福建省宁德市古田县新城初级中学八年级数学上学期第一次月考试题(无答案)
八年级上册数学第一次月考试卷(含答案)

八年级上册数学第一次月考试卷一、选择题(每小题3分,共30分)1.下列图形中具有稳定性的是( )A.三角形 B.四边形 C.五边形 D.六边形2.下列长度的三条线段能组成三角形的是( )A.1,2,3 B.4,5,10 C.8,15,20D.5,8,153.如图,把一副含30°角和45°角的直角三角板拼在一起,那么图中∠ADE的度数为( ) A.100°B.120°C.135°D.150°,第3题)(第6题)4.已知等腰三角形的两边长分别是5和11,则是这个等腰三角形的周长为( ) A.21 B.16 C.27 D.21或275.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等6.,如图,小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块7.如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A. B.C D.8.如图,∠AOB是一钢架,∠AOB=15°,为使钢架更加牢固,需在其内部添加一些钢管EF、FG、GH…添的钢管长度都与OE相等,则最多能添加这样的钢管多少根()根(第8题),(第9题)A.4 B.5 C.6 D.79.如图,在△ABC中,∠A=60°,BD,CD分别平分∠ABC,∠ACB,M,N,Q分别在射线DB,DC,BC上,BE,CE分别平分∠MBC,∠BCN,BF,CF分别平分∠EBC,∠ECQ ,则∠F =( )A .30°B .35°C .15°D .25°10.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D.若AC =9,AB =15,且S △ABC =54,则△ABD 的面积是( )A.3105B.4135C .45D .35二.填空题(每小题3分,共18分)11.若一个n 边形的内角和是外角和的2倍,则边数n =12. 已知AD 是△ABC 的一条中线,AB =9,AC =7,则AD 的取值范围是 13.如图:作∠AOB 的角平分线OP 的依据是 .(填全等三角形的一种判定方法)(第13题图)(第15题图)14.△ABC 是三边都不相等的三角形,以B ,C 为两个顶点作位置不同的三角形,使所作的三角形与△ABC 全等,这样的三角形最多可以画出 个.15.如图,AD 是△ABC 的高,∠BAD =40°,∠CAD =65°,若AB =5,BD =3,则BC 的长为 .16.已知点A(-4,4),一个以A 为顶点的45°角绕点A 旋转,角的两边分别交x 轴正半轴,y 轴负半轴于点E ,F ,连接EF.当△AEF 是直角三角形时,点E 的坐标是三.解答题(8小题,共72分)17.(8分)一个正多边形每一个内角比外角多90°,求这个多边形所有对角线的条数。
八年级上学期第一次月考数学试题.docx

八年级上学期第一次月考数学试题姓名: 班级: 成绩:一、单选题1.下列各组数可能是一个三角形的边长的是()A. 4, 4, 9B. 2, 6, 8 c. 3, 4, 52.把一副三角板按下图方式放置,则两条斜边所形成的钝角a=(A. 120°B. 135 °C. 165°3.如图,的三条中线AD, BE, CF交于同一点G,若SAABC=12,4.十边形的内角和为()A. 180°B. 360°C. 1800°5.如图:^-DAE = ADAF = 15', DE .IB , DF _ AB ,若AE = 6BD. 1, 2, 3).D. 150°则图中阴影部分面积是(D. 6D. 1440°,则序■等于()6 .设 BF 交 AC 于点 P, AE 交 DF 于点 Q.若ZAPB=126° , ZAQF=100° ,则ZA-ZF=()7 .如图,在等边三角形ABC 中,AD=BE=CF, D 、E 、F 不是各边的中点,AE 、BF 、CD 分别交于P 、M 、H,如 果把三个三角形全等叫做一组全等三角形,那么图中全等三角形有()如图,已知 AABE m AACD ,若 3 = 50、^4£C = 120:,则 A DAC 的度数为()9 .下列各组数中,能作为一个三角形三边边长的是(10 .下列说法中,正确的是( )A. 5B. 4C. 3D. 2A. 60°B. 46°C. 26°D. 45°A. 6组C. 4组D. 3组A.120= B. 70s C. 60:D. 50’A. 1, 1,2B. 1,2,4C. 2, 3,4D. 2,4,6A. 垂线最短B. 两点之间直线最短B. 5组C.如果两个角互补,那么这两个角中一个是锐角,一个_n—么 D.同角的补角相等是钝角11.如图,ZA=ZD, Z1=Z2,添加下列条件,可使△ ABC^ADEF的是(A. AF=DFB. AB=DEC. AB=EFD. ZB=ZE12.如图,在RtAABC中,ZC=90° ,以顶点A为圆心,适当长为半径画弧,分别交AC, AB于点M、N,再分1_别以点M、N为圆心,大于2 MN的长为半径画弧,两孤交于点P,作射线AP交边BC于点D,若CD=4, AB=18,则AABD 的面积是()A. 18B. 36C. 54D. 72二、填空题13.如图,点B、F、C、E在一条直线上,已知BF=CE, AC〃DF,请你添加一个适当的条件,使得14,若等腰三角形的两条边长分别为4cm和9cm,则等腰三角形的周长为—.15.若一个多边形所有内角与其中一个外角的和是1000° ,这是边形.16.如图,正方形ABCD的对角线长为8, E为AB上一点,若EF±AC于点F, EG±BD于点G,则EF+EG=17 ,如图,把手机放在一个支架上面,就可以非常方便地使用,这是因为手机支架利用了三角形的性。
【初中教育】最新八年级数学上学期第一次月考试题(含解析)新人教版

——教学资料参考参考范本——【初中教育】最新八年级数学上学期第一次月考试题(含解析)新人教版______年______月______日____________________部门一、选择题:(每题3分,共30分)1.数3.14,,,0.323232…,,,,1+中,无理数的个数为()A.2个B.3个C.4个D.5个2.已知x3ym﹣1•xm+ny2n+2=x9y9,则4m﹣3n等于()A.8 B.9 C.10 D.113.若a为实数,则下列说法正确的是()A.|﹣a|是正数B.﹣|a|是负数C.是非负数D.|﹣a|永远大于﹣|a|4.下列计算中,错误的有()①(3a+4)(3a﹣4)=9a2﹣4;②(2a2﹣b)(2a2+b)=4a2﹣b2;③(3﹣x)(x+3)=x2﹣9;④(﹣x+y)•(x+y)=﹣(x﹣y)(x+y)=﹣x2﹣y2.A.1个B.2个C.3个D.4个5.晓影设计了一个关于实数运算的程序:输入一个数后,输出的数总是比该数的平方小1,晓影按照此程序输入后,输出的结果应为()A.20xx B.20xx C.20xx D.20xx6.(﹣3)20xx+(﹣3)20xx所的结果是()A.﹣3 B.﹣2×320xx C.﹣1 D.﹣320xx7.对于任意的整数n,能整除(n+3)(n﹣3)﹣(n+2)(n﹣2)的整数是()A.4 B.3 C.﹣5 D.28.若x2﹣7xy+M是一个完全平方式,那么M是()A.B.C.D.49y29.设a=,则实数a在数轴上对应的点的大致位置是()A.B.C.D.10.如果(﹣am)n=amn成立,则()A.m是偶数,n是奇数B.m、n都是奇数C.m是奇数,n是偶数D.n是偶数二、填空:(每题2分,共34分)11.的平方根是.若x2=(﹣0.7)2,则x= .12.的平方根是,的立方根是.13.如果a2=1,则= .若=2,则2x+5的平方根是.14.()(5a+1)=1﹣25a2,(a+3b)2= .15.当n是奇数时,(﹣a2)n= .16.写出所有比小且比大的整数.17.若a+b=0,则+= .(﹣)1996•(3)1996= .18.已知某数的两个平方根分别是a+3与2a﹣15,则a= ,这个数= .19.99×101=()×()= .20.若an=3,则bn=2,那么(ab)2n= ;若x2n=2,则(3x3n)2﹣4(x2)2n= .21.若m+4n﹣3=0,则2m•16n=;若5x﹣3y﹣2=0,则105x÷103y=.22.2100÷833=;2x﹣8=12,则2x﹣10= .23.长方形的长为(2a+3b),宽为(2a﹣3b),则长方形的面积为.24.已知x2﹣x+1=0,则x2+= .25.若+(3m﹣n)2=0,则m+n的立方根为.26.如果(x+4)(x+q)=x2+mx+24成立,那么m= ,q= .27.建筑工人李师傅想用钢材焊制一个面积为5平方米的正方形铁框,请你帮离师傅计算一下,他需要的钢材总长至少为米(精确到0.01).三、解答题(共56分)28.计算(1)+﹣(2)(x+3)(x﹣1)﹣x(x﹣2)+1(3)(﹣0.125)12×(﹣1)7×(﹣8)13×(﹣)9.(4)(m﹣2n)(m2+4n2)(m+2n)29.先化简再求值:3x(x2﹣x﹣1)﹣(x+1)(3x2﹣x),其中x=﹣.30.已知x是的整数部分,y是的小数部分,求的平方根.31.如果(x2﹣px+8)(x2﹣3x﹣q)的乘积中不含x2与x3项,求p,q的值.32.已知x,y为实数,且,求的值.33.已知m2+n2﹣6m+10n+34=0,求m+n.34.若A=是a+3b的算术平方根,B=是1﹣a2的立方根,求a与b的值.35.已知a,b,c实数在数轴上的对应点如图所示,化简.36.探索题图a是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图b的形状拼成一个正方形.(1)你认为图b中的影部分的正方形的边长等于多少?(2)请用两种不同的方法求图b中阴影部分的面积.方法1:方法2:(3)观察图b你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m﹣n)2,mn,(4)根据(3)题中的等量关系,解决如下问题:若a+b=7,ab=5,则(a﹣b)2= .20xx-20xx学年福建省××市××县稔田中学八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题:(每题3分,共30分)1.数3.14,,,0.323232…,,,,1+中,无理数的个数为()A.2个B.3个C.4个D.5个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:,,1+是无理数.故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.已知x3ym﹣1•xm+ny2n+2=x9y9,则4m﹣3n等于()A.8 B.9 C.10 D.11【考点】同底数幂的乘法;解二元一次方程组.【分析】先根据同底数幂乘法对等式左边进行计算,再根据相同字母的指数相等列出方程组,解出m、n的值,代入4m﹣3n求解即可.【解答】解:x3ym﹣1•xm+ny2n+2=xm+n+3ym+2n+1=x9y9,∴,解得,∴4m﹣3n=4×4﹣3×2=10.故选C.【点评】本题主要考查同底数幂乘法运算后根据指数相等列二元一次方程组求解,再代入求解代数式的值.3.若a为实数,则下列说法正确的是()A.|﹣a|是正数B.﹣|a|是负数C.是非负数D.|﹣a|永远大于﹣|a|【考点】实数.【分析】根据绝对值都是非负数,算术平方根是非负数,可得答案.【解答】解:A、a=0时,|﹣a|是非负数,故A错误;B、﹣|a|是非正数,故B错误;C、是非负数,故C正确;D、a=0时|﹣a|=﹣|a|,故D错误;故选:C.【点评】本题考查了实数,绝对值都是非负数,算术平方根是非负数.4.下列计算中,错误的有()①(3a+4)(3a﹣4)=9a2﹣4;②(2a2﹣b)(2a2+b)=4a2﹣b2;③(3﹣x)(x+3)=x2﹣9;④(﹣x+y)•(x+y)=﹣(x﹣y)(x+y)=﹣x2﹣y2.A.1个B.2个C.3个D.4个【考点】平方差公式.【专题】计算题.【分析】根据平方差公式:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数,结果是乘式中两项的平方差,即相同项的平方减去相反项的平方,对各选项计算后利用排除法求解.【解答】解:①应为(3a+4)(3a﹣4)=9a2﹣16,故本选项错误;②应为(2a2﹣b)(2a2+b)=4a4﹣b2,故本选项错误;③应为(3﹣x)(x+3)=9﹣x2,故本选项错误;④应为(﹣x+y)•(x+y)=﹣(x﹣y)(x+y)=﹣x2+y2,故本选项错误.所以①②③④都错误.故选D.【点评】本题主要考查平方差公式的具体应用,熟记公式结构是解题的关键.5.晓影设计了一个关于实数运算的程序:输入一个数后,输出的数总是比该数的平方小1,晓影按照此程序输入后,输出的结果应为()A.20xx B.20xx C.20xx D.20xx【考点】实数的运算.【专题】应用题.【分析】由于题目中“输出的数比该数的平方小1”可表示为:输出的结果=输入一个数的平方﹣1,由此即可求解.【解答】解:依题意得:()2﹣1=20xx.故选B.【点评】此题主要考查了实数的运算,解答本题的关键就是弄清楚题目给出的计算程序.6.(﹣3)20xx+(﹣3)20xx所的结果是()A.﹣3 B.﹣2×320xx C.﹣1 D.﹣320xx【考点】因式分解-提公因式法.【分析】通过提取公因式(﹣3)20xx进行因式分解,然后解答.【解答】解:原式=(﹣3)20xx(1﹣3)=﹣2×(﹣3)20xx=﹣2×320xx.故选:B.【点评】本题考查了因式分解﹣﹣提取公因式法.注意:负数的偶次方是正数.7.对于任意的整数n,能整除(n+3)(n﹣3)﹣(n+2)(n﹣2)的整数是()A.4 B.3 C.﹣5 D.2【考点】平方差公式.【分析】直接利用平方差公式计算,然后再合并同类项即可.【解答】解:(n+3)(n﹣3)﹣(n+2)(n﹣2),=(n2﹣9)﹣(n2﹣4),=n2﹣9﹣n2+4,=﹣5,故选C.【点评】本题考查了平方差公式的应用,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.8.若x2﹣7xy+M是一个完全平方式,那么M是()A.B.C.D.49y2【考点】完全平方式.【专题】常规题型.【分析】先根据已知两平方项与乘积二倍项确定出这两个数,再根据完全平方公式把另一个数平方即可.【解答】解:∵x2﹣7xy+M=x2﹣2×x•y+M,∴M=(y)2=y2.故选C.【点评】本题主要考查了完全平方式,根据已知平方项与乘积二倍项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.9.设a=,则实数a在数轴上对应的点的大致位置是()A.B.C.D.【考点】估算无理数的大小;实数与数轴.【分析】本题利用实数与数轴的关系解答,首先估计的大小,进而找到其在数轴的位置,即可得答案.【解答】解:a=,有3<a<4,可得其在点3与4之间,并且靠近4;分析选项可得B符合.故为B.【点评】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.10.如果(﹣am)n=amn成立,则()A.m是偶数,n是奇数B.m、n都是奇数C.m是奇数,n是偶数D.n是偶数【考点】幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:∵(﹣am)n=amn成立,∴n为偶数.故选D.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.二、填空:(每题2分,共34分)11.的平方根是±3.若x2=(﹣0.7)2,则x= ±0.7.【考点】算术平方根;平方根.【分析】根据平方根的定义,即可解答.【解答】解: =9,9的平方根是±3;若x2=(﹣0.7)2,x2=0.49,则x=±0.7,故答案为:±3,0.7.【点评】本题考查了平方根,解决本题的关键是熟记平方根的定义.12.的平方根是±2,的立方根是 2 .【考点】立方根;平方根;算术平方根.【分析】根据立方根和平方根的定义进行填空即可.【解答】解:∵=4,∴的643的平方根是±2,∵=8,∴的立方根是2,故答案为±2,2.【点评】本题考查了立方根、平方根以及算术平方根,由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.13.如果a2=1,则= 1或﹣1 .若=2,则2x+5的平方根是±.【考点】立方根;平方根.【分析】根据a2=1和=2,分别求得a和x,再求出和2x+5的平方根即可.【解答】解:∵a2=1,∴a=±1,∴当a=1时, =1,当a=﹣1时, =﹣1;∵=2,∴x+3=8,∴x=5,∴2x+5=15,∴2x+5的平方根为±.故答案为1或﹣1,.【点评】本题考查了立方根的定义,平方根的定义,熟记定义是解题的关键.14.(1﹣5a )(5a+1)=1﹣25a2,(a+3b)2= a2+6ab+9b2 .【考点】平方差公式;完全平方公式.【分析】分别利用平方差公式以及完全平方公式计算得出答案.【解答】解:∵1﹣25a2=(1+5a)(1﹣5a),∴(1﹣5a)(5a+1)=1﹣25a2,(a+3b)2=a2+6ab+9b2.故答案为:1﹣5a,a2+6ab+9b2.【点评】此题主要考查了平方差公式以及完全平方公式,正确应乘法公式是解题关键.15.当n是奇数时,(﹣a2)n= ﹣a2n .【考点】幂的乘方与积的乘方.【分析】直接利用幂的乘方运算法则求出答案.【解答】解:当n是奇数时,(﹣a2)n=﹣a2n.故答案为:﹣a2n.【点评】此题主要考查了幂的乘方运算,正确掌握运算法则是解题关键.16.写出所有比小且比大的整数2和3 .【考点】估算无理数的大小.【分析】先分别求出与在哪两个相邻的整数之间,依此即可得到答案.【解答】解:∵3<<4,1<<2,∴所有比小且比大的整数2,3,故答案为:2,3.【点评】本题主要考查了实数的大小比较,也考查了无理数的估算的知识,分别求出与在哪两个相邻的整数之间是解答此题的关键.17.若a+b=0,则+= 0 .(﹣)1996•(3)1996= 1 .【考点】立方根;幂的乘方与积的乘方.【分析】根据立方根的定义,即可解答.【解答】解:∵a+b=0,∴a,b互为相反数,∴+=0;(﹣)1996•(3)1996==1,故答案为:0,1.【点评】本题考查了立方根,解决本题的关键是熟记立方根的定义.18.已知某数的两个平方根分别是a+3与2a﹣15,则a= 4 ,这个数= 49 .【考点】平方根.【分析】根据平方根的性质建立等量关系,求出a的值,再求出这个数的值.【解答】解:由题意得:a+3+(2a﹣15)=0,解得:a=4,∴(a+3)2=72=49.故答案为:4,49.【点评】本题主要考查了平方根的性质,其中解题关键是利用正数的两个平方根互为相反数的性质求解.19.99×101=(100﹣1 )×(100+1 )= 9999 .【考点】平方差公式.【分析】直接利用平方差公式进行计算得出答案.【解答】解:99×101=(100﹣1)×(100+1)=9999.故答案为:9999.【点评】此题主要考查了平方差公式的应用,正确应用平方差公式是解题关键.20.若an=3,则bn=2,那么(ab)2n= 36 ;若x2n=2,则(3x3n)2﹣4(x2)2n= 56 .【考点】幂的乘方与积的乘方.【分析】结合已知将原式利用积的乘方运算法则和幂的乘方运算法则变形,进而求出答案.【解答】解:∵an=3,bn=2,∴(ab)2n=(an)2(bn)2=32×22=9×4=36;∵x2n=2,∴(3x3n)2﹣4(x2)2n=9(x2n)3﹣4×(x2n)2=9×23﹣4×22=56.故答案为:36,56.【点评】此题主要考查了幂的乘方运算和积的乘方运算,正确掌握运算法则是解题关键.21.若m+4n﹣3=0,则2m•16n=8 ;若5x﹣3y﹣2=0,则105x÷103y=100 .【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据幂的乘方,可得同底数幂的乘法,根据同底数幂的乘法底数不变指数相加,可得答案;根据同底数幂的除法底数不变指数相减,可得答案.【解答】解:由m+4n﹣3=0,得m+4n=3.2m•16n=2m•(24)n=2m•24n=2m+4n=23=8;由5x﹣3y﹣2=0,得5x﹣3y=2.105x÷103y=105x﹣3y=102=100.故答案为:8,100.【点评】本题考查了同底数幂的除法,利用幂的乘方得出同底数幂的乘法是解题关键.22.2100÷833= 2 ;2x﹣8=12,则2x﹣10= 3 .【考点】同底数幂的除法.【分析】根据幂的乘方底数不变指数相乘,可得同底数幂的除法,根据同底数幂的除法,可得答案;根据同底数幂的除法,可得答案.【解答】解:2100÷(23)33=100÷299=2,2x﹣10=2x﹣8﹣2=2x﹣8÷22=12÷4=3;故答案为:2,3.【点评】本题考查了同底数幂的除法,利用幂的乘方得出同底数幂的除法是解题关键.23.长方形的长为(2a+3b),宽为(2a﹣3b),则长方形的面积为4a2﹣9b2 .【考点】平方差公式.【分析】利用长方形面积公式结合平方差公式计算得出答案.【解答】解:∵长方形的长为(2a+3b),宽为(2a﹣3b),∴长方形的面积为:(2a+3b)(2a﹣3b)=4a2﹣9b2.故答案为:4a2﹣9b2.【点评】此题主要考查了平方差公式,正确应用平方差公式是解题关键.24.已知x2﹣x+1=0,则x2+= 3 .【考点】一元二次方程的解.【分析】将方程x2﹣x+1=0,两边同时除以x,可得出x+=,再平方可得出x2+的值.【解答】解:∵x2﹣x+1=0,∴x+=(方程两边同时除以x),故可得则x2+=(x+)2﹣2=3,故答案为:3.【点评】此题考查了完全平方式的知识,将方程变形得出x+=是解答本题的关键,难度一般.25.若+(3m﹣n)2=0,则m+n的立方根为 2 .【考点】非负数的性质:算术平方根;非负数的性质:偶次方;立方根.【分析】根据绝对值和偶次方是非负数和几个非负数的和为0的性质得到m﹣2=0,3m﹣n=0,易得m=2,n=6,则m+n=8,然后根据立方根的定义计算8的立方根即可.【解答】解:∵+(3m﹣n)2=0,∴m﹣2=0,3m﹣n=0,∴m=2,n=6,∴m+n=2+6=8,∴m+n的立方根是2,故答案为:2.【点评】本题考查了立方根的定义:若一个数的立方等于a,那么这个数叫a的立方根,记作.也考查了绝对值和偶次方是非负数以及几个非负数的和为0的性质.26.如果(x+4)(x+q)=x2+mx+24成立,那么m= 10 ,q= 6 .【考点】多项式乘多项式.【分析】直接利用多项式乘以多项式运算法则得出关于m,q的等式进而求出答案.【解答】解:∵(x+4)(x+q)=x2+mx+24成立,∴x2+qx+4x+4q=x2+mx+24,∴4q=24,q+4=m,解得:q=6,m=10.故答案为:10,6.【点评】此题主要考查了多项式乘以多项式,正确把握多项式乘法法则是解题关键.27.建筑工人李师傅想用钢材焊制一个面积为5平方米的正方形铁框,请你帮离师傅计算一下,他需要的钢材总长至少为8.94 米(精确到0.01).【考点】算术平方根.【分析】先根据面积求出正方形的边长,再求出周长即可解答.【解答】解:正方形的边长为:,正方形的周长为:4≈8.94(米),故答案为:8.94.【点评】本题考查了算术平方根,解决本题的关键是熟记算术平方根的定义.三、解答题(共56分)28.计算(1)+﹣(2)(x+3)(x﹣1)﹣x(x﹣2)+1(3)(﹣0.125)12×(﹣1)7×(﹣8)13×(﹣)9.(4)(m﹣2n)(m2+4n2)(m+2n)【考点】整式的混合运算;实数的运算.【专题】计算题;整式.【分析】(1)原式利用算术平方根及立方根定义计算即可得到结果;(2)原式利用单项式乘以多项式,以及多项式乘以多项式法则计算,去括号合并即可得到结果;(3)原式结合后,利用积的乘方逆运算法则变形,计算即可得到结果;(4)原式结合后,利用平方差公式化简即可得到结果.【解答】解:(1)原式=﹣2+0﹣=﹣2;(2)原式=x2﹣x+3x﹣3﹣x2+2x+1=4x﹣2;(3)原式=(0.125×8)12×(﹣8)×(×)7×(﹣)2=﹣;(4)原式=(m2﹣4n2)(m2+4n2)=m4﹣16n4.【点评】此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.29.先化简再求值:3x(x2﹣x﹣1)﹣(x+1)(3x2﹣x),其中x=﹣.【考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式利用单项式乘以多项式,以及多项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=3x3﹣3x2﹣3x﹣3x3+x2﹣3x2+x=﹣5x2﹣2x,当x=﹣时,原式=﹣+1=﹣.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.30.已知x是的整数部分,y是的小数部分,求的平方根.【考点】估算无理数的大小.【分析】首先可以估算的整数部分和小数部分,然后就可得的整数部分是3,小数部分分别是﹣3;将其代入求平方根计算可得答案.【解答】解:由题意得:x=3,y=﹣3,∴y﹣=﹣3,x﹣1=2,∴(y﹣)x﹣1=9,∴(y﹣)x﹣1的平方根是±3.【点评】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法;估算出整数部分后,小数部分=原数﹣整数部分.31.如果(x2﹣px+8)(x2﹣3x﹣q)的乘积中不含x2与x3项,求p,q的值.【考点】多项式乘多项式.【分析】首先利用多项式乘以多项式运算法则化简,进而得出含x2与x3的项的系数为0,进而求出答案.【解答】解:∵(x2﹣px+8)(x2﹣3x﹣q)的乘积中不含x2与x3项,∴x4﹣3x3﹣qx2﹣px3+3px2+pqx+8x2﹣24x﹣8q=x4﹣(3+p)x3﹣(q﹣3p﹣8)x2+(pq﹣24x)﹣8q即3+p=0,q﹣3p﹣8=0,解得:p=﹣3,q=﹣1.【点评】此题主要考查了多项式乘以多项式,正确把握多项式乘法法则是解题关键.32.已知x,y为实数,且,求的值.【考点】二次根式有意义的条件.【分析】已知根号下为非负数,所以在中,可以得到x=9,从而可得y的值,代入即可.【解答】解:∵有意义,∴,解得x=9,所以y=4,所以, =3+2=5.【点评】本题考查的是对二次根式意义的理解和化简求值,要求学生熟练掌握应用.33.已知m2+n2﹣6m+10n+34=0,求m+n.【考点】完全平方公式;非负数的性质:偶次方.【分析】把原式化成(m﹣3)2+(n+5)2=0,得出m﹣3=0,n+5=0,求出m、n的值,代入求出即可.【解答】解:∵m2+n2﹣6m+10n+34=0,∴m2﹣6m+9+n2+10n+25=0,∴(m﹣3)2+(n+5)2=0,m﹣3=0,n+5=0,m=3,n=﹣5,∴m+n=3+(﹣5)=﹣2.【点评】本题考查了完全平方公式,整式的混合运算的应用,主要考查学生的化简能力和计算能力.34.若A=是a+3b的算术平方根,B=是1﹣a2的立方根,求a与b的值.【考点】立方根;算术平方根.【分析】根据算术平方根和立方根的定义,利用根指数列出方程组求解即可.【解答】解:由题意得:,解得.故a的值为3,b的值为2.【点评】本题考查了立方根的定义,算术平方根的定义,熟记定义并利用根指数列出方程是解题的关键.35.已知a,b,c实数在数轴上的对应点如图所示,化简.【考点】立方根;实数与数轴.【分析】首先根据数轴上的各点的位置,可以知道a<0,b<0,c>0,且|a|>|b|>c,接着有a﹣b<0,c﹣a>0,b﹣c<0,由此即可化简绝对值,最后合并同类项即可求解.【解答】解:有数轴可知,a<0,b<0,c>0,∴|a|>|b|>c,a﹣b<0,c﹣a>0,b﹣c<0,∴=﹣a﹣(b﹣a)+(c﹣a)+(c﹣b)=﹣a﹣b+a+c﹣a+c﹣b=2c﹣2b﹣a.【点评】本题考查实数与数轴上的点的对应关系,在原点O左边的数小于0,右边的数大于0,同时也考查了对带有绝对值和根号的代数式的化简.36.探索题图a是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图b的形状拼成一个正方形.(1)你认为图b中的影部分的正方形的边长等于多少?m﹣n(2)请用两种不同的方法求图b中阴影部分的面积.方法1:(m+n)2﹣4mn方法2:(m﹣n)2(3)观察图b你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m﹣n)2,mn,(4)根据(3)题中的等量关系,解决如下问题:若a+b=7,ab=5,则(a﹣b)2= 29 .【考点】完全平方公式的几何背景.【专题】计算题.【分析】(1)观察得到长为m,宽为n的长方形的长宽之差即为阴影部分的正方形的边长;(2)可以用大正方形的面积减去4个长方形的面积得到图b中的阴影部分的正方形面积;也可以直接利用正方形的面积公式得到;(3)利用(2)中图b中的阴影部分的正方形面积得到(m﹣n)2=(m+n)2﹣4mn;(4)根据(3)的结论得到(a﹣b)2=(a+b)2+4ab,然后把a+b=7,ab=5代入计算.【解答】解:(1)图b中的阴影部分的正方形的边长等于长为m,宽为n的长方形的长宽之差,即m﹣n;(2)方法一:图b中的阴影部分的正方形面积等于大正方形的面积减去4个长方形的面积,即(m+n)2﹣4mn;方法二:图b中的阴影部分的正方形的边长等于m﹣n,所有其面积为(m﹣n)2;(3)(m﹣n)2=(m+n)2﹣4mn;(4)∵(a﹣b)2=(a+b)2﹣4ab,当a+b=7,ab=5,∴(a﹣b)2=72﹣4×5=29.故答案为m﹣n;(m+n)2﹣4mn;(m﹣n)2;29.【点评】本题考查了完全平方公式的几何背景:利用几何图形之间的面积关系得到完全平方公式.。
八年级(上)第一次月考数学试卷(勾股定理与实数)

八年级(上)第一次阶段考(1.勾股定理与2.实数)(卷面总分:150分;测试时间:90分钟)“如果你希望成功,当以恒心为良友,以细心为兄弟”一、选择题(本大题共8小题,每题4分,计32分) 1、如图(1),带阴影的矩形面积是( )平方厘米 A .9 B .24 C .45 D .512、观察下列几组数据:(1) 8, 15, 17;(2) 7, 12, 15;(3)12, 15, 20; (4) 7, 24, 25,(5);51,41,31===c b a 其中能作为直角三角形三边长的有( )组 A .1 B .2 C .3 D .4 3、如果梯子的底端离建筑物5米,13米长的梯子可以达到该建筑物的高度是 ( ) A. 12米 B. 13米 C. 14米 D. 15米 4、将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .无法判断 5、下列说法正确的是 ( )A .带根号的数都是无理数B .不带根号的数都是有理数C .无理数是无限小数D .无限小数是无理数 6、下列说法正确的是 ( )A .一个数的平方根互为相反数B .平方根等于本身的数是0和1C .立方根等于本身的数是0和1D .算术平方根等于本身的数是0和1 7、下列计算或命题:①±3都是27的立方根;②1251144251=;③16的算术平方根是2;④8)8(33-=-;⑤6)6(2-=-,其中正确的个数有( )A 、1个B 、2个C 、3个D 、4个 8、下列说法正确的是( ) A .3515= B .2095141251161=+=+C .22)2(22==- D .()232)3(-⨯-=-⨯-二、填空题(本大题共6小题,每题4分,计24分) 9、下列各数:①12-,②0,③722,④3125-,⑤1010010001.0…(相邻两个1之间0的个数逐次增加1),⑥210-,⑦ 2π-,无理数有 _______ (填序号)10、3641-的相反数是______,-23的倒数是______.11、估算:50= (误差小于1);12、如右图,64、400分别为所在正方形的面积,则图中字母A 所代表的正方形面积是 。
福建省宁德市古田县新城初级中学八年级数学上学期期末考试试题(无答案) 北师大版

福建省宁德市古田县新城初级中学2014-2015学年八年级数学上学期期末考试试题( 满分:100分 时间:90分钟 ) 一、选择题:(每小题3分,共30分)题号 1 2 34 5 6 7 8 910 答案1.已知直角三角形的斜边长为13,一直角边的长为5,则另一直角边的长为( )A .8B .12C .8或12D .19 2.下列算式错误的是( )A. 2.004.0±=±B. 64 = 8C. -100= -10D. 38= -23. 直角坐标系中,点A(-3,4)与点B(-3,-4)关于( )A.原点中心对称B.y 轴轴对称C.x 轴轴对称D.以上都不对 4.下列说法正确的是( )A .16是无理数B .2π是有理数 C .0.618是无理数 D .32是有理数5.如图,已知∠1+∠2=180º,∠3=75º,那么∠4的度数是( )A . 75º B. 45º C. 105º D. 135º6. 一次函数b kx y +=,经过(1,1),(2,-4),则k 与b 的值为( )A. ⎩⎨⎧-==2,3b kB. ⎩⎨⎧=-=4,3b kC. ⎩⎨⎧=-=6,5b kD. ⎩⎨⎧-==5,6b k7. 年龄 18 19 20 21 22 人数 1 4 3 2 2则这12名队员年龄的众数、中位数分别是( )A. 19,20B. 19,19C. 19,20.5D. 20,19 8.直线 y=2x+6 与y 轴交点的坐标是( )A .(0,-3)B .(0,6)C .(6,0) D.(-3,0)9. 已知正比例函数kx y =(0≠k )的函数值y 随x 的增大而减小,则一次函数k x y +=的图象大致是( ).(第5题A. B. C. D.10.我校运动会运动员分组进行比赛,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为( ) A 、⎩⎨⎧=++=x y x y 5837B 、⎩⎨⎧=-+=x y x y 5837C 、⎩⎨⎧+=-=5837x y x yD 、⎩⎨⎧+=+=5837x y x y二、填空题:(每小题2分,共12分) 11. 9的平方根是 .12. 如图,已知直线y=ax+b 和直线y=kx 交于点P (-4,-2),则关于x ,y 的二元一次方程组,.y ax b y kx =+⎧⎨=⎩的解是_____________.13. 点P (1,-2)到y 轴的距离为 个单位. 14. 数据98,100,101,102,99的方差是.15. 命题:“对顶角相等”的题设为 ,结论为16. 我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 和b ,那么(a +b )2的值为________ 三、计算题:(每小题4分,共8分) 17. 计算: 32712+18. 解方程组: ⎩⎨⎧-=+=-.345,52y x y x(第12题图)xyxyxy xyOOOO四、解答题:19. (本小题满分5分)如图,AD=CD,AC平分∠DAB,求证DC∥AB.20.(本小题满分7分)我校组织了安全知识竞赛活动,三个年级根据初赛成绩分别选出了10名同学参加决赛(满分为100分) ,成绩如下表所示:(1) 请你填表:(2) 请从以下两个不同的角度对三个年级的决赛成绩进行分析:①从平均数和众数相结合看(分析哪个年级成绩好些): ; ②从平均数和中位数相结合看(分析哪个年级成绩好些): .(3) 如果在每个年级参加决赛的选手中分别选出3人参加总决赛,你认为哪个年级的实力更强一些.请说明理由。
八年级数学上册第一次月考试题试题

2021--2021学年八年级第一学期第一次月考数学试卷考生注意:考试时间是是90分钟。
满分是100分.一、认真选一选(本大题一一共10个小题,每一小题2分,一共20分.每一小题所给的四个选项里面,只有—个是正确的)1.如图,两个三角形是全等的,其中A和D是对应顶点,AC和DF是对应边,那么这两个三角形之间的全等关系可以表示为 ( )A.△ABC≅△EFD B.△ABC≅△FEDC.△ABC≅△DFE D.△ABC≅△DEF2.以下条件中,不能断定三角形全等的是 ( )A.三条边对应相等 B.三个角对应相等C.两角和其中一角的对边对应相等 D.两角和它们的夹边对应相等3.,如图,AB=CB,∠1=∠2,∠ADC=120︒,AC、BD相交于E,那么∠3的度数为( )A.15︒ B.30︒ C.60︒ D.45︒4.在AABC内部取一点P使得点P到△ABC的三边间隔相等,那么点P应是AA.BC的哪三条线交点 ( )A高 B.角平分线 C.中线 D.垂直平分线5.,如图,△ABC中,AB=AC,AD是角平分线,BE=CF,那么以下说法正确的有几个( )(1)AD平分∠EDF;(2)△EBD≅△FCD;(3)BD=CD;(4)AD⊥BC.A.1个 B.2个 C.3个 D.4个6.使两个直角三角形全等的条件是 ( )A.两直角边对应相等 B.一锐角对应相等C.两锐角对应相等 D.斜边相等7,在AABC和△A’B’C’中,假如AB=A’B’,∠B=∠B’,AC=A’C’,那么这两个三角形( ) A.全等 B.不一定全等 C.不全等 D.面积相等,但不全等8.如图,OA=OB,OC=OD,∠O=60︒,∠C=25︒,那么∠BED的度数是 ( )A.70︒ B.85︒C.65︒ D.以上答案都不对9.如图,∠1=∠2,BC=EF,欲证△ABC≅ADEF,那么须补充一个条件是 ( )A.AB=DE B.∠ACE=∠DFBC.BF=EC D.∠ABC=∠DEF10.如图,△ABC中,∠C=90︒,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6cm,那么△DEB的周长为 ( )A.4 B.6 C.10 D.以上全不对二、仔细填—填(本大一共8个小题,每,J\题2分,一共16分)11.如图,假如△AOC≅△BOD,那么对应边是_________________,对应角是______________。
2014-2015年福建省宁德市古田县新城中学八年级(上)数学期中试卷及参考答案
2014-2015 学年福建省宁德市古田县新城中学八年级 (上)期中数学试卷
参考答案与试题解析
一、选择题(本大题共 10 个小题,每小题 4 分,共 40 分. ) 1. (4 分)在平面直角坐标系中,下面的点在第一象限的是( A. (1,2) B. (﹣2,3) C. (0,0) D. (﹣3,﹣2) 【解答】解:因为第一象限的条件是:横坐标是正数,纵坐标也是正数,而各选 项中符合纵坐标为正,横坐标也正的只有 A(1,2) . 故选:A. )
12. (4 分)在下列各数 间依次增加一个 0) ,
共七个中,无理数的个数是
13. (4 分) 已知一次函数 y=2x+1, 则 y 随 x 的增大而
14. (4 分)学生甲错将 P 点的横坐标与纵坐标的次序颠倒,写成(3,2) ,学生 乙将 Q 点的坐标写成(﹣2,﹣3) ,则 P 点和 Q 点的位置关系是 15. (4 分)已知正比例函数 y=﹣kx 图象过点(﹣3,9) ,则当 x=2 时 y= 16. (4 分)已知 +(y﹣2013)2=0,则 xy= . . .
17. (4 分)如图,已知棋子“车”的坐标为(﹣2,3) ,棋子“马”的坐标为(1,3) , 则棋子“炮”的坐标为 .
18. (4 分)如图,矩形 OABC 的边 OA 长为 2,边 AB 长为 1,OA 在数轴上,以 原点 O 为圆心,对角线 OB 的长为半径画弧,交数轴上原点右边于一点,则这个 点表示的实数是 .
4. (4 分)下列说法正确的是(
)
A.无限小数是无理数 B.不循环小数是无理数 C.无理数的相反数还是无理数 D.两个无理数的和还是无理数 【解答】解:A、0.333…是无限小数也是有理数,故选项错误; B、0.3030030003 就是有理数,故选项错误; C、无理数的相反数还是无理数,故选项正确;
初二上册第一次月考数学试题
1、若a、b互为相反数,c、d互为倒数,m的绝对值是2,求(a + b)/m + m - cd的值。
A. 3B. 1C. -1D. -3(答案)B解析:由于a、b互为相反数,所以a + b = 0;c、d互为倒数,则cd = 1;m的绝对值是2,意味着m可以是2或-2。
但当m为2或-2时,(a + b)/m均为0,m - cd分别为1或-3,所以整体表达式值为1。
2、下列哪个选项中的两个角是互补角?A. 60°和30°B. 90°和100°C. 75°和105°D. 45°和45°(答案)C解析:互补角的定义是两个角的度数和为180°。
只有75°和105°相加等于180°,所以选C。
3、下列哪个数既是2的倍数又是3的倍数?A. 12B. 15C. 18D. 21(答案)C解析:一个数如果既是2的倍数又是3的倍数,那它必须是6的倍数。
选项中只有18能被6整除。
4、一个正方形的边长为a,如果它的边长增加2,面积将增加:A. 2B. 4aC. 4a + 4D. a2 + 4(答案)C解析:原面积为a2,边长增加2后,新面积为(a+2)2 = a2 + 4a + 4,面积增加了4a + 4。
5、下列哪个不等式表示x大于-5且小于3?A. x > -5B. x < 3C. -5 < x < 3D. x > -5 或 x < 3(答案)C解析:表示x同时大于-5且小于3的不等式应写为-5 < x < 3。
6、若一个三角形的两边长分别为5和8,则第三边的长度可能是:A. 2B. 3C. 12D. 14(答案)C解析:根据三角形三边关系,任意两边之和大于第三边,任意两边之差小于第三边。
所以第三边长度应在3(8-5)和13(5+8)之间,只有12满足条件。
八年级(上)数学第一次月考试卷(附答案)
(第6小题)(第3小题)CBA2020-2021学年度(上)八年级数学第一次月考试卷一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项) 1、下列各数是无理数的是( )A 、73 B 、4 C 、5 D 、••10.2 2、下列说法错误的是( )A 、1的平方根是1B 、-1的立方根是-1C 、2是2的算术平方根D 、0是0的平方根3、如图,在Rt △ABC 中,∠B=90°,以AC 为直径的圆恰好过点B .若AB=8,BC=6,则 阴影部分的面积是( ) A 、24-100πB 、48-100πC 、24-25πD 、48-25π4、如图,一圆柱高8㎝,底面半径2㎝,一只蚂蚁从A 点爬到点B 处 吃食,要爬行的最短路程(π取3)是( ) A 、20㎝ B 、10㎝ C 、14㎝ D 、无法确定5、已知实数086=-+-y x y x 满足、,那么以y x 、的值为两边长作直角三角形, 它的第三边长为( )A 、10B 、72C 、10或72D 、以上均不对 6、如图,已知△ABC 中,∠ABC=90°,AB=BC ,三角形的顶点在相互平行的三条直线l 1、l 2、l 3上,且相邻两平行线之间的距离均为1,则AC 的长是( )A 、5B 、6C 、3D 、10二、填空题(本大题共6小题,每小题3分,共18分) 7、6的相反数是 .8、81的平方根是 .9、在Rt △ABC 中,斜边AB =2,则AB 2+BC 2+CA 2= . 10、若n 20是整数,则正整数n 的最小值为 .11、如图,数轴上有三点A 、B 、C,其中点A 表示的数是2-,点B 表示的数是1,且AB=BC,则点C表示的数是 .12、锐角等腰三角形的腰长为10㎝,一边上的高为8㎝,则这个锐角等腰三角形的底边长是㎝.三、(本大题共5小题,每小题6分,共30分)13、(1)计算: 331327+-(2)如图,已知Rt ∆ABC,∠ACB=90︒,AC=15和BC=20,求斜边上的高CD 的长.14、计算: 22832--15、计算 :()()()2323522-+--16、求等式 ()1612=-x 中x 的值.17、如下图,正方形网格中的每个小正方形边长都是1,任意连结这些小正方形的顶点,可得到一些线段.请按要求作三角形(要求三角形各顶点落在小正方形的顶点上): (1)在图1中作ABC Rt ∆,使三边长都为有理数;(第4小题)BAADCB0 B C-2 1 3 42•••2-A(2)在图2中作ABC ∆,使得三边边长分别是5、10、17.四、(本大题共3小题,每小题8分,共24分)18、若12+x 的平方根是±5,52-+y x 的立方根是3,求22y x +的平方根.19、已知10的整数部分是a,小数部分是b ,求31a ()310+b 的值.20、两张同样大小的长方形纸片,每张分成7个大小相同的小长方形,且每个小长方形的宽均为a(如图),如图放置,重合的顶点记作A ,顶点C 在另一张纸的其中一条分隔线DE 上,若 262=CD ,求AB 的长是多少?五、(本大题共2小题,每小题9分,共18分)21、如图,在长方形ABCD 中,AD =8,CD =6,将长方形ABCD 沿CE 折叠后,使点D 恰好落 在对角线AC 上的点F 处. (1)求EF 的长; (2)求梯形ABCE 的面积.22、观察下列一组式子的变形过程,然后回答问题:①()1212121212)12)(12()12(11212-=--=--=-+-⨯=+;②()()();2323232323)23)(23(23123122-=--=--=-+-⨯=+③()()()4545454545)45)(45(45145122-=--=--=-+-⨯=+.(1)561+= ;991001+= ;(2)请你用含n (n 为正整数)的关系式表示上述各式子的变形规律;(3)利用上面的结论,求下列式子的值.99100198991341231121++++++++++六、(本大题共1小题,共12分)23.已知:如图,在Rt △ABC 中,∠C=90°,AB=5cm ,AC=3cm ,动点P 从点B 出发沿射线BC 以1cm/s 的速度移动,设运动的时间为t 秒. (1)求BC 边的长;(2)当△ABP 为直角三角形时,求t 的值; (3)当△ABP 为等腰三角形时,求t 的值.图2DEa aa a a a a图12020-2021学年度(上)八年级数学第一次月考参考答案一.选择题1.C2.A3.C4.B5.C6.D 二.填空题7. 6- 8. 3± 9. 8 10. 5 11. 22+ 12. 12或 5413.(1) ………3分(2)解:,625201522222=+=+=∆BC AC AB ABC Rt 中,在25=∴AB CD CD AB BC AC SABC2521201521,2121⨯=⨯⨯⋅=⋅=∴∆即 )(12cm CD =∴ ………6分 14. 0………6分 15. 548-………6分16. 35-==x x 或 ………6分(写对1个得3分) 17.………3分………6分18. 解:由题意得32352,)5(12=+-±=+y x x4,12==∴y x………4分1044122222±=+±=+±∴y x ………8分19. 解:由题意得310,3-==b a………4分1910)310)(310(331)310(31=-=-+⨯=+∴b a………8分 20. 解:由题意得AD=6a,AC=7a26)6(7,22222=-=-∆a a CD AD AC ACD )即(中,在2=∴a 6分 277==∴a AB ………8分21. 解:设DE=x ,则AE=8-x ,由折叠性质得,EF=DE=x ,CF=CD=6,则AE=8-x 在Rt ACD ∆中,1006822222=+=+=CD AD AC 10=∴AC 4610=-=∴AF 在RT AEF ∆,222)8(4x x -=+ 533==∴=∴AE EF x ,………6分396)85(21=⨯+=∴ABCE S 梯形 ………9分22. (1)99100;56--………2分 (2)n n nn -+=++111………5分(3)99-10098-993-42-31-2+++++=解:原式1001-+= 9101-=+= ………9分23.(1)在Rt △ABC 中,BC 2=AB 2-AC 2=52-32=16,∴BC=4(cm );………3分(2)由题意知BP=tcm ,①如图①,当∠APB 为直角时,点P 与点C 重合,BP=BC=4cm ,即t=4s ; ②如图②,当∠BAP 为直角时,BP=tcm ,CP=(t-4)cm ,AC=3cm , 在Rt △ACP 、Rt △BAP 中,由勾股定理得AP 2=32+(t-4)2225-=t ,解得:t=425故当△ABP 为直角三角形时,t=4s 或t=s425………7分32图1B C A图2ABC(3)①如图③,当AB=BP时,t=5s;………8分②如图④,当AB=AP时,BP=2BC=8cm, t=8s;………9分③如图⑤,当BP=AP时,AP=BP=tcm,CP=(4-t)cm,AC=3cm,在Rt△ACP中,AP2=AC2+CP2,即t2=32+(4-t)2,25解得:t=825………12分综上所述:当△ABP为等腰三角形时,t=5s或t=8s或t=s8。
福建省宁德市霞浦县2017_2018学年八年级数学上学期第一次月考试题无答案新人教版20171220
霞浦2017—2018学年上学期月考八年级数学试题(全卷满分100分,考试时间90分钟)一、选择题(本大题10小题,每题3分,共30分)221、在12 3 2,0, , 125,0.1010010001, 10 ,0.3,中,无理数有7 2()个A.1个B.2个C.3个D.4个2、下列说法正确的是()A.若a、b、c是△ABC的三边,则a2+b2=c2B.若a、b、c是Rt△ABC的三边,则a2+b2=c2C.若a、b、c是Rt△ABC的三边,A90,则a2+b2=c2D.若a、b、c是Rt△ABC的三边,C90,则a2+b2=c23、如图,以三角形三边为直径向外作三个半圆,若较小的两个半圆面积之和等于较大的半圆面积,则这个三角形是( ).A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形或钝角三角形4、与数轴上的点一一对应的数是( ).A. 整数B. 有理数C. 无理数D. 实数5、下列说法中正确的是().A.1的立方根是±1B.负数没有立方根C.2的立方根是 2D.任何实数都有一个立方根6、一个直角三角形中,两直角边长分别为3和4,下列说法正确的是()A、斜边长为25B、三角形周长为25C、斜边长为5D、三角形面积为207、估算20 的值()A、在2与3之间B、在3与4之间C、在4与5之间D、在5与6之间8、36 平方根是( ).A、±6B、6C、 6D、± 69、下列式子中,属于最简二次根式的是()- 1 -A、9B、7C、20D、1 310、两只小鼹鼠在地下从同一处开始打洞,一只朝北面挖,每分钟挖8 cm,另一只朝东面挖,每分钟挖6 cm,10分钟之后两只小鼹鼠相距().A、1 00cmB、50c mC、140cmD、80cm二、填空题(本大题6小题,每题2分,共12分)11、一个三角形的三边分别为5,12,13,则它的面积是。
12、8的立方根是__ _____ _,25 的算术平方根是______.13、直角三角形两直角边长分别为6和8,则斜边上的高为_________14、当x满足时,x 2 在实数范围内有意义.15.通过估算比较多大小:(1)10 3_____0 ;(2)3 0.2 ______ 0.2 .16、已知y x 4 4 x3,则xy=三、解答题(共58分)17、计算:(本大题3小题,每题5分,共15分)(1)(2)3 8 5 32 50 27312(3)( 13 3)( 13 3)18.(8分)(1)如图,每个小正方形的边长是1,在图中画出①一个面积是2的直角三角形;②一个面积是2的正方形;(两个面积部分涂上阴影)第25 题图- 2 -(2)请在同一个数轴上用尺规作出2和5的对应的点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福建省宁德市古田县新城初级中学2014-2015学年八年级数学上学
期第一次月考试题
一、填空题 (每题2分,共24分) 1、|23-|=____________ 2.下列各数:①12
-,②0,③722
,④
3
125-,⑤1010010001.0…(相邻两个1
之间0的个数逐次增加1),⑥2
10-,⑦ 2π
-
,无理数有 ______(请填写序号)
3.一艘船以16千米/时的速度离开港口向东北方向航行,另一艘船同时离开港口以12千米/时的速度向东南方向航行,它们离开港口半小时后相距 千米。
4.一个三角形三边满足(a+b)2-c 2
=2ab, 则这个三角形是 三角形 5.估算:
≈_____ 。
(精确到0.1)
6.如图1, 64、400分别为所在正方形的面积,则正方形A 的面积是 。
8.在△ABC 中,∠C =90°,周长为60,斜边与一直角边比是13∶5,则这个三角形斜边是___________
9.已知直角三角形的三边长为6、8、x ,则以x 为边长的正方形的面积为____ 10.已知一个正数的两个平方根分别是a +3与2a -15,则这个正数为_____ 11.已知实数
、满足170a b -++=,则a+b=___________
12.如图,如果以正方形ABCD 的对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去…,已知正方形ABCD 的面积1S 为1,按上述方法所作的正方形的面积依次为23S S ,,…,S n (n 为正整数),那么第8个正方形的面积8S =_______.
二、选择题 (每题3分,共24分)
13.下列说法错误的是( )
A.(-4)2的平方根是4
B. –1的立方根是-1
C. 是2的平方根
D. 5是25的算术平方根
14.-27的立方根与81的算术平方根的和是()
A.0 B.6 C.6或-12 D.0或6 15.下列各式中正确的是()
A、 B、 C、 D、
16.已知一直角三角形的木版,三边的平方和为1800cm2,则斜边长为().
A.80cm B.30cm C.90cm D.120cm.
17.下列数组中,不是勾股数的是()
A. 3、4、5
B. 9、12、15
C. 7、24、25
D. 12、18、22 18.若a2=4,b3=27且则的值为()
A. B. C. D.
一、填空题:本大题共11小题,每小题2分,共24分,把答案填写在横线上.
1. 2. 3. 4. 5. 6.
7. 8. 9. 10. 11. 12.
二、选择题:本大题共8小题,每小题3分,共24分)
题号13 14 15 16 17 18 19 20 答案
三、解答题(共52分)
1、计算题(共16分)
(1)(2)
(3)(4)
2.(4分).已知(x+1)2-1=24,求x的值。
3.(5分)如图,这是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4 m的半圆,其边缘AB=CD=20 m,点E在CD上,CE=2 m,一滑行爱好者从A点到E点,则他滑行的最短距离是多少?(边缘部分的厚度可以忽略不计,结果取整数)。
4.(5分)11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:
“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30米,另外一棵高20米;两棵
棕榈树的树干间的距离是50米,每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕
榈树间的水面上游出一条鱼,它们立刻以相同的速度飞去抓鱼,并且同时到达目标.问这
条鱼出现的地方离比较高的棕榈树的树跟有多远?
5.(5分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,
以格点为顶点,分别按下列要求画三角形:
(1)使三角形的三边长分别为2,3,13(在图①中画出一个);(2分)
(2)使三角形为钝角三角形且面积为4(在图②中画出一个),并计算出所画三角形的周长。
(3分)。
6.(5分)如图所示,AD=4,CD=3,∠ADC=90°,AB=13,BC=12,求该图形的面积。
7.(6分)如下图,折叠长方形的一边AD,使点D落在BC边上的点F处,BC=10 cm,AB =8 cm,求:(1)EC的长;(2)AE的长.
8.(6分)如图,某沿海开放城市A接到台风警报,在该市正南方向100km的B处有一台风
中心,沿BC方向以20km/h的速度向D移动,已知城市A到BC的距离AD=60km,那么台
风中心经过多长时间从B点移到D点?如果在距台风中心30km的圆形区域内都将有受到
台风的破坏的危险,正在D点休闲的游人在接到台风警报后的几小时内撤离才可脱离危
险?。