湘教版七年级上册数学期末试卷

合集下载

湘教版七年级数学上册期末试卷(完整版)

湘教版七年级数学上册期末试卷(完整版)

湘教版七年级数学上册期末试卷(完整版) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若单项式a m ﹣1b 2与212n a b 的和仍是单项式,则n m 的值是( ) A .3 B .6 C .8 D .92.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( )A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC3.如图,在△ABC 中,AB=20cm ,AC=12cm ,点P 从点B 出发以每秒3cm 速度向点A 运动,点Q 从点A 同时出发以每秒2cm 速度向点C 运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )秒A .2.5B .3C .3.5D .44.已知点P (2a+4,3a-6)在第四象限,那么a 的取值范围是( )A .-2<a <3B .a <-2C .a >3D .-2<a <25.如图,过A 点的一次函数的图象与正比例函数y=2x 的图象相交于点B ,则这个一次函数的解析式是( )A .y=2x+3B .y=x ﹣3C .y=2x ﹣3D .y=﹣x+36.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.下列各组线段不能组成三角形的是 ( )A .4cm 、4cm 、5cmB .4cm 、6cm 、11cmC .4cm 、5cm 、6cmD .5cm 、12cm 、13cm8.实数a 、b 在数轴上的位置如图所示,则化简|a-b|﹣a 的结果为( )A .-2a+bB .bC .﹣2a ﹣bD .﹣b9.下列说法:① 平方等于64的数是8;② 若a ,b 互为相反数,ab ≠0,则1a b =-;③ 若a a -=,则3()a -的值为负数;④ 若ab ≠0,则a b a b +的取值在0,1,2,-2这四个数中,不可取的值是0.正确的个数为( )A .0个B .1个C .2个D .3个10.下列四个不等式组中,解集在数轴上表示如图所示的是( )A .23x x ≥⎧⎨>-⎩B .23x x ≤⎧⎨<-⎩C .23x x ≥⎧⎨<-⎩D .23x x ≤⎧⎨>-⎩二、填空题(本大题共6小题,每小题3分,共18分)1.有理数a 、b 、c 在数轴上的位置如图所示,化简|a+b|﹣|c ﹣a|+|b ﹣c|的结果是________.2.如图,在△ABC 中,∠C =90°,BC =8cm ,AC =6cm ,点E 是BC 的中点,动点P 从A 点出发,先以每秒2cm 的速度沿A →C 运动,然后以1cm /s 的速度沿C →B 运动.若设点P 运动的时间是t 秒,那么当t =_______________,△APE 的面积等于6.3.关于x 的不等式组430340a x a x +>⎧⎨-≥⎩恰好只有三个整数解,则a 的取值范围是_____________.4.有理数a ,b ,c 在数轴上的对应点如图所示,化简:|b|-|c +b|+|b -a|=________.564___________.6.﹣6416________.三、解答题(本大题共6小题,共72分)1.解方程:(1)3(2x-1)=15 (2)21232x x -+-=-2.整式的化简求值 先化简再求值:2222332232a b a ab a b ab a ⎡⎤⎛⎫---++ ⎪⎢⎥⎝⎭⎣⎦,其中a ,b 满足()2120a b ++-=.3.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数.4.如图,已知AB∥CD,CN是∠BCE的平分线.(1)若CM平分∠BCD,求∠MCN的度数;(2)若CM在∠BCD的内部,且CM⊥CN于C,求证:CM平分∠BCD;(3)在(2)的条件下,连结BM,BN,且BM⊥BN,∠MBN绕着B点旋转,∠BMC+∠BNC是否发生变化?若不变,求其值;若变化,求其变化范围.5.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、D4、D5、D6、C7、B8、A9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、-2a2、1.5或5或93、4332a ≤≤ 4、a -b +c5、26、-2或-6三、解答题(本大题共6小题,共72分)1、(1)x 3=;(2)x 5=.2、2a ab +,1-.3、见解析(2)∠EBC=25°4、(1)90°;(2)略;(3)∠BMC +∠BNC =180°不变,理由略5、(1)40;(2)72;(3)280.6、(1)120件;(2)150元.。

湘教版七年级上册数学期末考试试卷及答案

湘教版七年级上册数学期末考试试卷及答案

湘教版七年级上册数学期末考试试题一、单选题1.-3的倒数是()A .13B .-13C .±13D .32.下面说法错误的是()A .M 是线段AB 的中点,则AB=2AM B .直线上的两点和它们之间的部分叫做线段C .一条射线把一个角分成两个角,这条射线叫做这个角的平分线D .同角的补角相等3.已知-25a 2mb 和7b 3-na 4是同类项,则m +n 的值是()A .2B .3C .4D .64.关于多项式23230.3271x y x y xy --+,下列说法错误的是()A .这个多项式是五次四项式B .四次项的系数是7C .常数项是1D .按y 降幂排列为3322720.31xy x y x y --++5.我县有55000名学生参加考试,为了了解考试情况,从中抽取1000名学生的成绩进行统计分析,在这个问题中,有下列三种说法:①1000名考生是总体的一个样本;②55000名考生是总体;③样本容量是1000.其中正确的说法有()A .0种B .1种C .2种D .3种6.如图所示,已知∠AOC=∠BOD=80°,∠BOC=30°,则∠AOD 的度数为()A .160°B .110°C .130°D .140°7.已知0<x <1,则2x 、x 、1x大小关系是()A .2x <x<1xB .x<2x <1xC .x<1x <2x D .1x<x <2x 8.某种商品进价为800元,标价1200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则至少可以打()A .6折B .7折C .8折D .9折9.下列几何图形中,是棱锥的是()A .B .C .D .10.数轴上表示整数的点称为整点,某数轴的单位长度为1cm ,若在数轴上随意画出一条长2021cm 长的线段AB ,则线段AB 盖住的的整点有()个A .2018或2019B .2019或2020C .2022或2023D .2021或202211.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB=35°,则∠AOD 等于()A .35°B .70°C .110°D .145°12.解方程2(3)3(4)5x x ---=时,下列去括号正确的是()A .23345x x --+=B .26345x x --+=C .263125x x ---=D .263125x x --+=二、填空题13.据报道,我国因环境问题造成的经济损失每年高达680000000元,这个数用科学记数法可表示为______________________元.14.若方程3511x +=与6318x a +=的解相同,则=a ____________.15.已知∠α=72°36′,则∠α的余角的补角是________度.16.若22x x +的值是5-,则2365x x +-的值是________________.17.如图所示的运算程序中,若开始输入的值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2021次输出的结果为___________.18.1∠与2∠互为余角,若13420∠=︒',则2∠=_______.三、解答题19.计算(1)()232223|3|----÷-(2)1234602345⎛⎫⨯-+-+ ⎪⎝⎭20.解下列方程(1)52(32)3x x --=-(2)11232x x x +--=-21.先化简,再求值:()()22522367ab ab a ab a +---,其中a b 、满足()21103a b ++-=22.如图,线段AD=8cm ,线段AC=BD=6cm ,点E 、F 分别是线段AB 、CD 的中点,求线段EF 的长.23.李明针对自行车和长跑项目进行专项训练某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟,求自行车路段和长跑路段的长度.24.请根据图中提供的信息,回答下列问题.(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.25.若0>>>a b c ,且||||||a b c <<,化简||||||||a c a b c a b b c ++++---+.26.如图,将一副直角三角形的直角顶点C 叠放一起(1)如图1,若CE 恰好是∠ACD 的角平分线,请你猜想此时CD 是不是的∠ECB 的角平分线?并简述理由;(2)如图1,若∠ECD =α,CD 在∠ECB 的内部,请猜想∠ACE 与∠DCB 是否相等?并简述理由;(3)在如图2的条件下,请问∠ECD 与∠ACB 的和是多少?并简述理由.27.学习了统计知识后,王老师请班长就本班同学的上学方式进行了一次调查统计,图(1)和图(2)是班长和同学们通过收集和整理数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息,解答一下问题:(1)计算出扇形统计图中“步行”部分所对应的圆心角的度数;(2)求该班共有多少名学生;(3)在图(1)中,将表示“乘车”与“步行”的部分补充完整.参考答案1.B 【分析】根据倒数的定义求解即可.【详解】解:∵-3×(-13)=1,∴-3的倒数是-13,故选:B .【点睛】本题考查求一个数的倒数,乘积等于1的两个数互为倒数.2.C 【分析】由题意根据中点的性质,线段、角平分线的定义,分别对各选项进行判断即可.【详解】解:A 、M 是AB 的中点,则AB=2AM ,正确,故本选项错误;B 、直线上的两点和它们之间的部分叫作线段,正确,故本选项错误;C 、从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线,原说法错误,故本选项正确;D 、同角的补角相等,正确,故本选项错误;故选:C .【点睛】本题考查角平分线的定义、余角和补角的知识,熟练掌握各知识点的内容是解题的关键.3.C 【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可.【详解】由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩,故224m n +=+=;故选:C .【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细.4.B 【分析】直接利用多项式的有关定义分析得出答案.【详解】A 、多项式23230.3271x y x y xy --+,是五次四项式,故此选项正确;B 、四次项的系数是-7,故此选项错误;C 、它的常数项是1,故此选项正确;D 、按y 降幂排列为3322720.31xy x y x y --++,故此选项正确;故选:B .【点睛】此题主要考查了多项式,正确把握相关定义是解题关键.5.B【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目,根据定义逐一分析即可.【详解】解:1000名考生的成绩是总体的一个样本;故①不符合题意;55000名考生的成绩是总体;故②不符合题意;样本容量是1000,描述正确,故③符合题意;故选B【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.6.C【详解】解:因为∠AOC=80°,∠BOC=30°,所以∠AOB=∠AOC-∠BOC=80°-30°=50°,又因为∠BOD=80°,所以∠AOD=∠AOB+∠BOD=50°+80°=130°.故选C.7.A【分析】根据0<x<1,可得:0<x2<x<1,1x>1,据此判断即可.【详解】解:∵0<x<1,∴0<x2<x<<1,1x>1,∴x2<x<1 x.故选:A.【点睛】此题主要考查了有理数的大小比较的方法,要熟练掌握,解答此题的关键是要明确:正数>0>负数,两个负数绝对值大的反而小.8.C【分析】设打x折时,利润率为20%,则利用利润的两种不同的表示方法得相等关系,再列方程,解方程即可.【详解】解:设打x折时,利润率为20%,则解得:8,x=答:要保证利润率不低于20%,则至少可以打八折.故选C【点睛】本题考查的是一元一次方程的应用,掌握“利润=售价-成本或利润=进价⨯利润率”是解本题的关键.易错点是不按照题干的要求作答.9.D 【分析】逐一判断出各选项中的几何体的名称即可得答案.【详解】A 是圆柱,不符合题意;B 是圆锥,不符合题意;C 是正方体,不符合题意;D 是棱锥,符合题意,故选D .【点睛】本题考查了几何体的识别,熟练掌握常见几何体的图形特征是解题的关键.10.D 【分析】分线段AB 的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.【详解】解:若线段AB 的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB 的端点不与整点重合,则1厘米长的线段盖住1个整点,∵2021+1=2022,∴2021厘米的线段AB 盖住2021或2022个整点.故选:D【点睛】本题考查了数轴,解题的关键是根据题意得到找出长度为n (n 为正整数)的线段盖住n 或n+1个整点并注意利用分类讨论思想解答.11.C 【分析】首先根据角平分线定义可得∠BOD=2∠BOC=70°,再根据邻补角的性质可得∠AOD 的度数.【详解】∵OC 平分∠DOB ,∠COB=35°∴∠BOD=2∠COB=2×35°=70°∴∠AOD=180°-70°=110°故选:C .【点睛】此题主要考查了角平分线定义和邻补角的定义,关键是掌握角平分线把角分成相等的两部分.12.D 【分析】根据去括号法则运算即可.【详解】解:方程2(3)3(4)5x x ---=去括号得:263125x x --+=,故答案为:D .【点睛】本题考查了去括号法则,括号前面为“+”时,去掉括号及括号前的符号,括号里每一项都不变号;括号前面为“-”时,去掉括号及括号前的符号,括号里每一项都要变号;掌握基本法则是解题的关键.13.6.8×108【详解】按照科学记数法的表示形式是10n a⨯,其中110a ≤<,n 为整数.题中 6.8a =,小数点从右至左移动了8位,所以这个数用科学记数法表示为6.8×108.故答案为:6.8×108.14.2【详解】解:3511x +=,36,x ∴=解得2,x = 方程3511x +=与6318x a+=的解相同,解得:2a =故答案为:2【点睛】本题考查的是同解方程,掌握“同解方程的含义”是解本题的关键.15.162.6【详解】解: ∠α=72°36′,故答案为162.6.【点睛】本题主要考查余补角的定义,熟练掌握求一个角的余补角是解题的关键.16.-20【分析】化简所求的式子,根据整体代入计算即可;【详解】由题可得()22365325+-=+-x x x x ,∵225+=-x x ,∴原式()35520=⨯--=-;故答案是20-.【点睛】本题主要考查了代数式求值,准确计算是解题的关键.17.6【分析】将开始的值48代入进行计算,求出多次输出的值后,找到数值之间的规律即可作答.【详解】根据运算程序可知,当输入的值为48时,输出:当输入的值为24时,输出:124122⨯=,当输入的值为12时,输出:11262⨯=,当输入的值为6时,输出:1632⨯=,当输入的值为3时,输出:336+=,由前面的规律可知,依次输出的结果为24,12,6,3,6,3,……发现从第三次开始,输出结果以6和3为一个循环组依次循环,第奇数次为6,第偶数次为3,由于2021是奇数,所以第2021次输出的结果为6.故答案为:6【点睛】本题考查了代数式求值当中的流程图问题,解题关键是计算出前几次输出的结果,找到规律,即可总结出第n 次计算的结果.18.5540'︒【分析】根据互余关系可知∠1+∠2=90°,再根据∠1的度数即可解答.【详解】解:∵1∠与2∠互为余角,∴∠1+∠2=90°,又∵13420∠=︒',∴2903420'5540'∠=︒-︒=︒故答案为:5540'︒.【点睛】本题考查了余角关系的概念,解题的关键是掌握“若1∠与2∠互为余角,则∠1+∠2=90°”.19.(1)-15;(2)13【分析】(1)根据有理数的乘方混合运算求解即可;(2)利用乘法分配律进行有理数的混合运算即可.【详解】解:(1)原式=84315---=-;(2)原式=123460606060=30404548132345⎛⎫⨯-+⨯-⨯+⨯-+-+= ⎪⎝⎭.【点睛】本题主要考查有理数的混合运算,熟练掌握运算法则是解题的关键.20.(1)13;(2)13-【分析】(1)本题首先去括号,继而合并同类项与移项,最后未知项系数化为1即可.(2)本题首先去分母,继而去括号、移项、合并同类项即可求解.【详解】(1)∵52(32)3x x --=-,∴5643x x -+=-,∴93x =,∴13x =.(2)∵11232x x x +--=-,∴2(1)1263(1)x x x +-=--,∴2212633x x x +-=-+,∴6322123x x x --=--,∴13x=-.【点睛】本题考查一元一次方程的求解,熟练掌握去分母、移项、合并同类项等运算手段,其次注意计算仔细即可.21.原式=a 2+3ab ;0.【分析】先去括号、合并同类项化简原式,再根据非负数性质得出a 、b 的值,代入计算可得.【详解】解:原式=5ab+4ab-6a 2-6ab+7a 2=a 2+3ab ,∵()21103a b ++-=∴a=-1、b=13,则原式=1-3×1×13=1-1=0.【点睛】本题考查整式的加减,解题关键是熟练掌握去括号法则和合并同类项的能力是解题的关键.22.6cm 【分析】根据题意、结合图形分别求出AB 、CD 的长,根据线段中点的性质求出EA 、DF ,计算即可.【详解】∵8AD =,6AC BD ==∴862AB AD BD =-=-=,862CD AD AC =-=-=∵点E 、F 分别是线段AB 、CD 的中点∴112122AE AB ==⨯=,112122DF CD ==⨯=∴8116EF AD AE DF =--=--=cm 答:线段EF 的长是6cm .【点睛】本题考查的是两点间的距离的计算,掌握线段中点的概念和性质、灵活运用数形结合思想是解题的关键.23.自行车路段的长度为3000米,长跑路段的长度为2000米.【分析】设自行车路段的长度为x 米,则长跑路段的长度为()5000x -米,结合题意,通过列方程并求解,即可得到答案.【详解】设自行车路段的长度为x 米,长跑路段的长度为()5000x -米根据题意得:500015600200x x -+=解得:3000x =∴长跑路段的长度:50002000x -=米∴自行车路段的长度为3000米,长跑路段的长度为2000米.【点睛】本题考查了一元一次方程的知识;解题的关键是熟练掌握一元一次方程的性质,并运用到实际问题中,即可完成求解.24.(1)一个暖瓶30元,一个水杯8元;(2)到乙家商场购买更合算.【分析】(1)等量关系为:2×暖瓶单价+3×(38-暖瓶单价)=84;(2)甲商场付费:暖瓶和水杯总价之和×90%;乙商场付费:4×暖瓶单价+(15-4)×水杯单价.【详解】解:(1)设一个暖瓶x 元,则一个水杯(38-x )元,根据题意得:2x+3(38-x )=84.解得:x=30.一个水杯=38-30=8.故一个暖瓶30元,一个水杯8元;(2)若到甲商场购买,则所需的钱数为:(4×30+15×8)×90%=216元.若到乙商场购买,则所需的钱数为:4×30+(15-4)×8=208元.因为208<216.所以到乙家商场购买更合算.【点睛】解题关键是要读懂题目的意思,根据题目给出的条件,找出所求量的合适的等量关系.需注意乙商场有4个水杯不用付费.25.3a b c-+-【详解】解:∵0>>>a b c ,且||||||a b c <<∴0a c +<,0a b c ++<,0a b ->,0b c +<∴||||||||a c abc a b b c ++++---+()()()()a c a b c a b b c =-++-++----+⎡⎤⎡⎤⎣⎦⎣⎦a c abc a b b c=------+++3a b c =-+-.26.(1)CD 是∠ECB 的角平分线,见解析;(2)∠ACE =∠DCB ,见解析;(3)∠DCE+∠ACB =180°,见解析.【分析】(1)CD 是∠ECB 的角平分线,求出∠ECD =∠BCD =45°即可证明;(2)∠ACE =∠DCB ,求出∠ACE =∠DCB =90°﹣α即可;(3)∠DCE+∠ACB =180°,根据∠DCE+∠ACB =∠DCE+∠ACE+∠BCE =∠ACD+∠BCE 即可进行求解证明.【详解】解:(1)CD 是∠ECB 的角平分线,理由是:∵∠ACD =90°,CE 是∠ACD 的角平分线,∴∠ECD =12∠ACD =45°,∴∠BCD =90°﹣∠ECD =45°=∠ECD ,即CD 是∠ECB 的角平分线;(2)∠ACE =∠DCB ,理由是:∵∠ACD =∠BCE =90°,∠ECD =α,∴∠ACE =90°﹣α,∠DCB =90°﹣α,∴∠ACE =∠DCB ;(3)∠DCE+∠ACB =180°,理由是:∵∠ACD =∠BCE =90°,∴∠DCE+∠ACB =∠DCE+∠ACE+∠BCE =∠ACD+∠BCE =90°+90°=180°,即∠DCE+∠ACB =180°.27.(1)108°;(2)60(人);(3)见解析【分析】(1)扇形统计图中“步行”部分所对应的圆心角的度数=360°×对应的百分比;(2)总人数=骑车的人数是30人÷所占的百分比是50%;(3)分别分别求出乘车的人数和步行的人数,即可补全统计图.【详解】解:(1)扇形统计图中“步行”部分所对应的圆心角的度数是360°×(1﹣50%﹣20%)=108°;(2)该班学生数是:30÷50%=60(人);(3)乘车的人数是:60×20%=12(人),步行的人数是:60﹣30﹣12=18(人).。

湘教版七年级数学上册期末测试卷(带答案)

湘教版七年级数学上册期末测试卷(带答案)

湘教版七年级数学上册期末测试卷(带答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.黄金分割数512是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算5﹣1的值( )A .在1.1和1.2之间B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间2.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°3.已知:20n 是整数,则满足条件的最小正整数n 为( )A .2B .3C .4D .54.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .985.如图,△ABC 中,AB=5,AC=6,BC=4,边AB 的垂直平分线交AC 于点D ,则△BDC 的周长是( )A .8B .9C .10D .116.在平面直角坐标系中,将点A (1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2) C.(﹣1,2)D.(1,2)7.如图,两条直线l1∥l2,Rt△ACB中,∠C=90°,AC=BC,顶点A、B分别在l 1和l2上,∠1=20°,则∠2的度数是()A.45°B.55°C.65°D.75°8.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折 B.7折 C.8折 D.9折9.用代数式表示:a的2倍与3 的和.下列表示正确的是()A.2a-3 B.2a+3 C.2(a-3) D.2(a+3) 10.化简()23x-的结果是()A.6x-B.5x-C.6x D.6二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是________.2.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC'=________.3.如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4.若+x x -有意义,则+1x =___________.5.若一个多边形的内角和等于720度,则这个多边形的边数是________.6.如图,已知AB ∥CD ,F 为CD 上一点,∠EFD=60°,∠AEC=2∠CEF ,若6°<∠BAE <15°,∠C 的度数为整数,则∠C 的度数为________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)53x y y x +=⎧⎨=-⎩ (2)223346a b a b ⎧+=-⎪⎨⎪-=⎩2.先化简,再求值:(1)3x 2-[7x -(4x -3)-2x 2],其中x =5(2)222253[22(2)5]2xy xy xy x y xy x y ----+-,其中21|4|()02x y +++=3.如图1,在平面直角坐标系中,A (a ,0)是x 轴正半轴上一点,C 是第四象限内一点,CB ⊥y 轴交y 轴负半轴于B (0,b ),且|a ﹣3|+(b+4)2=0,S 四边形AOBC =16.(1)求点C 的坐标.(2)如图2,设D 为线段OB 上一动点,当AD ⊥AC 时,∠ODA 的角平分线与∠CAE 的角平分线的反向延长线交于点P ,求∠APD 的度数;(点E 在x 轴的正半轴).(3)如图3,当点D 在线段OB 上运动时,作DM ⊥AD 交BC 于M 点,∠BMD 、∠DAO 的平分线交于N 点,则点D 在运动过程中,∠N 的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.4.已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)试说明:BD CE =;(2)试说明:M N ∠=∠.5.“校园手机”现象越来越受到社会的关注.“寒假”期间,某校小记者随机调查了某地区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图1;(2)求图2中表示家长“赞成”的圆心角的度数;(3)已知某地区共6500名家长,估计其中反对中学生带手机的大约有多少名家长?6.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、D5、C6、A7、C8、B9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、53、∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE4、15、66、36°或37°.三、解答题(本大题共6小题,共72分)1、(1)41xy=⎧⎨=⎩;(2)23ab=-⎧⎨=-⎩2、(1)5x2-3x-3,原式=107;(2)-xy+2xy 2;原式=-4.3、(1) C(5,﹣4);(2)90°;(3)略4、(1)略;(2)略.5、(1)答案见解析(2)36°(3)4550名6、(1)3;(2)第5个台阶上的数x是﹣5;应用:从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k﹣1.。

湘教版七年级数学上册期末考试(带答案)

湘教版七年级数学上册期末考试(带答案)

湘教版七年级数学上册期末考试(带答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.黄金分割数51 是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算5﹣1的值( )A .在1.1和1.2之间B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间2.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°3.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD4.如果a 与1互为相反数,则|a+2|等于( )A .2B .-2C .1D .-15.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度6.如图,∠1=70°,直线a 平移后得到直线b ,则∠2-∠3( )A .70°B .180°C .110°D .80°7.如图所示,下列说法不正确的是( )A .∠1和∠2是同旁内角B .∠1和∠3是对顶角C .∠3和∠4是同位角D .∠1和∠4是内错角8.(-9)2的平方根是x ,64的立方根是y ,则x+y 的值为( )A .3B .7C .3或7D .1或79.运行程序如图所示,规定:从“输入一个值x ”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是( )A .x ≥11B .11≤x <23C .11<x ≤23D .x ≤2310.把代数式244ax ax a -+分解因式,下列结果中正确的是( ).A .()22a x -B .()22a x +C .()24a x -D .()()22a x x +-二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是 . 2.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是_____.3.若312m x y +-与432n x y +是同类项,则2017()m n +=________. 4.使分式211x x -+的值为0,这时x=________. 5.若不等式(a ﹣3)x >1的解集为13x a <-,则a 的取值范围是________. 6.设4x 2+mx+121是一个完全平方式,则m=________三、解答题(本大题共6小题,共72分)1.解方程3157146x x ---=2.已知A -B =7a 2-7ab ,且B =-4a 2+6ab +7.(1)求A 等于多少?(2)若|a +1|+(b -2)2=0,求A 的值.3.如图所示,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC =63°,求∠DAC 的度数.4.如图,四边形ABCD中,对角线AC、BD交于点O,AB=AC,点E是BD上一点,且AE=AD,∠EAD=∠BAC,(1)求证:∠ABD=∠ACD;(2)若∠ACB=65°,求∠BDC的度数.5.为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?6.某中学为丰富学生的校园生活,准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.(1)求购买一个足球、一个篮球各需多少元?(2)根据学校实际情况,需从体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、D4、C5、B6、C7、A8、D9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、40°3、-1.4、1a .5、36、±44三、解答题(本大题共6小题,共72分)1、x=﹣12、(1)3a2-ab+7;(2)12.3、24°.4、(1)略;(2) 50°5、(1)20%;(2)6006、(1)购买一个足球需要50元,购买一个篮球需要80;(2)30个.。

湘教版七年级数学上册期末试卷【及参考答案】

湘教版七年级数学上册期末试卷【及参考答案】

湘教版七年级数学上册期末试卷【及参考答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.计算12+16+112+120+130+……+19900的值为()A.1100B.99100C.199D.100992.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A →B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是( )A.B.C.D.3.关于x的方程32211x mx x-=+++无解,则m的值为()A.﹣5 B.﹣8 C.﹣2 D.54.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A.x y50{x y180=-+=B.x y50{x y180=++=C.x y50{x y90=++=D.x y50{x y90=-+=5.如果3ab2m-1与9ab m+1是同类项,那么m等于( )A.2 B.1 C.﹣1 D.06.如图,直线AB ,CD 相交于点O ,射线OM 平分AOC ∠,ON OM ⊥,若30AOM ∠=︒,则CON ∠的度数为( )A .30︒B .40︒C .60︒D .50︒7.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( ) A .1个B .2个C .3个D .4个8.如图,直线AB 、CD 、EF 相交于点O ,其中AB ⊥CD ,∠1:∠2=3:6,则∠EOD =( )A .120°B .130°C .60°D .150° 9.温度由﹣4℃上升7℃是( ) A .3℃B .﹣3℃C .11℃D .﹣11℃10.下列四个不等式组中,解集在数轴上表示如图所示的是( )A .23x x ≥⎧⎨>-⎩B .23x x ≤⎧⎨<-⎩C .23x x ≥⎧⎨<-⎩D .23x x ≤⎧⎨>-⎩二、填空题(本大题共6小题,每小题3分,共18分)116________.2.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.3.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________4.已知15x x+=,则221x x +=________________.5.若关于x 的方程2x m 2x 22x++=--有增根,则m 的值是________. 6.化简: 43ππ-+-=________三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)251237x y x y -=-⎧⎨+=⎩ (2)4(1)3(2)833634x y x y --+=⎧⎪++⎨=⎪⎩2.已知实数x 、y 满足2x+3y=1. (1)用含有x 的代数式表示y ;(2)若实数y 满足y >1,求x 的取值范围; (3)若实数x 、y 满足x >﹣1,y ≥﹣12,且2x ﹣3y=k ,求k 的取值范围.3.如图,A (4,3)是反比例函数y=kx在第一象限图象上一点,连接OA ,过A 作AB ∥x 轴,截取AB=OA (B 在A 右侧),连接OB ,交反比例函数y=kx 的图象于点P .(1)求反比例函数y=kx的表达式; (2)求点B 的坐标; (3)求△OAP 的面积.4.如图,已知O 为直线AB 上一点,过点O 向直线AB 上方引三条射线OC 、OD 、OE ,且OC 平分AOD ∠,3BOE DOE ∠=∠,70COE ∠=,求∠BOE 的度数5.某学校为了增强学生体质,决定开设以下体育课外活动项目:A :篮球 B :乒乓球C :羽毛球 D :足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)甲乙丙丁甲﹣﹣﹣(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)﹣﹣﹣(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)﹣﹣﹣(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)﹣﹣﹣6.已知A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,已知甲车速度为115千米/时,乙车速度为85千米/时,(1)两车同向而行,快车在后,求经过几小时快车追上慢车?(2)两车相向而行,求经过几小时两车相距50千米?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、A4、C5、A6、C7、B8、D9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、22、如果两个角互为对顶角,那么这两个角相等3、135°4、235、0.6、1三、解答题(本大题共6小题,共72分)1、(1)21xy=⎧⎨=⎩;(2)62xy=⎧⎨=⎩2、(1)y=123x-;(2)x<﹣1;(3)﹣5<k≤4.3、(1)反比例函数解析式为y=12x;(2)点B的坐标为(9,3);(3)△OAP的面积=5.4、∠BOE的度数为60°5、解:(1)200.(2)补全图形,如图所示:(3)列表如下:∵所有等可能的结果为12种,其中符合要求的只有2种,∴恰好选中甲、乙两位同学的概率为21P126==.6、(1)经过15小时快车追上慢车;(2)经过2或2.5小时两车相距50千米.。

七年级上册数学期末测试试卷湘教版(附答案)

七年级上册数学期末测试试卷湘教版(附答案)

七年级(上)期末数学试卷(附)参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)有理数(﹣1)2,(﹣1)3,﹣12,|﹣1|,﹣(﹣1),中,等于1的有()个.A.3个B.4个C.5个D.6个【解答】∵(﹣1)2=1,(﹣1)3=﹣1,﹣12=﹣1,|﹣1|=1,﹣(﹣1)=1,=1,∴等于1的有4个.故选B.2.(3分)小明种了一棵小树,想了解小树生长的过程,记录小树每周的生长高度,将这些数据制成统计图,下列统计图中较好的是()A.折线图 B.条形图 C.扇形图 D.不能确定【解答】记录小树的生长高度,最好选择折线统计图.故选A.3.(3分)如果a、b是有理数,则下列式中正确的是()A.若|a|>|b|,则一定只能有a>b B.若|a|=|b|,则一定只能有a=bC.若|a|>|b|,则一定只能有a<b D.若|a|=|b|,则a=b或a=﹣b【解答】若|a|>|b|,则a、b的大小要根据a、b的正负情况而定,大小不能确定,故A、C选项都错误;若|a|=|b|,则a=b或a=﹣b,故B选项错误,D选项正确.4.(3分)已知:|3m﹣12|+=0,则(m+n)2012=()A.1 B.﹣5 C.﹣1 D.4【解答】根据题意得:,解得:,则原式=1.故选A.5.(3分)如图,是一个正方体纸盒的展开图,若在其中三个正方形A,B,C中分别填入适当的数,使得它们折成正方体后相对的面上两个数互为相反数,则填入正方形A,B,C中的三个数依次是()A.1,﹣3,0 B.0,﹣3,1 C.﹣3,0,1 D.﹣3,1,0【解答】根据以上分析:填入正方形A,B,C中的三个数依次是1,﹣3,0.故选A.6.(3分)数轴上的点A到原点的距离是3,则点A表示的数为()A.3或﹣3 B.6 C.﹣6 D.6或﹣6【解答】设这个数是x,则|x|=3,解得x=+3或﹣3.故选:A.7.(3分)两个角的大小之比是7:3,它们的差是72°,则这两个角的关系是()A.相等 B.互余 C.互补 D.无法确定【解答】设这两个角分别是x°,y°,根据题意得:,解得:,则这两个角互补.故选C.8.(3分)为了了解某初中学校学生的视力情况,需要抽取部分学生进行调查.下列抽取学生的方法最合适的是()A.随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校初一、初二、初三年级中各随机抽取10%的学生【解答】D.二、填空题(每小题3分,共24分)9.(3分)已知当x=1时,代数式3ax2+bx的值为5,则当x=3时,代数式ax2+bx的值为15 .【解答】将x=1代入得:3a+b=5,则当x=3时,原式=9a+3b=3(3a+b)=15.故答案为:15 10.(3分)已知:,,,…,若(a,b为正整数),则ab= 720 .【解答】解:根据分析9+=92×,那么就可得到a=9,b=92﹣1=80,所以ab=9×80=720.11.(3分)若5a6b与3a2x b y是同类项,则x﹣2y= 1 .【解答】解:根据题意得:,解得:,则x﹣2y=3﹣2=1.故答案是:1.12.(3分)一个长方形的周长是60cm,且长比宽多5cm,则长方形的长是17.5 cm.【解答】解:设长为xcm,由题意得:2x+2(x﹣5)=60,解得:x=17.5.故答案为:17.5.13.(3分)有理数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|a﹣c|+|b﹣c|的结果是﹣2a .【解答】解:根据图形,c<b<0<a,且|a|<|b|<|c|,∴a+b<0,a﹣c>0,b﹣c>0,∴原式=(﹣a﹣b)﹣(a﹣c)+(b﹣c),=﹣a﹣b﹣a+c+b﹣c,=﹣2a.故答案为:﹣2a.14.(3分)某食品加工厂的冷库能使冷藏的食品每小时降温5℃,如果刚进库的牛肉温度是10℃,进库8小时后温度可达﹣30 ℃.【解答】根据题意可知:进库8小时后温度为10﹣5×8=10﹣40=﹣30℃.15.(3分)已知有四个角,∠1+∠2+∠3=180°,且∠1:∠2:∠3:∠4=2:3:4:5,则∠4的补角的度数是80°.【解答】设∠1=2x,∠2=3x,∠3=4x,∠4=5x,由题意得,2x+3x+4x=180°,解得:x=20,故∠4=100°,则∠4的补角为80°.故答案为:80°.16.(3分)已知一种运算:a*b=,则2*3= .【解答】根据题意得:2*3=+=.故答案为:三、解答题(17—18题每题6分,其他各题10分,共72分)17.(6分)计算﹣32﹣()3×﹣6÷(﹣)3.解:原式=﹣9﹣×﹣6÷(﹣)=﹣9﹣﹣6×(﹣)=﹣9﹣+==10.5.18.(6分)有资料表明:某地区高度每增加100米,气温降低0.8℃,小明和小红想出一个测量山峰高度的办法,小红在山脚,小明在山顶,他们同时在上午9时测得山脚温度是2.6℃,山顶温度是﹣2.2℃.你知道山峰的高度吗?解:设山峰的高度为x米.则有:2.6﹣=﹣2.2,解得:x=600.答:山峰的高度为600米.19.(10分)﹣=1+.解:去分母得,x﹣2﹣2(x+2)=6+3(x﹣1),去括号得,x﹣2﹣2x﹣4=6+3x﹣3,移项得,x﹣2x﹣3x=6﹣3+2+4,合并同类项得,﹣4x=9,系数化为1得,x=﹣.20.(10分)已知:A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1(1)求A+2B;(2)若A+2B的值与x的值无关,求y的值.解:(1)∵A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1,∴A+2B=(2x2+3xy﹣2x﹣1)+2(﹣x2+xy﹣1)=2x2+3xy﹣2x﹣1﹣2x2+2xy﹣2=5xy﹣2x﹣3;(2)∵A+2B的值与x的值无关,A+2B=(5y﹣2)x﹣3,∴5y﹣2=0,解得y=.故y的值是.21.(10分)如图,已知线段AB和CD的公共部分BD=AB=CD,线段AB、CD的中点E、F 之间距离是10cm,求AB,CD的长.解:设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.∵点E、点F分别为AB、CD的中点,∴AE=AB=1.5xcm,CF=CD=2xcm.∴EF=AC﹣AE﹣CF=6x﹣1.5x﹣2x=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.∴AB=12cm,CD=16cm.22.(10分)南县农民一直保持着冬种油菜的习惯,利用农闲冬种一季油菜、南县农业部门对2009年的油菜籽生产成本,市场价格,种植面积和产量等进行了调查统计,并绘制了如下统计表与统计图:每亩生产成本每亩产量油菜籽市场价格种植面积110元130千克3元/千克500000亩请根据以上信息解答下列问题:(1)种植油菜每亩的种子成本是多少元?(2)农民冬种油菜每亩获利多少元?(3)2009年南县全县农民冬种油菜的总获利多少元?(结果用科学记数法表示)解:(1)1﹣10%﹣35%﹣45%=10%,110×10%=11(元);(2)130×3﹣110=280(元);(3)280×500000=140000000=1.4×108(元).答:2009年南县全县农民冬种油菜的总获利1.4×108元.23.(10分)如图所示已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC;(1)∠MON= 45 °;(2)∠AOB=α,∠BOC=β,求∠MON的度数;并从你的求解你能看出什么什么规律吗?解:(1)∵∠AOB=90°,∠BOC=30°,∴∠AOC=∠AOB+∠BOC=90°+30°=120°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC=60°,∠CON=∠BOC=15°,∴∠MON=∠MOC﹣∠CON=60°﹣15°=45°;故答案为:45°(2)同理可得,∠MOC=(α+β),∠CON=β,∴∠MON=∠MOC﹣∠CON=(α+β)﹣β=.则得出规律为∠MON=∠AOB.24.(10分)初一(1)班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售同样品牌的乒乓球和乒乓球拍,而且定价也都相同.乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当分别购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?解:(1)设购买x盒乒乓球时,两种优惠办法付款一样根据题意有:30×5+(x﹣5)×5=(30×5+5x)×0.9解得x=20所以,购买20盒乒乓球时,两种优惠办法付款一样.(2)当购买15盒时:甲店需付款30×5+(15﹣5)×5=200(元),乙店需付款(30×5+15×5)×0.9=202.5(元).因为200<202.5所以,购买15盒乒乓球时,去甲店较合算.当购买30盒时:甲店需付款30×5+(30﹣5)×5=275(元);乙店需付款(30×5+30×5)×0.9=270(元).因为275>270所以,购买30盒乒乓球时,去乙店较合算.。

湘教版七年级数学上册期末考试卷【含答案】

湘教版七年级数学上册期末考试卷【含答案】

湘教版七年级数学上册期末考试卷【含答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若关于x的不等式组324x ax a<+⎧⎨>-⎩无解,则a的取值范围是()A.a≤﹣3B.a<﹣3C.a>3D.a≥32.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD3.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm4.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中()A.亏了10元钱 B.赚了10钱C.赚了20元钱 D.亏了20元钱5.已知点P(a+5,a-1)在第四象限,且到x轴的距离为2,则点P的坐标为()A.(4,-2) B.(-4,2) C.(-2,4) D.(2,-4)6.4的平方根是()A.±2 B.2 C.﹣2 D.167.下列各组数中,能作为一个三角形三边边长的是()A .1,1,2B .1,2,4C .2,3,4D .2,3,58.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y +=⎧⎨+=⎩B .7068480x y x y +=⎧⎨+=⎩C .4806870x y x y +=⎧⎨+=⎩D .4808670x y x y +=⎧⎨+=⎩9.已知有理数a 、b 、c 在数轴上对应的点如图所示,则下列结论正确的是( )A .c+b >a+bB .cb <abC .﹣c+a >﹣b+aD .ac >ab10.已知三条不同的射线OA 、OB 、OC 有下列条件:①∠AOC=∠BOC ②∠AOB=2∠AOC ③∠AOC+∠COB=∠AOB ④∠BOC=12∠AOB ,其中能确定OC 平分∠AOB 的有( )A .4个B .3个C .2个D .1个 二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是________.2.如图,A α∠=,,ABC ACD ∠∠的平分线相交于点1P ,11,PBC PCD ∠∠的平分线相交于点2P ,2P BC ∠,2P CD ∠的平分线相交于点3P ……以此类推,则n P ∠的度数是___________(用含n 与α的代数式表示).3.已知,|a|=﹣a ,b b =﹣1,|c|=c ,化简|a+b|﹣|a ﹣c|﹣|b ﹣c|=_____. 4.若()2320m n -++=,则m+2n 的值是________.5.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若17MN cm =,则BD =________cm .6.已知关于x 的不等式(1﹣a )x >2的解集为x <21a -,则a 的取值范围是_______. 三、解答题(本大题共6小题,共72分)1.解方程组4(1)3(1)2223x y y x y --=--⎧⎪⎨+=⎪⎩2.解不等式组()3x 2x 4x 112⎧+≥+⎪⎨-⎪⎩<,并求出不等式组的非负整数解.3.如图,分别表示甲步行与乙骑自行车(在同一路上)行走的路程s 甲,s 乙与时间t 的关系,观察图象并回答下列问题:(1)乙出发时,乙与甲相距 千米;(2)走了一段路程后,乙的自行车发生故障,停下来修车的时间为 小时;(3)乙从出发起,经过 小时与甲相遇;(4)乙骑自行车出故障前的速度与修车后的速度一样吗?为什么?4.如图1,△ABD ,△ACE 都是等边三角形,(1)求证:△ABE≌△ADC;(2)若∠ACD=15°,求∠AEB的度数;(3)如图2,当△ABD与△ACE的位置发生变化,使C、E、D三点在一条直线上,求证:AC∥BE.5.中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对七年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如下所示:(1)统计表中的a=________,b=___________,c=____________;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校七年级共有1200名学生,请你分析该校七年级学生课外阅读7本及以上的人数.6.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上哪种购买方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、C4、A5、A6、A7、C8、A9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、12nα⎛⎫ ⎪⎝⎭3、﹣2c4、-15、146、a>1三、解答题(本大题共6小题,共72分)1、23 xy=⎧⎨=⎩2、0,1,2.3、(1)10;(2)1;(3)3;(4)不一样,理由略;4、(1)略(2) ∠AEB=15°(3) 略5、(1)a=10,b=0.28,c=50;(2)补图见解析;(3)6.4本;(4)528人.6、(1) 有三种购买方案,理由见解析;(2)为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车。

湘教版七年级上册数学期末考试试卷及答案

湘教版七年级上册数学期末考试试卷及答案

湘教版七年级上册数学期末考试试题一、单选题1.13-的相反数是( )A .13B .13-C .3D .-32.数据10050000用科学记数法表示为( ) A .61.00510⨯B .71.00510⨯C .4100510⨯D .70.100510⨯3.小颖制作了一个正方体玩具,其表面展开图如图所示,则原正方体中与“强”字相对的字是( )A .少B .年C .有D .国4.下列说法中,正确的是( )A .234x -的系数是34B .232a π的次数是3C .23ab 的系数是3aD .225xy 的系数是255.下列方程变形正确的是( ) A .由35x +=,得53x =+ B .由112y =,得2y = C .由52x -=,得52x =-D .由32x =-,得23x =--6.10月中旬,为了校体育文化节的顺利进行,学校体育组决定将跳远沙坑加长.若原来的沙坑长为a ,宽为b ,如果长增加x ,那么新的沙坑增加的面积为( ) A .()a b x +B .()b a x +C .axD .bx7.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐.问人数和车数各多少?设车x 辆,根据题意,可列出的方程是( ) A .3229x x -=+ B .()3229x x -=+ C .2932x x +=+D .3229x x8.如图,线段AB=22cm,C是AB上一点,且AC=14cm,O是AB的中点,线段OC的长度是()A.2cm B.3cm C.4cm D.5cm9.下列说法正确的是()A.单项式﹣a的系数是1B.单项式﹣3abc2的次数是3C.4a2b2﹣3a2b+1是四次三项式D.233m n不是整式10.已知∠A=50°,则∠A的补角等于()A.40°B.100°C.130°D.150°二、填空题11.2021年第29届世界水日主题为“珍惜水,爱护水”,节约用水要从生活中点点滴滴做起.小明将节约用水5立方米记作5+立方米,那么浪费用水3立方米记作________立方米.12.若∠α的补角为76°28′,则∠α=_____.13.多项式223368x kxy y xy--+-不含xy项,则k=________.14.若a,b互为相反数,c,d互为倒数,p的绝对值等于2,则关于x的方程()2230a b x cd x p++⋅-=的解为x=________.15.若m<n<0,则(m+n)(m-n)______0.(填“<”、“>”或“=”)16.为了解全班同学对新闻、体育、动漫和娱乐四类电视节目的喜爱情况,小亮同学调查后绘制了一副不完整的扇形统计图如图所示,如果喜爱新闻类节目的人数是5人,则喜爱体育类节目人数是___人.17.某商店若将某种型号的彩电按标价打八折出售,此时每台电视机的利润率为10%,已知该种型号的彩电进价为每台4000元,则该种型号的彩电标价为____元.18.一副三角板(∠AOB =∠COD =90°)按如图所示的方式摆放,若∠BOC =40°,则∠AOD 的度数为 ___.三、解答题 19.计算:(1)()()2875--+--;(2)()2214822-⨯-+÷-. 20.解方程: (1)43(20)3x x --= (2)3157146x x ---= 21.先化简,再求值:2323312252ab a b ab a b a b ⎡⎤⎛⎫-+-- ⎪⎢⎥⎝⎭⎣⎦,其中2a =-,15b =.22.若()25340m m x m ---=是关于x 的一元一次方程,求221m m -+的值. 23.有理数a ,b 在数轴上对应点的位置如图所示.(1)结合数轴可知:a -________b -(用“>、=或<”填空); (2)结合数轴化简11a b b a ---++-.24.学校要购入两种记录本,预计花费460元,其中A 种记录本每本3元,B 种记录本每本2元,且购买A 种记录本的数量比B 种记录本的2倍还多20本. (1)求购买A 和B 两种记录本的数量;(2)某商店搞促销活动,A 种记录本按8折销售,B 种记录本按9折销售,则学校此次可以节省多少钱?25.如图,已知120AOB ∠=︒,OC 是∠AOB 内的一条射线,且:1:2AOC BOC ∠∠=.(1)求∠AOC 的度数;(2)过点O 作射线OD ,若12AOD AOB ∠=∠,求∠COD 的度数.26.已知0x 是关于x 的方程()00ax b a +=≠的解,0y 是关于y 的方程()00cy d c +=≠的解,若0x ,0y 是满足001x y -≤,则称方程()00ax b a +=≠与方程()00cy d c +=≠互为“阳光方程”;例如:方程4260x x +-=的解是01x =,方程33y y -=的解是0 1.5y =,因为000.51x y -=<,所以方程4260x x +-=与方程33y y -=互为阳光方程.(1)请直接判断方程()33410x x -+-=与方程23y y --=是否互为阳光方程; (2)请判断关于x 的方程1252022x m x -=-与关于y 的方程720221y +⨯-=40442022y m +是否互为阳光方程,并说明理由;(3)若关于x 的方程()33410x x -+-=与关于y 的方程3212y ky k +-=+互为阳光方程,请求出k 的最大值和最小值.27.如图1,已知数轴上的点A 、B 对应的数分别是﹣5和1. (1)若P 到点A 、B 的距离相等,求点P 对应的数;(2)动点P 从点A 出发,以2个单位/秒的速度向右运动,设运动时间为t 秒,问:是否存在某个时刻t ,恰好使得P 到点A 的距离是点P 到点B 的距离的2倍?若存在,请求出t 的值;若不存在,请说明理由;(3)如图2在数轴上的点M 和点N 处各竖立一个挡板(点M 在原点左侧,点N 在原点右侧且OM >ON ),数轴上甲、乙两个弹珠同时从原点出发,甲弹珠以2个单位/秒的速度沿数轴向右运动,乙弹珠以5个单位/秒的速度沿数轴向左运动.当弹珠遇到挡板后立即以原速度向反方向运动,若甲、乙两个弹珠相遇的位置恰好到点M 和点N 的距离相等,试探究点M 对应的数m 与点N 对应的数n 是否满足某种数量关系,请写出它们的关系式,并说明理由.参考答案1.A【分析】根据相反数的定义即可解答.【详解】解:13的相反数为13.故选:A.【点睛】本题考查了相反数,熟记相关定义是解答本题的关键.2.B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:10050000=1.005×107,故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.A【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,则“有”与“年”相对,“我”与“国”相对,“强”与“少”相对.故选:A.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题. 4.D【分析】根据单项式的系数和次数的定义,对选项逐个判断即可,单项式的系数是指式子中的数字因数,次数是所有字母指数的和.【详解】解:A 、234x -的系数是34-,选项错误,不符合题意;B 、232a π的次数是2,选项错误,不符合题意;C 、23ab 的系数是3,选项错误,不符合题意;D 、225xy 的系数是25,选项正确,符合题意;故选:D【点睛】此题考查了单项式的系数与次数,解题的关键是掌握单项式次数和系数的有关定义. 5.B【分析】根据等式的基本性质即可求出答案.【详解】解:A .由3+x =5,得x =5﹣3,故选项错误,不符合题意; B .由12y =1,得y =2,故选项正确,符合题意; C .由﹣5x =2,得x =25-,故选项错误,不符合题意;D .由3=x ﹣2,得x =3+2,故选项错误,不符合题意. 故选:B .【点睛】本题考查等式的性质,解题的关键是熟练运用等式的性质,本题属于基础题型. 6.D【分析】根据长方形的面积公式直接求出增加的面积. 【详解】∠长方形的花园长增加x ,宽为b , ∠新的花园增加的面积为bx ,故D 正确. 故选:D .【点睛】本题主要考查了利用图形的面积公式列代数式,关键是要掌握好长方形的面积公式. 7.B【分析】设车x 辆,根据乘车人数不变,即可得出关于x 的一元一次方程,此题得解. 【详解】解:设车x 辆, 根据题意得:3(2)29x x -=+.故选:B.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.8.B【分析】根据O是AB的中点,求得AO的长,即可求解.【详解】解:∠O是AB的中点,AB=22cm,∠OA=OB=12AB=12×22=11(cm),∠OC=AC﹣AO=14﹣11=3(cm).故选:B.【点睛】此题主要考查了线段中点的性质,熟练掌握线段中点的性质是解题的关键.9.C【分析】根据整式,单项式的系数与次数,多项式的次数与项的定义对各项进行分析即可.【详解】A、单项式﹣a的系数是﹣1,故不符合题意;B、单项式﹣3abc2的次数是4,故不符合题意;C、4a2b2﹣3a2b+1是四次三项式,故符合题意;D、233m n是整式,故不符合题意.故选:C.【点睛】本题考查整式,单项式,多项式.熟练掌握整式的定义,单项式的系数与次数,多项式的次数与项的定义是关键.10.C【分析】两角互补和为180°,求∠A的补角只要用180°﹣∠A即可.【详解】解:∠A=50°,∠A的补角=180°﹣∠A=180°﹣50°=130°故选C.【点睛】本题考查了补角,熟记互为补角的两个角的和等于180°是解答本题的关键.11.﹣3【分析】利用相反意义量的定义判断即可.【详解】解:如果节约用水5立方米记作+5立方米,那么浪费用水3立方米记作﹣3立方米.故答案为:﹣3.【点睛】此题考查了正数与负数,熟练掌握相反意义量的定义是解本题的关键. 12.103°32′.【分析】根据互为补角的概念可得出∠α=180°﹣76°28′. 【详解】∠∠α的补角为76°28′, ∠∠α=180°﹣76°28′=103°32′, 故答案为103°32′.【点睛】本题考查了余角和补角以及度分秒的换算,是基础题,要熟练掌握. 13.2【分析】先将原多项式合并同类项,再令xy 项的系数为0,然后解关于k 的方程即可求出k 的值.【详解】223368x kxy y xy --+-()223368x y k xy =-+-+-,又∠多项式中不含xy 项,360k ∴-+=,解得:2k =. 故答案为:2.【点睛】本题考查了合并同类项法则及对多项式“项”的概念的理解,题目设计巧妙,有利于培养学生灵活运用知识的能力.14.43或者113【详解】∠a ,b 互为相反数,c ,d 互为倒数,p 的绝对值等于2, ∠0a b +=,1cd =,2p =±,将其代入关于x 的方程22()30a b x cd x p ++-=中, 可得:340x -=, 解得:43x =. 故答案为:43.15.>.【详解】试题分析:根据m <n <0,易知m 、n 是负数,且m 的绝对值大于n 的绝对值,于是可得m+n <0,m ﹣n <0,根据同号得正,易知(m+n )(m ﹣n )>0.解:∠m<n<0,∠m+n<0,m﹣n<0,∠(m+n)(m﹣n)>0.故答案是>.考点:有理数的乘法.16.20【分析】喜爱新闻类节目的人数是5人,占调查人数的10%,可求出调查人数,根据扇形统计图求出“体育”所占的百分比,即可求出喜欢“体育”的人数.【详解】5÷10%=50(人),50×(1﹣10%﹣22%﹣28%)=50×40%=20(人),故答案为:20.【点睛】本题考查扇形统计图的意义和制作方法,理解扇形统计图表示各个部分占整体的百分比是正确解答的关键.17.5500.【分析】设该种型号的彩电标价为x元,则实际售价为0.8x元,根据售价-进价=利润列出方程,求解即可.【详解】设该种型号的彩电标价为x元,根据题意得:0.8x﹣4000=4000×10%,解得:x=5500,答:该种型号的彩电标价为5500元.故答案为:5500.【点睛】本题考查了一元一次方程的应用,根据进价与利润的关系列出方程是关键.18.140°【分析】结合题意,根据角的和差运算,得∠AOC,再结合∠AOD=∠AOC+∠COD,通过计算即可得到答案.【详解】∠∠AOB=∠COD=90°,∠BOC=40°∠∠AOC=∠AOB -∠BOC=90°-40°=50°∠∠AOD=∠AOC+∠COD=50°+90°=140°;故答案为:140°.【点睛】本题考查了角的知识;解题的关键是熟练掌握角的和差运算,从而完成求解.19.(1)-2;(2)-6【分析】(1)根据有理数加减运算法则计算即可; (2)根据含乘方的有理数混合运算法则计算即可. 【详解】解:(1)()()2875--+-- =2875+-- =2-;(2)()2214822-⨯-+÷- =1116824-⨯+⨯ =82-+ =6-.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 20.(1)x=9 ;(2)1x =-.【分析】(1)按照去括号,移项,合并同类项,系数化成1的步骤求解; (2)按照去分母,去括号,移项,合并同类项,系数化成1的步骤求解; 【详解】解:(1)去括号得:46033x x -+=移项得: 433+60+=x x合并同类项得:763x = 系数化成1得:9x =(2)去分母得:()()33112257x x --=-去括号得:93121014--=-x x 移项得: 91014+3+12-=-x x合并同类项得:1x -= 系数化成1得:1x =-【点睛】本题考查一元一次方程的解法,熟练掌握解方程的顺序是关键. 21.35a b -;8【分析】先根据去括号法则和合并同类项法则化简,然后代入求值即可.【详解】解:2323312252ab a b ab a b a b ⎡⎤⎛⎫-+-- ⎪⎢⎥⎝⎭⎣⎦=23233225ab a b ab a b a b ⎡⎤-+--⎣⎦=23233225ab a b ab a b a b --+-=35a b -当2a =-,15b =时, 原式=()31525-⨯-⨯=8. 【点睛】此题考查的是整式的化简求值,掌握去括号法则和合并同类项法则是解题关键. 22.16【分析】根据一元一次方程的定义,判断出x 的次数为1且系数不为0,求出m 的值,再代入m 2﹣2m+1即可.【详解】解:∠(m ﹣3)x 2|m |﹣5﹣4m =0是关于x 的一元一次方程,∠2|m|﹣5=1且m ﹣3≠0,解得m =﹣3,原式=(﹣3)2﹣2×(﹣3)+1=16.【点睛】本题考查了一元一次方程的概念和解法.方程的两边都是整式,只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程.23.(1)>;(2)22b a -【分析】(1)根据a 、b 在数轴上的位置可得101a b -<<<<,然后比较a -和b -的大小; (2)根据a 、b 在数轴上的位置进行绝对值的化简,然后合并.(1)由数轴知:101a b -<<<<,则a b ->-; 故答案为:>;(2)由(1)可知,101a b -<<<<, 10,10,0a b b a ∴->-+>->∴原式1(1)()a b b a =---++-11a b b a =-+-+-22b a =-.【点睛】本题主要考查了关于数轴的知识以及有理数大小的比较,解答本题的关键是根据a 、b 在数轴上的位置判断得出101a b -<<<<,然后比较大小. 24.(1)购买A 种记录本120本,B 种记录本50本(2)学校此次可以节省82元钱【分析】(1)设购买B 种记录本x 本,则购买A 种记录表(2x+20)本,根据总价=单价×数量,即可得出关于x 的一元一次方程,解之即可得出结论;(2)根据节省的钱数=原价-优惠后的价格,即可求出结论.(1)设购买B 种记录本x 本,则购买A 种记录表(2x+20)本,依题意,得:3(2x+20)+2x=460,解得:x=50,∠2x+20=120.答:购买A 种记录本120本,B 种记录本50本.(2)460-3×120×0.8-2×50×0.9=82(元).答:学校此次可以节省82元钱.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.25.(1)40︒(2)20︒或100︒【分析】(1)根据:1:2AOC BOC ∠∠=,即可求解;(2)分OD 在AOB ∠内部和外部两种情况分类讨论即可求解.(1)0:1:212,A AO B B OC OC ∠∠=︒∠=1403AOC AOB ∴∠=∠=︒ (2)如图,当OD 在AOB ∠内部时,120AOB ∠=︒,12AOD AOB ∠=∠ 60AOD ∴=︒∠604020COD AOD AOC ∴∠=∠-∠=︒-︒=︒如图,当OD 在AOB ∠外部时,120AOB ∠=︒,12AOD AOB ∠=∠ 60AOD ∴=︒∠6040100COD AOD AOC ∴∠=∠+∠=︒+︒=︒综上,∠COD 的度数为20︒或100︒.【点睛】本题考查了角的计算及角平分线,掌握角的特点及比例的意义是解题的关键. 26.(1)不是;(2)是;(3)最大值为0,最小值为23-【分析】(1)解出两个一元一次方程的解分别为1x =,1y =-,根据阳光方程的定义求解即可;(2)分别求得两个方程的解,再根据阳光方程的定义判断即可;(3)分别求得两个方程的解,再根据阳光方程的定义列出绝对值不等式,然后求解即可.(1)解:由方程()33410x x -+-=可得1x =,由方程23y y --=可得1y =-, ∠21x y -=>根据阳光方程的定义可得:方程()33410x x -+-=与方程23y y --=不是互为阳光方程;(2) 由1252022x m x -=-可得2022404410110x m x -=- 解得1011020224043m x -=, 由72022140442022y y m +⨯-=+可得,72022120224043m y ⨯--= 101102022720221202222022111404340434043m m x y -⨯--⨯--=-==≤ 根据阳光方程的定义可得:关于x 的方程1252022x m x -=-与关于y 的方程720221y +⨯-=40442022y m +是互为阳光方程;(3)由()33410x x -+-=可得1x =, 由3212y k y k +-=+可得32y k =+ 由题意可得:1x y -≤,即311k +≤,即1311k -≤+≤ 解得203k -≤≤, k 的最大值为0,最小值为23-.【点睛】此题是新定义题,考查了一元一次方程的求解,绝对值不等式的求解,解题的关键是准确理解题意,正确求出各方程的解以及不等式的解集.27.(1)点P 对应的数为-2;(2)当t=2或6时,恰好使得P 到点A 的距离是点P 到点B 的距离的2倍;(3)m+13n=0.【分析】(1)设点P 对应的数为x ,表示出BP 与PA ,根据BP=PA 求出x 的值,即可确定出点P 对应的数;(2)表示出点P 对应的数,进而表示出PA 与PB ,根据PA=2PB 求出t 的值即可;(3)因为OM >ON ,只有甲乙均反弹之后在中点相遇一种情况,设点M 对应的数为m ,点N 对应的数为n ,时间为t ,则M 、N 的中点对应的数为2m n +,根据甲、乙两个弹珠相遇的位置恰好到点M 和点N 的距离相等列出关系式即可.【详解】解:(1)点A 、B 对应的数分别是﹣5和1,设点P 对应的数为x ,则BP=1-x ,PA=x+5,∠BP=PA ,∠1-x=x+5,解得:x=-2,∠点P 对应的数为-2;(2)P 对应的数为-5+2t ,∠PA=2t ,PB=|-5+2t -1|=|2t -6|,∠PA=2PB ,∠2t=2|2t -6|,当t=2t -6时,t=6;当t+2t -6=0时,t=2;答:当t=2或6时,恰好使得P 到点A 的距离是点P 到点B 的距离的2倍;(3)设点M 对应的数为m ,点N 对应的数为n ,时间为t ,则M 、N 的中点对应的数为2m n+,∠MN=n -m ,OM=-m ,ON=n ,∠()()252502t t n m m n t m m ⎧+=-⎪+⎨⎛⎫=-+- ⎪⎪⎝⎭⎩,即()()351073352t n m n m t ⎧=-⎪⎨-=⎪⎩,化简得m+13n=0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册数学期末试卷
姓名 班级
一、精心选一选:(每小题3分,共24分)
1、下列各组中两个式子的值相等的是( )
A. 23与23-
B. 2)2(-与22-
C. |2|-与|2|+-
D. 3)2(-与32-
2、若0,0>>+ab b a ,则( )
A .0,0>>b a
B .0,0<>b a
C .0,0><b a
D 0,0<<b a
3、解方程44
31212-=+--x x 时,去分母后得到的方程正确的是( ) A.16)31()12(2-=+--x x B.1)31()12(2-=+--x x
C.4)31()12(2-=+--x x
D.431)12(2-=+--x x
4、记录一个人的体温变化情况,最好选用( )
A.扇形统计图
B. 条形统计图
C.折线统计图
D.统计表
5、下面的说法正确的是( )
A .2-不是单项式
B .a -表示负数
C .35
ab 的系数是3 D .1a x x ++不是多项式 6、已知()0232=++-n m ,则2m n -的值是( )
A .-8
B .4
C .8
D .-4
7、若︒+︒=∠︒-︒=∠m m 90,90βα,则∠α与∠β的关系是( )
A 、互补
B 、互余
C 、和为钝角
D 、和为周角
8、用一根长80 cm 的绳子围成一个长方形,且长方形的长比宽多10 cm ,则这个长方形的面积是 ( )
A 、252cm
B 、452cm
C 、375 2cm
D 、15752cm
二、细心填一填:(每小题3分,共24分)
9、若n m 2-与y x n m 是同类项,则=+y x .
10、关于x 的方程==--a x a ,那么的解是204)1(
11、、要在墙上固定一根木条,至少要有两个钉子,根据的原理是 ;
12、5-的相反数是_________;
13、已知α∠与β∠互余,且40α=∠51',则β∠为 ;
14、校园内刚栽下一棵1.5米高的小树苗,以后每年长0.2米,则n 年后树苗 的高度为 米。

(用含n 的代数式表示)
15、观察下列有规律的数,并根据此规律写出第五个数
错误!未找到引用源。

,错误!未找到引用源。

,错误!未找到引用源。

,错误!未找到引用源。

,________,错误!未找到引用源。

,…
16、为了调查电视机的使用寿命,从一批电视机中抽取20台进行测试,这个问题中,样本是____________________,样本容量是________。

三、(本大题共52分)用心做一做:
17、(本题4分)计算:)(2
113)2(2224-÷----
18、(本题4分)计算: )(60
1)54433221(-÷-+-
19、先化简,再求值(本题6分)
(-3x 2-4y )-2(2x 2-5y+6)+(x 2-5y-1) 其中 x=-3 ,y=-1
20、解方程:(每小题3分,共6分)
(1) 10)2(35=--x x (2)
12
2312=+--x x
21、(本题6分)如图,已知CB =4,
22、如图,OC 是∠AOD 的平分线,OE 是∠BOD 的平分线(8分)
(1)、如果∠BOD=90°,∠AOD=40°那么∠COE 是多少度?
(2)、若∠AOB=120°,你能求出∠COE 是多少度吗?
23、(8分)某班课外活动小组,就本班同学的上学方式进行了一次调查统计,图甲和图乙是他们通过收集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:
A B C D
(1)在扇形统计图中,计算“步行”部分所对应的百分比。

(2)求该班共有多少学生?
(3)在条形统计图中,将表示“乘车”的部分补充完整。

24、希望中学组织七年级学生春游,如果单独租用45座客车若干辆,刚好坐满, 如果单独租用60座客车,可少租一辆,且余15个座位。

(1)、求参加春游人数;
(2)、已知租用45座的客车每日租金为每辆250元,60座客车每日租金为每辆300元. 若只租一种客车,问租用哪种车更合算?(每小题5分,共10分)
骑车50%
乘车20% 步行 骑车 乘车 步行 上学方式
25
15。

相关文档
最新文档