程.14. 3 4【分析】由和仍是单项式可知它们是同类项,所以根据同类项:所含字母相同,并且相同字母的指数也相同,可得出a 和b 的值,继而代入可得出答案.【详解】解:因为单项式35a xy 与310.2b x y --的和仍是单项式, 所以单项式35a x y 与310.2b x y --是同类项,所以a=3,b=4,故答案为:3,4.【点睛】本题考查合并同类项,熟记同类项的定义是解答本题的关键,注意只有同类项才能合并.15.0【分析】由数轴上右边的点比左边点表示的数字大可知,c >b >a ,且c >0,0>b >a ,a b c >>,再根据绝对值的性质解答即可.【详解】解:根据数轴可知,c >b >a ,且c >0,0>b >a ,a b c >>,℃0a c +<,0a b +<,0b a ->,0a c -<, ℃a c a b b a a c +-+--+-=()()()()a c a b b a a c -+++----=a c a b b a a c --++-+-+=0.故答案为:0.【点睛】注意要会根据数在数轴上的位置判断其符号以及组成的一些代数式的符号,难度适中.16.50【分析】设这个角的度数为x 度,然后根据补角,余角的概念结合题意列出方程,解方程即可.【详解】解:设这个角的度数为x 度,则它的补角为(180-x )度,它的余角为(90-x )度 (180)3(90)10x x ---= ,解得:50x = ,℃这个角的度数为50°,故答案为:50.【点睛】本题主要考查一元一次方程的应用及补角,余角的概念,掌握补角,余角的概念是解题的关键.17.500【分析】根据样本容量的定义可得答案,样本容量:一个样本包括的个体数量叫做样本容量.【详解】解:为了了解某县七年级8800名学生的视力情况,从中抽查了500名学生的视力情况进行统计分析,这个问题中的样本容量是500.故答案为:500.【点睛】此题主要考查了样本容量,关键是注意样本容量只是个数字,没有单位. 18.0【分析】根据题中所给新定义运算直接进行求解即可.【详解】解:℃a b =a -b +1, ℃34=3-4+1=0;故答案为0.【点睛】本题主要考查有理数的加减运算,解题的关键是根据题中的新定义运算进行求解问题.19.(1)-5;(2)16【分析】(1)根据乘法分配律计算即可;(2)先算乘方和括号,再算乘法,最后算加减即可;【详解】(1)11112234⎛⎫-+-⨯ ⎪⎝⎭,解:原式=-6+4-3,=-5;(2)4211(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦,解:原式=-1+76, =16;【点睛】本题主要考查了含乘方的有理数的混合运算,准确计算是解题的关键. 20.(1)x=5;(2)x=-1【分析】(1)利用去括号、移项、合并同类项的步骤求解即可;(2)利用去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.【详解】解:(1)去括号,得3322x x -=+移项,得3223x x -=+合并同类项,得5x =(2)去分母,得2211x x +=-()去括号,得421x x +=-移项、合并同类项,得33x =-系数化为1,得1x =-【点睛】本题考查解一元一次方程,掌握解一元一次方程的基本步骤是解题的关键.21.9a 2b -7ab 2,46【分析】原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.【详解】解:5(3a 2b ﹣ab 2)﹣2(ab 2+3a 2b )=15a 2b -5ab 2-2ab 2-6a 2b=9a 2b -7ab 2,当a=-1,b=2时,代入原式=9×1×2-7×(-1)×4=46.【点睛】本题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键. 22.(1)906m +,(2) 1.2m =【分析】(1)按照℃的标准计算即可;(2)按照℃的标准列出方程,解方程即可.【详解】解:(1)用电90度,超过60度,但不超过100度,按照℃的标准计算, 所需缴纳的电费为:60(9060)(0.2)906m m m +-+=+,(2)小辉家今年9月份用电150度,缴纳电费203元,按照℃的标准计算可列方程为,60(10060)(0.2)(150100)(0.3)203m m m +-++-+=, 解得, 1.2m =,答:m 的值为1.2.【点睛】此题考查了列代数式和一元一次方程应用,明确不同度数电费的算法,准确列出方程是解决本题的关键.23.(1)50人;(2)144度;(3)选“数学思维”的人数比“科技制作”的人数多三分之一.【分析】(1)用阅读写作的人数除以其所占百分比即可得到总人数;(2)用360°乘以艺术鉴赏的所占百分比即可得到答案;(3)先求出数学思维的人数,由此进行求解即可.【详解】解:(1)由题意得:调查的人数=50÷25%=200人,答:得出人数为50人;(2)80360144200⨯=, 答:扇形统计图中“艺术鉴赏”部分的圆心角是144度;(3)数学思维的人数:200﹣80﹣30﹣50=40人,科技制作的30人, (40﹣30)÷3013=,答:选“数学思维”的人数比“科技制作”的人数多三分之一.【点睛】本题主要考查了条形统计图与扇形统计图信息相关联,解题的关键在于能够准确根据题意求出总人数.24.(1)38;(2)45;(3)45°或135°【分析】(1)根据=90AOB ∠,OE 平分AOB ∠,1==452AOE BOE AOB =∠∠∠,从而可得==19BOD EOD BOE -∠∠∠,再由OD 平分BOC ∠,则=2=38BOC BOD ∠∠;(2)由OD 平分BOC ∠,40BOC ∠=,AOB 90∠=,则1202COD BOD BOC ∠=∠=∠=,130AOC AOB BOC ∠=+=∠∠,再由OE 平分AOC ∠,则1==652COE AOE AOC =∠∠∠,可以得到45EOD COE COD ∠=∠-∠=;(3)分OD 和OE 都在℃AOB 的外部,以及OD 或OE 至少有一个在℃AOB 的内部进行讨论求解即可.【详解】解:(1)℃=90AOB ∠,OE 平分AOB ∠, ℃1==452AOE BOE AOB =∠∠∠, ℃=64EOD ∠,℃==19BOD EOD BOE -∠∠∠,℃OD 平分BOC ∠,℃=2=38BOC BOD ∠∠,故答案为:38;(2)℃OD 平分BOC ∠,40BOC ∠=,AOB 90∠=, ℃1202COD BOD BOC ∠=∠=∠=,130AOC AOB BOC ∠=+=∠∠, ℃OE 平分AOC ∠, ℃1==652COE AOE AOC =∠∠∠, ℃45EOD COE COD ∠=∠-∠=;(3)如图3所示,当OE,OD都在℃AOB外部时,℃OE,OD分别平分℃AOC,℃BOC,℃1=2COE AOE AOC=∠∠∠,11=22COD BOD BOCα∠=∠=∠,℃=EOD COE COD+∠∠∠,℃=360AOB AOC BOC++∠∠∠,℃=360=270AOC AOB BOCα-∠--∠∠,℃11==13522 COE AOE AOCα=-∠∠∠,℃==135EOD COE COD+∠∠∠;当如图1所示,DE在℃AOB内部,OD在℃AOB外部时,由(2)可知此时=45EOD∠如图所示,当OD 在℃AOB 内部,OE 在℃AOB 外部时,℃OE ,OD 分别平分℃AOC ,℃BOC , ℃1=2COE AOE AOC =∠∠∠,11=22COD BOD BOC α∠=∠=∠,℃=90AOB ∠,=BOC α∠,℃90AOC BOC AOB α∠=∠-∠=-, ℃11==4522COE AOE AOC α=-∠∠∠,℃==45EOD COD COE -∠∠∠;如图5所示,当OD ,OE 都在℃AOB 内部时,同理可得1=2COE AOE AOC =∠∠∠,11=22COD BOD BOC α∠=∠=∠,℃=90AOB ∠,=BOC α∠,℃90AOC AOB BOC α∠=-∠=-, ℃11==4522COE AOE AOC α=-∠∠∠, ℃==45EOD COD COE +∠∠∠;℃综上所述,=45EOD ∠或=135EOD ∠,故答案为:45°或135°.【点睛】本题主要考查了角平分线的定义,几何中角度的计算,解题的关键在于能够熟知角平分线的定义.25.(1)-1, x ﹣5;(2)a 与b 是关于2的平衡数,理由见解析;(3)0或1或3.【分析】(1)根据平衡数的定义,可以计算出3的平衡数和7﹣x 的平衡数;(2)将a 和b 相加,化简,看最后的结果是否为2即可;(3)根据c =kx+1,d =x ﹣3,且c 与d 是关于2的平衡数,可以得到k 和x 的关系,然后利用分类讨论的方法,可以得到当x 为正整数时,非负整数k 的值.【详解】解:(1)℃2﹣3=﹣1,℃3与﹣1是关于2的平衡数,℃2﹣(7﹣x )=2﹣7+x =x ﹣5,℃7﹣x 与x ﹣5是关于2的平衡数,故答案为:﹣1,x ﹣5;(2)a 与b 是关于2的平衡数,理由:℃a =x 2﹣4x ﹣1,b =x 2﹣2(x 2﹣2x ﹣1)+1,℃a+b=(x 2﹣4x ﹣1)+[x 2﹣2(x 2﹣2x ﹣1)+1]=x 2﹣4x ﹣1+x 2﹣2(x 2﹣2x ﹣1)+1=x 2﹣4x ﹣1+x 2﹣2x 2+4x+2+1=2,℃a 与b 是关于2的平衡数;(3)℃c =kx+1,d =x ﹣3,且c 与d 是关于2的平衡数,℃c+d =2,℃kx+1+x ﹣3=2,℃(k+1)x =4,℃x 为正整数,℃当x =1时,k+1=4,得k =3,当x =2时,k+1=2,得k =1,当x =4时,k+1=1,得k =0,℃非负整数k 的值为0或1或3.【点睛】本题主要考查了整式的加减计算和解一元一次方程,解题的关键在于能够准确读懂平衡数的含义.26.(1)-1;1;5;(2)℃当m<0时,|2m|=-2m ;℃当m≥0时,|2m|=2m ;过程见解析;(3)BC -AB 的值不随着时间t 的变化而变化,其值是2,理由见解析.【分析】(1)先根据b 是最小的正整数,求出b ,再根据()25c -+a b +=0,即可求出a 、c 的值;(2)先得出点A 、C 之间(不包括A 点)的数是负数或0,得出m≤0,在化简|2m|即可; (3)先求出BC=3t+4,AB=3t+2,从而得出BC -AB=2.【详解】(1)℃b 是最小的正整数℃b=1℃()25c -+a b +=0℃a = -1,c=5故答案为-1;1;5;(2)由(1)知,a = -1,b=1,a 、b 在数轴上所对应的点分别为A 、B ,℃当m<0时,|2m|=-2m ;℃当m≥0时,|2m|=2m ;(3)BC -AB 的值不随着时间t 的变化而变化,其值是2,理由如下:℃点A 以每秒一个单位的速度向左移动,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右移动,℃BC=3t+4,AB=3t+2℃BC -AB=3t+4-(3t+2)=2【点睛】本题为考查数轴与动点问题的综合题,难度较大,属于压轴大题,熟练掌握相关知识点是解题关键.27.(1)℃35,8;℃0.7,12;℃0;(2)非负;(3)℃2020;℃最大值25,a=5 【分析】(1)根据绝对值的意义即可得出答案;(2)分析(1)中的结论,即可得到(2)中的答案;(3)℃要使2020x +有最小值,则需使x 最小,结合(2)中结论有0x ≥,可得出0,x =时,2020x +最小,即可得出答案;℃由50a -≥,得出当50a -=时,原式有最大值,求出a 的值,代入即可得出答案.【详解】解:(1)℃正数:35+=35,8=8; ℃负数:0.7-=0.7,12-=12;℃零:0=0;(2)根据(1)中的规律可以发现:无论什么数,它们的绝对值一定是非负数,即0a ≥;(3)℃0x ≥ ∴当0,x =即0x =时℃2020x +有最小值是2020℃255a --有最大值. 50a -≥∴当50a -=,即50,a -=5a =时255a --有最大值25,此时a=5.。

湘教版七年级上册数学期末考试试卷及答案

湘教版七年级上册数学期末考试试卷及答案

湘教版七年级上册数学期末考试试题一、单选题1.27的倒数是()A .27B .-27C .72D .-722.下列各数中,比12-小的数是()A .-1B .0C .1D .-133.下列各式是一元一次方程的是()A .41y +B .313x+=C .21x x+=D .3x y +=4.下列等式变形正确的是()A .如果ax =ay ,那么x =yB .如果a =b ,那么a ﹣5=5﹣bC .如果a =b ,那么2a =3bD .如果a+1=b+1,那么a =b 5.“a 与b 的差的5倍”用代数式表示为()A .5a b -B .5(a-b )C .5a-bD .a-5b6.如果(x ﹣3)2+|y+1|=0,那么x ﹣y 等于()A .﹣4B .﹣2C .2D .47.下列说法错误的是()A .2231x xy --是二次三项式B .1x -+不是单项式C .213xy π-的系数是-13D .222xab -的次数是48.如图是一个小正方体的展开图,把展开图折叠成小正方体后,与“数”这个汉字相对的面上的汉字是()A .我B .很C .喜D .欢9.如果12313a a x y++与2213b x y --是同类项,那么a ,b 的值分别是()A .1a =,2b =B .1a =,3b =C .2a =,3b =D .3a =,2b =10.某校为了了解七年级800名学生期中数学考试情况,从中抽取了100名学生的期中数学成绩进行了统计,下面判断中不正确的有()A .这种调查的方式是抽样调查B .800名学生是总体C .每名学生的期中数学成绩是个体D .100名学生的期中数学成绩是总体的一个样本11.已知点A 、B 、C 三个点在同一条直线上,若线段AB =7,BC =5,则线段AC 的长为()A .2B .5C .12D .2或1212.按照如图所示的程序计算,若开始输入的值为-4,则最后输出的结果可能是()A .-8B .-23C .-68D .-32二、填空题13.将数据850000000用科学记数法表示为___.14.若52x +与27-+x 互为相反数,则x 的值为______.15.要反映我市一周内每天的最高气温的变化情况,宜采用___统计图(填“条形”、“折线”或“扇形”).16.已知一个角的补角是它的余角的4倍,那么这个角的度数是______.17.已知:122=,224=,328=,42的个位数是6,52的个位数是2,62的个位数是4,……,则20212的个位数是___.18.已知方程||(1)30a a x -+=是关于x 的一元一次方程,则=a ____________.三、解答题19.计算:(1)253-+--;(2)2323323⎡⎤⎛⎫-÷-⨯-- ⎪⎢⎥⎝⎭⎣⎦.20.解方程(1)4321x x +=-;(2)223146x x +--=.21.先化简,再求值:()22222)3223(y x x xy x xy y -+--++,其中1x =,2y =-.22.已知下列有理数:-4,-212,412,-1,2.5,3(1)在给定的数轴上表示这些数:(2)这些数中是否存在互为相反数的两个数?若存在,请指出来,并写出这两个数之间所有的整数;(3)这些数在数轴上表示的点中是否存在两点之间的距离等于7的两个数?若存在,请指出来.23.按要求解题:(1)如图,已知A 、B 、M 、N 四点,读下列语句,按要求作出图形(不写作法);①作线段AB ,射线AN ,直线BM ,且射线AN 与直线BM 相交于点P ;②在线段AB 的延长线上取点C ,使2BC AB =;(2)在图中,若AB =2cm ,D 为AB 的中点,E 为AC 的中点,求DE 的长.24.一架飞机在两个城市之间飞行,当顺风飞行时需2.9h ,当逆风飞行时则需3.2h .已知风速为30km/h ,求无风时飞机的航速和这两个城市之间的距离.25.某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,并按成绩分为“优秀、良好、合格、不合格”四个等级,绘制成了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:(1)随机抽取了多少名学生的成绩进行分析?(2)请将两幅统计图补充完整;(3)若合格及以上等级均视为达标,则这次随机抽取的学生中有多少人达标?26.如图,点O 为直线AB 上一点,过点O 作直线OC ,已知∠AOC≠90°,射线OD 平分∠AOC ,射线OE 平分∠BOC ,射线OF 平分∠DOE .(1)求∠DOE 和∠DOF 的度数;(2)若∠DOC=3∠COF ,求∠AOC 的度数;(3)求∠BOF+∠DOC 的度数.27.一建筑公司在一次施工中,需要从工地运出80吨土方,现出动大、小不同的两种类型汽车,其中大型汽车比小型汽车多8辆,大型汽车每次可以运土方5吨,小型汽车每次可以运土方3吨.如果把这些土方全部运完,问需要大、小不同的两种类型汽车各多少辆?28.已知直线AB 经过点,90,O COD OE ∠=︒是BOC ∠的平分线.(1)如图1,若50AOC ∠=︒,则DOE ∠=_;(2)如图1,若AOC a ∠=,则DOE ∠=__;(用含a 的代数式表示)(3)将图1中的COD ∠绕顶点O 顺时针旋转到图2的位置,其它条件不变,()2中的结论是否还成立?试说明理由参考答案1.C【分析】根据倒数的定义:相乘等于1的两数互为倒数直接判断即可.【详解】解:27的倒数是72,故选C.【点睛】本题考查了倒数的定义,掌握倒数的定义是解题的关键.2.A【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数比较大小,绝对值大的其值反而小,据此判断即可.【详解】解:∵|−1|>|12-|>|-13|,∴−1<12-<-13<0<2,∴比12-小的数是−1.故选:A.【点睛】此题主要考查了有理数大小比较,掌握有理数大小比较法则是解答本题的关键.3.C【分析】根据一元一次方程的定义逐个判断即可.【详解】解:A.不是方程,不是一元一次方程,故本选项不符合题意;B.不是整式方程,不是一元一次方程,故本选项不符合题意;C.是一元一次方程,故本选项符合题意;D.不是一元一次方程,故本选项不符合题意;故选:C .【点睛】本题考查了一元一次方程的定义,能熟记一元一次方程的定义是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是1次的整式方程,叫一元一次方程.4.D 【分析】根据等式基本性质逐项分析即可.【详解】A.如果ax =ay ,且0a ≠,那么x =y ,故该选项不正确,不符合题意;B.如果a =b ,那么a ﹣5=b ﹣5,故该选项不正确,不符合题意;C.如果a =b ,那么2a =2b ,故该选项不正确,不符合题意;D.如果a+1=b+1,那么a =b ,故该选项正确,符合题意;故选D【点睛】本题考查了等式的性质,熟练等式的性质是解题的关键.等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等;等式的性质2:等式两边乘同一个数,或除以同一个不为0的数(或式子),结果仍相等.5.B 【分析】根据题意,先算a 与b 的差,再算差的5倍,列式即可.【详解】解:∵a 与b 的差的5倍,∴列式为:5(a-b ).故选:B .【点睛】本题考查了列代数式,做题的关键是认真读题,理解题意中的关键词.6.D 【分析】直接利用偶次方的性质以及绝对值的性质得出x ,y 的值进而得出答案.【详解】解:2(3)|1|0x y -++= ,30x ∴-=,10y +=,解得:3x =,1y =-,则3(1)4x y -=--=.故选:D .【点睛】本题主要考查了非负数的性质,解题的关键是正确得出x ,y 的值.7.C 【分析】根据单项式和多项式的系数和次数的确定方法,逐项判断即可求解.【详解】解:A 、2231x xy --是二次三项式,正确,不符合题意;B 、1x -+不是单项式,正确,不符合题意;C 、213xy π-的系数为13π-,选项错误,符合题意;D 、222xab -的次数是4,正确,不符合题意;故选:C .【点睛】本题主要考查了单项式和多项式,熟练掌握单项式和多项式的系数和次数的确定方法是解题的关键.8.C 【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】正方体的表面展开图,与“很”字相对的面上的汉字是“欢”,与“喜”字相对的面上的汉字是“数”,与“学”字相对的面上的汉字是“我”,故选:C .【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手是解题的关键.9.B 10.B 11.D 12.D 13.8.5×10814.-315.折线【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【详解】解:要反映我市一周内每天的最高气温的变化情况,宜采用折线统计图.故答案为:折线.16.60°【分析】根据互余的两角之和为90°,互补的两角之和为180°,表示出余角和补角,然后列方程求解即可.【详解】解:设这个角为x ,则补角为(180°﹣x ),余角为(90°﹣x ),由题意得,4(90°﹣x )=180°﹣x ,解得:x =60,即这个角为60°.故答案为:60°.17.2【分析】通过观察发现个位数字每4个循环一次,则22022的个位数字与21相同.【详解】解:∵21=2,22=4,23=8,24的个位数是6,25的个位数是2,…,∴个位数字每4个循环一次,∵2021÷4=505…1,∴22021的个位数字与21相同,∴22021的个位数字是2,故答案为:2.18.-1【分析】根据一元一次方程的定义可知|a|=1且a−1≠0.【详解】∵方程||(1)30a a x -+=是关于x 的一元一次方程,∴|a|=1且a−1≠0.解得a =−1.故答案是:−1.1,一次项系数不是0,这是这类题目考查的重点.19.(1)0(2)12-【分析】(1)先去绝对值,再按照有理数的加减运算法则计算即可;(2)先计算乘方,再按照有理数的运算顺序进行计算.(1)解:(1)原式=253-+-=0(2)=12-20.(1)2x =-(2)0x =【分析】(1)先移项、合并同类项,再求解即可;(2)先去分母,再去括号,然后移项、合并同类项,即可求解方程.(1)解:移项得:424x x -=-,合并得:24x =-,两边都除以2,得:2x =-因此,原方程的解是2x =-;(2)去分母,得:3(2)2(23)12x x +--=去括号,得:364612x x +-+=合并,得:x 0-=两边都乘以-1,得:0x =因此,原方程的解是0x =.21.5xy -,10【分析】先去括号,再合并同类项,然后把x ,y 的值代入化简后的式子进行计算即可解答.【详解】解:()22222)3223(y x x xy x xy y -+--++=22222342333y x x xy x xy y -+----=5xy -;当1x =,2y =-时,原式=()512-⨯⨯-=10.22.(1)见解析(2)存在,122-和2.5互为相反数,这两个数之间所有的整数有:-2,-1,0,1,2(3)存在;-4和3;122-和142【分析】(1)将已知数表示在数轴上即可;(2)根据相反数的定义,找出互为相反数的两个数,并写出这两个数之间的所有整数即可;(3)根据数轴上两点的距离等于7,即可求得.(1)解:将-4,122-,142,-1,2.5,3表示在数轴上,如图所示:(2)存在,122-和2.5互为相反数,这两个数之间所有的整数有:-2,-1,0,1,2.(3)存在;∵437--=,1124722--=,∴两点之间的距离等于7的有:-4和3,122-和142.23.(1)①见解析;②见解析;(2)2cm 【分析】(1)根据题意画出图形即可;(2)根据中点的定义与线段的和差即可求得DE 的长.【详解】解:(1)①如图,连接AB 即为线段AB ,连接AN 并延长即为射线AN ,连接BM 并双向延长,交点为P ,②如图所示,BC=2AB ;(2)如图所示,标注字母:因为D 为AB 的中点,AB =2cm ,所以AD =1cm ,又因为BC =2AB ,则BC =4cm ,AC =6cm ,由于E 为AC 的中点,得:AE =3cm ,所以DE =AE -AD =2cm .24.无风时飞机的航速为610km/h ,这两个城市之间的距离为1856km 【分析】设无风时飞机的航速为x km/h ,根据题意,列出方程,即可求解.【详解】解:设无风时飞机的航速为x km/h ,由题意可得:2.9(30)3.2(30)x x ⨯+=⨯-,去括号得:2.987 3.296x x +=-,x=,移项合并得:0.3183x=,所以:610⨯+=km,两个城市之间的距离为:2.9(61030)1856答:无风时飞机的航速为610km/h,这两个城市之间的距离为1856km.25.(1)120名(2)见解析(3)108人【分析】(1)用不合格人数除以它对应的比例10%即可得出随机抽取的人数;(2)用1分别减去其它所占比例,即可求出合格级所占的百分比;用总人数乘良好级所占比例,即可得出良好的人数,将两幅统计图中的空缺补充完整;(3)用总人数减去不合格人数即可.(1)÷=(人)1210%120答:随机抽取了120名学生的成绩进行分析.(2)---=合格占:145%25%10%20%⨯=(人)良好的人数有:12025%30如图所示:(3)-=(人)12012108答:该校被抽取的学生中有108人达标.26.(1)∠DOE=90°,∠DOF=45°;(2)∠AOC=67.5°;(3)∠BOF+∠DOC=135°【分析】(1)根据射线OD平分∠AOC,射线OE平分∠BOC,即可求出∠DOE,再根据OF平分∠DOE,即可求出∠DOF的度数;(2),由∠DOC=3∠COF ,得出∠DOC 的度数,再根据OD 平分∠AOC ,即可求得∠AOC 的度数.(3)先根据射线OD 平分∠AOC ,∠AOD=∠COD ,得到,=BOF DOC BOF DOA ∠+∠∠+∠,再根据∠AOC+∠BOC=180°,得出∠DOE=90°,由射线OF 平分∠DOE ,得∠DOF=∠EOF=45°,从而求得∠FOB+∠DOC 的度数;【详解】(1)° ∠AOC+∠BOC=180,∵ OD平分∠AOC ,OE平分∠BOC,∴∠AOC=2∠DOC, ∠BOC=2∠COE ,∴1°2∠DOE=∠DOC+∠COE=(∠AOC+∠COB)=90, 又OF平分∠DOE ,∴1=452DOF DOE =︒∠∠.(2)∵∠DOC=3∠COF ,45DOF ∠=︒,∴4=453DOF DOC =∠︒∠,∴135=4︒∠DOC ,∵OD 平分∠AOC ,∴135==67.52AOC ︒∠︒.(3)∵OD 平分∠AOC ,∴=DOC AOD ∠∠,∴=BOF DOC BOF DOA∠+∠∠+∠=180=18045=135DOF ︒∠︒︒︒--.27.大型汽车13辆,小型汽车5辆.【分析】设小型汽车x 辆,则大型汽车()8x +辆,根据题意列出一元一次方程进行求解.【详解】设小型汽车x 辆,则大型汽车()8x +辆,根据题意得()58380x x ++=解得,5x =大型汽车5813+=(辆)答:大型汽车13辆,小型汽车5辆.28.(1)25o ;(2)12DOE a ∠=;(3)成立,见解析.【分析】(1)由平角的定义结合已知条件可得90AOC BOD ∠+∠=︒,求得40BOD ∠=︒、130BOC ∠=︒,再由角平分线的性质解得65BOE ∠=︒,最后由角的和差解题即可;(2)由平角的定义结合已知条件可得90AOC BOD ∠+∠=︒,求得90BOD α∠=︒-、180BOC α∠=︒-,再由角平分线的性质解得11 9022BOE BOC a ∠=∠=- ,最后由DOE BOE BOD ∠=∠-∠解题即可;(3)由角的补角定义解得180BOC α∠=︒-,由角的和差得 =90BOD COD BOC α∠=∠-∠- ,根据角平分线的性质解得11 9022BOE BOC a ∠=∠=- ,最后由DOE BOD BOE ∠=∠+∠解题即可.【详解】解:(1)90COD ∠=︒ 90AOC BOD ∴∠+∠=︒50AOC ∠=︒40BOD ∴∠=︒9040130BOC COD BOD ∴∠=∠+∠=︒+︒=︒OE 平分BOC ∠1652BOE BOC ∴∠==︒654025DOE BOE BOD ∴∠=∠-∠=︒-︒=o故答案为:25o ;(2)由(1)知90AOC BOD ∠+∠=︒AOC α∠= 90BOD α∴∠=︒-180BOC α∴∠=︒-119022BOE BOC α∴∠=∠=︒-1190(90)22DOE BOE BOD a αα∴∠=∠-∠=︒--︒-=故答案为:12a ;(3)成立,理由如下:AOC α∠=180,BOC α∴∠=︒- 90COD ∠=90()18090BOD COD BOC αα∴∠=∠-∠=-︒-=- OE 是BOC ∠的平分线119022BOE BOC a∴∠=∠=- 11909022DOE BOD BOE a a a ∴∠=∠+∠=-+-= .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湘教版七年级上册数学期末考试试题一、单选题1.下列四组数中互为相反数的是( )A .-(+3)和+(-3)B .+(-2)和-2C .+(-4)和-(-4)D .-(-1)和1 2.下列式子计算正确的个数有( )①224a a a +=;①22321xy xy -=;①32ab ab ab -=;①322()17(3)---=-. A .1个 B .2个 C .3个 D .0个 3.若(m+2)x 2m -3=5是一元一次方程,则m 的值为( ) A .2B .-2C .2±D .44.如图,点O 在直线AB 上,OD 是①AOC 的平分线,OE 是①COB 的平分线.若①DOC=70°,则①BOE 的度数是( )A .30°B .40°C .25°D .20°5.单项式﹣2435x yz 的系数和次数分别为( )A .35,4B .﹣35,4C .﹣35,6D .﹣35,76.下列调查中,适合用全面调查方式的是( ) A .调查北海市市民的吸烟情况 B .调查北海市电视台某节目的收视率C .调查北海市某校某班学生对“创建卫生城市”的知晓率D .调查北海市市民家庭日常生活支出情况7.A ,B ,C 三点在同一直线上,线段AB =5cm ,BC =4cm ,那么A ,C 两点的距离是( ) A .1cm B .9cm C .1cm 或9cm D .以上答案都不对 8.把680 000 000元,这个数用科学记数法表示正确的是( ) A .6.8×109元B .6.8×108元C .6.8×107元D .6.8×106元9.已知小红5岁,爸爸32岁,如果x 年后小红年龄是爸爸年龄的14,那么可列方程()A .15324x +=⨯ B .15324x x +=⨯+ C .15(32)4x x +=+ D .15324x x +=+10.下图(1)表示1张餐桌和6张椅子(每个小半圆代表1张椅子),若按这种方式摆放20张餐桌需要的椅子张数是( )A .82B .86C .88D .120 二、填空题11.已知5是关于x 的方程3x ﹣2a=7的解,则a 的值为______.12.比0小4的数是_________,比3小4的数是_________,比-5小-2的数是_________. 13.小明有五张写着不同数字的卡片、从中抽出2张卡片,使这两张卡片上数字乘积最大,最大值是____.14.一学校图书馆理员清理阅览室的课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图不完整的统计图,已知甲类书有225本,则丙类书有__本.15.如果一个角的补角是150°,那么这个角的余角的度数是__________. 16.如果123m ab - 与79m ab +是同类项,那么m 的值为_________.17.规定一种新运算:a①b =a 2﹣2b ,若2① [ 3 ①(﹣x )]=6,则x 的值为_______ 18.如图,OC 平分①AOB ,从点O 引一条射线OE ,若①AOB =50°,①AOE =10°,则①COE 的度数是_____.三、解答题 19.计算:(1)13–[26–(–21)+(–18)];(2)(–1)3–14×[2–(–3)2].20.先化简,再求值:()122232x y x y ⎛⎫--- ⎪⎝⎭,其中1x =-,2y =.21.解下列方程: (1)12212x x -=+ (2)2131510x x ++-=22.某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):(1)生产量最多的一天比生产量最少的一天多生产多少辆?(2)本周总的生产量是多少辆?比原计划是增加(或减少)了多少辆?23.点O 是线段AB 的中点,OB =14cm ,点P 将线段AB 分为两部分,AP :PB =5:2.①求线段OP的长.①点M在线段AB上,若点M距离点P的长度为4cm,求线段AM的长.24.每年夏天全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某中学为确保学生安全,开展了“远离溺水,珍爱生命”的防溺水安全竞赛.学校对参加比赛的学生获奖情况进行了统计,绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题.(1)参加此安全竞赛的学生共有人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为.(3)将条形统计图补充完整.25.某超市用6800元购进甲.乙两种商品共120件,这两种商品的进价,标价如下表:(1)这两种商品各购进多少件?(2)若甲种商品按标价的8折出售,乙种商品按标价的9折出售,那么这批商品全部售出后,超市共获利多少元?26.已知点O为直线AB上一点,将直角三角板MON的直角顶点放在点O处,并在①MON内部作射线OC .(1)将三角板放置到如图所示位置,使OC 恰好平分①MOB ,且①BON =2①NOC ,求①AOM 的度数;(2)若仍将三角板按照如图所示的方式放置,仅满足OC 平分①MOB ,试猜想①AOM 与①NOC 之间的数量关系,并说明理由.参考答案1.C【分析】根据只有符号不同的两个数叫做互为相反数对各选项分析判断后利用排除法求解. 【详解】A. −(+3)=−3,+(−3)=−3,相等,不是互为相反数,故本选项错误; B. +(−2)=−2,与−2相等,不是互为相反数,故本选项错误; C. +(−4)=−4,−(−4)=4,互为相反数,故本选项正确; D. −(−1)=1与1相等,不是互为相反数,故本选项错误. 故选C.【点睛】此题考查相反数,解题关键在于掌握其定义. 2.B【分析】根据合并同类项的法则和有理数的混合运算进行计算即可. 【详解】解:①2222a a a +=,故①错误; ①22232xy xy xy -=,故①错误; ①32ab ab ab -=,故①正确; ①322()17(3)---=-,故①正确, 计算正确的有2个, 故选:B .【点睛】本题考查了合并同类项的法则和有理数的混合运算,掌握运算法则是解题的关键.3.A【分析】根据一元一次方程的定义,可得2m-3=1且m+2≠0;然后再解上述方程以及不等式,即可求得m的值.【详解】①(m+2)x2m-3=5是关于x的一元一次方程,①2m-3=1且m+2≠0,解得m=2.故选A.【点睛】此题考查一元一次方程的定义,解题关键在于掌握其定义.4.D【分析】根据角平分线的定义求出①AOC,根据邻补角的定义求出①BOC,根据角平分线的定义计算即可.【详解】①OD是①AOC的平分线,①①AOC=2①COD=140°,①①BOC=180°-①AOC=40°,①OE是①COB的平分线,①①BOE=12①BOC=20°,故选D.【点睛】本题考查的是角平分线的定义、角的计算,掌握角平分线的定义、结合图形正确进行角的计算是解题的关键.5.D【分析】直接利用单项式的次数与系数的定义分析得出答案.【详解】单项式﹣2435x yz的系数和次数分别为:﹣35,7.故选D.【点睛】此题主要考查了单项式,正确把握单项式的次数与系数的确定方法是解题关键.6.C【分析】根据调查范围大小选择调查方式,逐项判断即可.【详解】A.调查北海市市民的吸烟情况,调查范围广,适合抽样调查,故A错误;B.调查北海市电视台某节目的收视率,调查范围广,适合抽样调查,故B错误;C.调查北海市某校某班学生对“创建卫生城市”的知晓率,调查范围小,适合普查,故C正确;D.调查北海市市民家庭日常生活支出情况,调查范围广,适合抽样调查,故D错误.故选:C.【点睛】本题主要考查了全面调查的选择,掌握全面调查的定义及全面调查方式的特点是解题的关键.7.C【分析】由已知条件知A,B,C三点在同一直线上,做本题时应考虑到A、B、C三点之间的位置,分情况可以求出A,C两点的距离.【详解】第一种情况:C点在线段AB上时,故AC=AB-BC=1cm;第二种情况:当C点在线段AB的延长线上时,AC=AB+BC=9cm,故选C.【点睛】本题考查两点间的距离,渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.8.B【详解】680 000 000元=6.8×108元.故选:B.【点睛】考点:科学记数法—表示较大的数.9.C【分析】根据x年后小红年龄是爸爸年龄的14,列出方程即可.【详解】解:根据题意可得方程:15(32)4x x+=+,故选:C.【点睛】本题考查了一元一次方程的应用,读懂题意,理清数量关系是解本题的关键.10.A【分析】根据所给的图形可得,发现每多一张餐桌,就多4张椅子,以此类推,从而得出共有n张餐桌时,就有6+4(n−1)=4n+2张椅子,即可求解.【详解】解:根据题意得:1张餐桌时,是6张椅子,在6的基础上,每多一张餐桌,就多4张椅子.所以共有n张餐桌时,就有6+4(n−1)=4n+2,当n=20时,原式=4×20+2=82.故选:A【点睛】本题主要考查了图形类规律题,明确题意,准确得到规律是解题的关键.11.4【详解】①关于x的方程3x﹣2a=7的解是5,①3×5﹣2a=7,①a=4.故答案为4.12.-4-1-3【分析】根据有理数减法法则逐个计算即可.【详解】解:①0-4=-4,①比0小4的数是:-4;①3-4=-1,①比3小4的数是:-1;①-5-(-2)=-3,①比-5小-2的数是:-3,故答案为-4,-1,-3.【点睛】本题考查了有理数的减法运算,熟知减去一个数,等于加上这个数的相反数是解题关键.13.15【分析】题意即为,5个数两两相乘积为最大值时,最大值是多少,这里我们知道正数>0>负数,所以我们只需要找到两两相乘为正且最大即可.【详解】因为正数>0>负数所以找到两两相乘为正且最大即可因为同号相乘得正所以有(-3)×(-5)=15,3×4=12,这两种情况即最大值为15故答案为15【点睛】本题解题关键,首先清楚正数>0>负数,然后再找乘积为正数的组合,最后找最大值.14.600【分析】先根据甲类书籍的数量及其所占百分比求出书籍的总数量、根据各部分所占百分比之和等于1求出丙类书籍的百分比,再用总数量乘以丙类书籍所占百分比即可得.【详解】解:①书籍的总数为225÷15%=1500(本),丙类书籍所占百分比为1﹣15%﹣45%=40%,①丙类书籍的数量为1500×40%=600(本), 故答案为:600【点睛】本题主要考查扇形统计图,解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数. 15.60°【分析】首先根据补角的定义求得这个角的度数,然后根据余角的定义即可求出这个角的余角.【详解】解:①一个角的补角是150°, ①这个角是180°−150°=30°, ①这个角的余角是90°−30°=60°. 故答案是:60°.【点睛】此题主要考查的是补角和余角的定义,属于基础题,较简单,主要记住互为余角的两个角的和为90°;互为补角的两个角的和为180°. 16.-2【分析】根据同类项的定义:如果两个单项式所含的字母相同,相同字母的指数也相同,那么这两个单项式就叫做同类项,据此求解即可. 【详解】解:①123m ab - 与79m ab +是同类项, ①127m m -=+, ①2m =-, 故答案为:-2.【点睛】本题主要考查了同类项中的字母求值,解题的关键在于能够熟练掌握同类项的定义. 17.﹣5【分析】首先根据题意,可得:3① [(﹣x )=32﹣2×(﹣x )=9+2x ,所以2① [(9+2x )=6,所以22﹣2(9+2x )=6;然后根据解一元一次方程的方法,求出x 的值即可.【详解】解:①a ①b =a 2﹣2b ,①3 ①(﹣x)=32﹣2×(﹣x)=9+2x,①2 ① [3 ①(﹣x)]=6,①2*(9+2x)=6,①22﹣2(9+2x)=6,去括号,可得:4﹣18﹣4x=6,移项,可得:﹣4x=6﹣4+18,合并同类项,可得:﹣4x=20,系数化为1,可得:x=﹣5.故答案为:﹣5.【点睛】此题主要考查新定义运算,列代数式与解方程,解题的关键是根据题意得到一元一次方程.18.15°【分析】根据角的平分线的定义求得①AOC的度数,再根据各角之间的关系即可求解.【详解】①OC平分①AOB,①AOB=50°,①①AOC=25°,①①AOE=10°①①COE=25°﹣10°=15°,故答案为15°【点睛】本题考查了角平分线的定义,利用角平分线的定义求得①AOC的度数是解决问题的关键.19.(1)-16;(2)34.【分析】(1)原式先去括号,再根据有理数加减法法则计算即可;(2)原式先计算乘方,再计算乘法运算,最后算加减运算即可得到结果.【详解】(1)原式=13–26–21+18=31–47=–16;(2)原式=–1–14×(–7)=–1+74=34.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 20.2x y,0【分析】先去括号,然后根据整式的加减计算法则化简,最后代值计算即可【详解】解:()122232x y x y ⎛⎫--- ⎪⎝⎭ 426x y x y =--+2x y ,当1x =-,2y =时,原式()212220=-⨯--=-=.【点睛】本题主要考查了整式的化简求值,熟知相关计算法则是解题的关键.21.(1)x =2;(2)x=1【分析】(1)根据移项,合并,系数化为1的步骤解方程即可;(2)根据去分母,去括号,移项,合并,系数化为1的步骤解方程即可.(1) 解:12212x x -=+ 移项得:12122x x -=+, 合并得:332x =, 系数化为1得:2x =;(2) 解:2131510x x ++-= 去分母得:()102213x x -+=+,去括号得:10423x x --=+,移项得:43102x x --=-+,合并得:55x -=-,系数化为1得:1x =.22.(1)生产量最多的一天比生产量最少的一天多生产17辆;(2)本周总的生产量是696辆,比原计划是减少了4辆【分析】(1)由表格找出生产量最多与最少的,相减即可得到结果;(2)根据题意列出算式,计算即可得到结果.【详解】解:(1)7(10)17+--=(辆)所以生产量最多的一天比生产量最少的一天多生产17辆(2)1007(1)(3)(2)(4)(7)(5)(10)696⨯+-+++-+++++-+-=(辆)6967004-=(辆)所以本周总的生产量是696辆,比原计划是减少了4辆.【点睛】此题考查了有理数的加减混合运算,以及正数与负数,弄清题意是解本题的关键.23.①OP=6cm;①AM=16cm或24cm.【分析】①根据线段中点的性质,可得AB的长,根据比例分配,可得BP的长,根据线段的和差,可得答案;①分两种情况:M有P点左边和右边,分别根据线段和差进行计算便可.【详解】解:①①点O是线段AB的中点,OB=14cm,①AB=2OB=28cm,①AP:PB=5:2.①BP=287AB=cm,①OP=OB﹣BP=14﹣8=6(cm);①如图1,当M点在P点的左边时,AM=AB﹣(PM+BP)=28﹣(4+8)=16(cm),如图2,当M点在P点的右边时,AM=AB﹣BM=AB﹣(BP﹣PM)=28﹣(8﹣4)=24(cm).综上,AM=16cm或24cm.【点睛】本题考查了两点间的距离,利用了比例的性质,线段中点的性质,线段的和差.24.(1)40;(2)90°;(3)见解析.【分析】(1)从两个统计图中可知“特等奖”的有18人,占全部参加竞赛人数的45%,可求出参加竞赛人数;(2)求出“三等奖”所占的百分比,即可求出相应的圆心角的度数;(3)求出“二等奖”的人数,即可补全条形统计图.【详解】解:(1)18÷45%=40(人),故答案为:40;(2)360°×1040=90°, 故答案为:90°;(3)40﹣4﹣10﹣18=8(人),补全条形统计图如图所示:【点睛】本题考查条形统计图、扇形统计图的意义和制作方法,理解两个统计图中的数量关系是正确解答的关键.25.(1)甲种商品40件,乙种商品80件;(2)超市共获利2000元.【分析】(1)购进甲种商品x 件,则乙种商品(120)-x 件,根据题意列方程求解即可;(2)用总售价减去总进价,即可求解.【详解】(1)设购进甲种商品x 件,则乙种商品(120)-x 件.根据题意列出方程()30701206800x x +-=.整理得:308400706800x x +-=401600x =解得:40x =1204080-=(件)答:甲种商品40件,乙种商品80件.(2)依题意列式500.8401000.98068002000⨯⨯+⨯⨯-=(元)答:超市共获利2000元.【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系,列方程求解.26.(1)①AOM =45°;(2)①AOM =2①NOC .理由见解析.【分析】(1)根据互余、互补、角平分线的意义,得出各个角之间的关系,从而求出答案;(2)设未知数,表示图中的各个角,再利用互补得出结论.【详解】解:(1)2BON NOC ∠=∠,OC 平分MOB ∠,3MOC BOC NOC ∴∠=∠=∠,90MOC NOC MON ∠+∠=∠=︒,390NOC NOC ∴∠+∠=︒,490NOC ∴∠=︒,245BON NOC ∴∠=∠=︒,180180904545AOM MON BON ∴∠=︒-∠-∠=︒-︒-︒=︒;(2)2AOM NOC ∠=∠.令NOC ∠为α,AOM ∠为β,90MOC α∠=︒-,180AOM MOC BOC ∠+∠+∠=︒,9090180βαα∴+︒-+︒-=︒,20βα∴-=,即2βα=,2AOM NOC ∴∠=∠.。

相关文档
最新文档