《步步高》2014届高考数学大一轮复习(人教A版)专题课件:专题二 利用导数研究函数的性质(共75张PPT)

合集下载

【浙江专用(理)】【步步高】2014届高三数学大一轮复习讲义【配套Word版文档】常考题型强化练——函数

【浙江专用(理)】【步步高】2014届高三数学大一轮复习讲义【配套Word版文档】常考题型强化练——函数

常考题型强化练——函数一、选择题1. (2011·江西)若f (x )=1log 12(2x +1),则f (x )的定义域为 ( )A.⎝⎛⎭⎫-12,0B.⎝⎛⎭⎫-12,+∞ C.⎝⎛⎭⎫-12,0∪(0,+∞) D.⎝⎛⎭⎫-12,2 答案 C解析 由已知得⎩⎪⎨⎪⎧ 2x +1>0,log 12(2x +1)≠0,∴⎩⎪⎨⎪⎧x >-12,2x +1≠1,即x >-12且x ≠0,∴选C.2. (2012·广东)下列函数中,在区间(0,+∞)上为增函数的是 ( )A .y =ln(x +2)B .y =-x +1C .y =⎝⎛⎭⎫12xD .y =x +1x 答案 A解析 利用复合函数单调性的判断方法——同增异减求解.对于A 选项,可看成由函数y =ln u ,u =x +2复合而成,由于两函数都为增函数,单调 性相同,所以函数y =ln(x +2)在(-2,+∞)上为增函数. B 、C 均为减函数.对于D 选项,y =x +1x在(-∞,-1),(1,+∞)上为增函数.3. (2011·大纲全国)设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f (-52)等于 ( ) A .-12 B .-14 C.14 D.12答案 A解析 ∵f (x )是周期为2的奇函数, ∴f (-52)=f (-52+2)=f (-12)=-f (12)=-2×12×(1-12)=-12.4. (2012·天津)函数f (x )=2x +x 3-2在区间(0,1)内的零点个数是 ( )A .0B .1C .2D .3 答案 B解析 先判断函数的单调性,再确定零点. 因为f ′(x )=2x ln 2+3x 2>0,所以函数f (x )=2x +x 3-2在(0,1)上递增, 且f (0)=1+0-2=-1<0,f (1)=2+1-2=1>0, 所以有1个零点. 二、填空题5. (2011·山东)已知函数f (x )=log a x +x -b (a >0,且a ≠1).当2<a <3<b <4时,函数f (x )的零点x 0∈(n ,n +1),n ∈N *,则n =________. 答案 2解析 ∵2<a <3,∴f (x )=log a x +x -b 为定义域上的单调函数.f (2)=log a 2+2-b ,f (3) =log a 3+3-b .∵2<a <3<b ,∴lg 2<lg a <lg 3,∴lg 2lg 3<lg 2lg a <1.又∵b >3,∴-b <-3,∴2-b <-1, ∴log a 2+2-b <0,即f (2)<0.∵1<lg 3lg a <lg 3lg 2,3<b <4,∴-1<3-b <0,∴log a 3+3-b >0,∴f (3)>0,即f (2)·f (3)<0. 由x 0∈(n ,n +1),n ∈N *知,n =2.6. (2012·上海)已知函数f (x )=e |x -a |(a 为常数).若f (x )在区间[1,+∞)上是增函数,则a 的取值范围是________. 答案 (-∞,1]解析 先求出函数g (x )=|x -a |的单调区间,再结合复合函数单调性判断. g (x )=|x -a |的增区间为[a ,+∞), ∴f (x )=e |x -a |的增区间为[a ,+∞).∵f (x )在[1,+∞)上是增函数, ∴[1,+∞)⊆[a ,+∞),∴a ≤1.7. (2012·上海)已知y =f (x )+x 2是奇函数,且f (1)=1.若g (x )=f (x )+2,则g (-1)=________.答案 -1解析 先利用奇函数条件求出f (x )与f (-x )的关系. ∵y =f (x )+x 2是奇函数, ∴f (-x )+(-x )2=-[f (x )+x 2],∴f (x )+f (-x )+2x 2=0.∴f (1)+f (-1)+2=0. ∵f (1)=1,∴f (-1)=-3.∵g (x )=f (x )+2,∴g (-1)=f (-1)+2=-3+2=-1. 三、解答题8. (2011·上海)已知函数f (x )=a ·2x +b ·3x ,其中常数a ,b 满足ab ≠0.(1)若ab >0,判断函数f (x )的单调性; (2)若ab <0,求f (x +1)>f (x )时x 的取值范围. 解 (1)当a >0,b >0时,任意x 1,x 2∈R ,x 1<x 2, 则f (x 1)-f (x 2)=a (2x 1-2x 2)+b (3x 1-3x 2). ∵2x 1<2x 2,a >0⇒a (2x 1-2x 2)<0, 3x 1<3x 2,b >0⇒b (3x 1-3x 2)<0,∴f (x 1)-f (x 2)<0,函数f (x )在R 上是增函数. 当a <0,b <0时,同理,函数f (x )在R 上是减函数. (2)f (x +1)-f (x )=a ·2x +2b ·3x >0,当a <0,b >0时,⎝⎛⎭⎫32x >-a 2b ,则x >log 1.5⎝⎛⎭⎫-a 2b ; 当a >0,b <0时,⎝⎛⎭⎫32x <-a 2b,则x <log 1.5⎝⎛⎭⎫-a 2b . 9. (2011·福建)某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得 的利润最大.解 (1)因为x =5时,y =11,所以a2+10=11,所以a =2.(2)由(1)可知,该商品每日的销售量y =2x -3+10(x -6)2,所以商场每日销售该商品所获得的利润f (x )=(x -3)[2x -3+10(x -6)2]=2+10(x -3)(x -6)2,3<x <6.从而,f ′(x )=10[(x -6)2+2(x -3)(x -6)] =30(x -4)(x -6).于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:所以,当x =4时,函数f (x )取得最大值,且最大值等于42.答 当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.B 组 专项能力提升一、选择题1. (2011·四川)函数y =⎝⎛⎭⎫12x+1的图象关于直线y =x 对称的图象大致是 ( )答案 A解析 函数y =⎝⎛⎭⎫12x+1的图象如图所示,关于y =x 对称的图象大致为A 选项对应图象.2. (2011·山东)已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,6]上与x 轴的交点的个数为 ( ) A .6 B .7 C .8 D .9 答案 B解析 ∵f (x )是最小正周期为2的周期函数,且0≤x <2时,f (x )=x 3-x =x (x -1)(x +1), ∴当0≤x <2时,f (x )=0有两个根,即x 1=0,x 2=1.由周期函数的性质知,当2≤x <4时,f (x )=0有两个根,即x 3=2,x 4=3;当4≤x <6时, f (x )=0有两个根,即x 5=4,x 6=5.x 7=6也是f (x )=0的根. 故函数f (x )的图象在区间[0,6]上与x 轴交点的个数为7.3. (2012·福建)函数f (x )在[a ,b ]上有定义,若对任意x 1,x 2∈[a ,b ],有f ⎝⎛⎭⎫x 1+x 22≤12[f (x 1)+f (x 2)],则称f (x )在[a ,b ]上具有性质P .设f (x )在[1,3]上具有性质P ,现给出如下命题: ①f (x )在[1,3]上的图象是连续不断的; ②f (x 2)在[1,3]上具有性质P ;③若f (x )在x =2处取得最大值1,则f (x )=1,x ∈[1,3]; ④对任意x 1,x 2,x 3,x 4∈[1,3],有f ⎝⎛⎭⎫x 1+x 2+x 3+x 44≤14[f (x 1)+f (x 2)+f (x 3)+f (x 4)].其中真命题的序号是 ( ) A .①② B .①③ C .②④ D .③④ 答案 D解析 通过构造某些特殊函数,排除不合适的选项,利用反证法证明③正确,再两次应 用定义式证明④正确.令f (x )=⎩⎪⎨⎪⎧1,x =1,0,1<x <3,1,x =3,可知对∀x 1,x 2∈[1,3],都有f ⎝⎛⎭⎫x 1+x 22≤12[f (x 1)+f (x 2)],但f (x )在[1,3]上的图象不连续,故①不正确; 令f (x )=-x ,则f (x )在[1,3]上具有性质P , 但f (x 2)=-x 2在[1,3]上不具有性质P , 因为-⎝⎛⎭⎫x 1+x 222=-x 21+x 22+2x 1x 24≥-2(x 21+x 22)4=12(-x 21-x 22)=12[f (x 21)+f (x 22)],故②不正确; 对于选项③,假设存在x 0∈[1,3],使得f (x 0)≠1, 因为f (x )max =f (2)=1,x ∈[1,3],所以f (x 0)<1. 又当1≤x 0≤3时,有1≤4-x 0≤3, 由f (x )在[1,3]上具有性质P ,得 f (2)=f ⎝⎛⎭⎫x 0+4-x 02≤12[f (x 0)+f (4-x 0)],由于f (x 0)<1,f (4-x 0)≤1,故上式矛盾. 即对∀x ∈[1,3],有f (x )=1,故选项③正确. 对∀x 1,x 2,x 3,x 4∈[1,3], f ⎝⎛⎭⎫x 1+x 2+x 3+x 44=f ⎝ ⎛⎭⎪⎪⎫x 1+x 22+x 3+x 422 ≤12⎣⎡⎦⎤f ⎝⎛⎭⎫x 1+x 22+f ⎝⎛⎭⎫x 3+x 42 ≤12⎩⎨⎧⎭⎬⎫12[f (x 1)+f (x 2)]+12[f (x 3)+f (x 4)] =14[f (x 1)+f (x 2)+f (x 3)+f (x 4)],即选项④正确. 二、填空题4. (2012·江苏)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________. 答案 -10解析 由f (x )的周期为2,得f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12是关键.因为f (x )的周期为2, 所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫32-2=f ⎝⎛⎭⎫-12, 即f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12.又因为f ⎝⎛⎭⎫-12=-12a +1,f ⎝⎛⎭⎫12=b2+212+1=b +43,所以-12a +1=b +43.整理,得a =-23(b +1).①又因为f (-1)=f (1),所以-a +1=b +22,即b =-2a .②将②代入①,得a =2,b =-4. 所以a +3b =2+3×(-4)=-10.5. (2012·浙江)设a ∈R ,若x >0时均有[(a -1)x -1](x 2-ax -1)≥0,则a =________.答案 32解析 对a 进行分类讨论,通过构造函数,利用数形结合解决.(1)当a =1时,不等式可化为:x >0时均有x 2-x -1≤0,由二次函数的图象知,显然不 成立,∴a ≠1. (2)当a <1时,∵x >0,∴(a -1)x -1<0,不等式可化为: x >0时均有x 2-ax -1≤0,∵二次函数y =x 2-ax -1的图象开口向上,∴不等式x 2-ax -1≤0在x ∈(0,+∞)上不能均成立, ∴a <1不成立.(3)当a >1时,令f (x )=(a -1)x -1,g (x )=x 2-ax -1,两函数的图象均过定点(0,-1), ∵a >1,∴f (x )在x ∈(0,+∞)上单调递增, 且与x 轴交点为⎝⎛⎭⎫1a -1,0,即当x ∈⎝⎛⎭⎫0,1a -1时,f (x )<0,当x ∈⎝⎛⎭⎫1a -1,+∞时,f (x )>0.又∵二次函数g (x )=x 2-ax -1的对称轴为x =a2>0,则只需g (x )=x 2-ax -1与x 轴的右交点与点⎝⎛⎭⎫1a -1,0重合,如图所示,则命题成立,即⎝⎛⎭⎫1a -1,0在g (x )图象上,所以有⎝⎛⎭⎫1a -12-a a -1-1=0,整理得2a 2-3a =0,解得a =32,a =0(舍去).综上可知a =32.6. (2012·北京)已知f (x )=m (x -2m )(x +m +3),g (x )=2x -2,若同时满足条件:①∀x ∈R ,f (x )<0或g (x )<0;②∃x ∈(-∞,-4),f (x )g (x )<0.则m 的取值范围是________. 答案 -4<m <-2解析 将①转化为g (x )<0的解集的补集是f (x )<0解集的子集求解; ②转化为f (x )>0的解集与(-∞,-4)的交集非空. 若g (x )=2x -2<0,则x <1. 又∵∀x ∈R ,g (x )<0或f (x )<0, ∴[1,+∞)是f (x )<0的解集的子集. 又由f (x )=m (x -2m )(x +m +3)<0知, m 不可能大于或等于0,因此m <0. 当m <0时,f (x )<0,即(x -2m )(x +m +3)>0. 当2m =-m -3,即m =-1时, f (x )<0的解集为{x |x ≠-2},满足条件. 当2m >-m -3,即-1<m <0时, f (x )<0的解集为{x |x >2m 或x <-m -3}. 依题意2m <1,即m <12,∴-1<m <0.当2m <-m -3,即m <-1时, f (x )<0的解集为{x |x <2m 或x >-m -3}. 依题意-m -3<1,即m >-4,∴-4<m <-1. 因此满足①的m 的取值范围是-4<m <0. ②中,∵当x ∈(-∞,-4)时,g (x )=2x -2<0, ∴问题转化为∃x ∈(-∞,-4),f (x )>0, 即f (x )>0的解集与(-∞,-4)的交集非空. 又m <0,则(x -2m )(x +m +3)<0.由①的解法知,当-1<m <0时,2m >-m -3,即-m-3<-4,∴m>1,此时无解.当m=-1时,f(x)=-(x+2)2恒小于或等于0,此时无解.当m<-1时,2m<-m-3,即2m<-4,∴m<-2.综合①②可知满足条件的m的取值范围是-4<m<-2.三、解答题7.(2012·福建)已知函数f(x)=e x+ax2-e x,a∈R.(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求函数f(x)的单调区间;(2)试确定a的取值范围,使得曲线y=f(x)上存在唯一的点P,曲线在该点处的切线与曲线只有一个公共点P.解(1)由于f′(x)=e x+2ax-e,曲线y=f(x)在点(1,f(1))处的切线斜率k=2a=0,所以a=0,即f(x)=e x-e x.此时f′(x)=e x-e.由f′(x)=0得x=1.当x∈(-∞,1)时,有f′(x)<0;当x∈(1,+∞)时,有f′(x)>0.所以f(x)的单调递减区间为(-∞,1),单调递增区间为(1,+∞).(2)设点P(x0,f(x0)),曲线y=f(x)在点P处的切线方程为y=f′(x0)(x-x0)+f(x0),令g(x)=f(x)-f′(x0)(x-x0)-f(x0),故曲线y=f(x)在点P处的切线与曲线只有一个公共点P等价于函数g(x)有唯一零点.因为g(x0)=0,且g′(x)=f′(x)-f′(x0)=e x-e x0+2a(x-x0).①若a≥0,当x>x0时,g′(x)>0,则当x>x0时,g(x)>g(x0)=0;当x<x0时,g′(x)<0,则当x<x0时,g(x)>g(x0)=0.故g(x)只有唯一零点x=x0.由P的任意性知,a≥0不合题意.②若a<0,令h(x)=e x-e x0+2a(x-x0),则h(x0)=0,h′(x)=e x+2a.令h′(x)=0,得x=ln(-2a),记x*=ln(-2a),则当x∈(-∞,x*)时,h′(x)<0,从而h(x)在(-∞,x*)内单调递减;当x∈(x*,+∞)时,h′(x)>0,从而h(x)在(x*,+∞)内单调递增.a .若x 0=x *,当x ∈(-∞,x *)时, g ′(x )=h (x )>h (x *)=0;当x ∈(x *,+∞)时,g ′(x )=h (x )>h (x *)=0.所以g (x )在R 上单调递增.所以函数g (x )在R 上有且只有一个零点x =x *. b .若x 0>x *,由于h (x )在(x *,+∞)内单调递增, 且h (x 0)=0,则当x ∈(x *,x 0)时有g ′(x )=h (x )<h (x 0)=0, g (x )>g (x 0)=0;任取x 1∈(x *,x 0)有g (x 1)>0. 又当x ∈(-∞,x 1)时,易知g (x )=e x +ax 2-(e +f ′(x 0))x -f (x 0)+x 0f ′(x 0)<e x 1+ax 2-(e +f ′(x 0))x -f (x 0)+ x 0f ′(x 0) =ax 2+bx +c ,其中b =-(e +f ′(x 0)),c =e x 1-f (x 0)+x 0f ′(x 0).由于a <0,则必存在x 2<x 1,使得ax 22+bx 2+c <0.所以g (x 2)<0,故g (x )在(x 2,x 1)内存在零点, 即g (x )在R 上至少有两个零点. c .若x 0<x *,仿b 并利用e x>x 36,可证函数g (x )在R 上至少有两个零点.综上所述,当a <0时,曲线y =f (x )上存在唯一的点P (ln(-2a ),f (ln(-2a ))), 曲线在该点处的切线与曲线只有一个公共点P .。

【步步高】2014届高考数学大一轮复习 2.6 对数与对数函数配套课件 理 新人教A版

【步步高】2014届高考数学大一轮复习 2.6 对数与对数函数配套课件 理 新人教A版

3 5

5
5 125>
32=2>log49,
A.c<a<b
B.c<b<a
又 f(x)是定义在(-∞,+∞)上的偶函
C.b<c<a
数,且在(-∞,0]上是增函数,故 f(x)
D.a<b<c
在[0,+∞)上是单调递减的,
∴f(0.2-0.6)<f(log1 3)<f(log47),即 c<b<a.
2
题型分类·深度剖析
lg 32-lg 9+1·lg 27+lg 8-lg lg 0.3·lg 1.2
1 000;
(3)(log32+log92)·(log43+log83).
思维启迪
解析
探究提高
解 (1)原式=(lg 2)2+(1+lg 5)lg 2+lg 52
=(lg 2+lg 5+1)lg 2+2lg 5=(1+1)lg 2+2lg 5=2(lg 2+lg 5)=2.
2 5lg 3·6lg
32=54.
题型分类·深度剖析
题型一
对数式的运算
【例 1】 计算下列各式:
(1)lg 25+lg 2·lg 50+(lg 2)2;(2)
lg 32-lg 9+1·lg 27+lg 8-lg lg 0.3·lg 1.2
1 000;
(3)(log32+log92)·(log43+log83).
C.b<c<a
数,且在(-∞,0]上是增函数,故 f(x)
D.a<b<c
在[0,+∞)上是单调递减的,
∴f(0.2-0.6)<f(log1 3)<f(log47),即 c<b<a.

新高考一轮复习人教A版第二章第十一讲导数与函数的单调性课件(60张)

新高考一轮复习人教A版第二章第十一讲导数与函数的单调性课件(60张)

【题后反思】根据函数单调性求参数的一般思路 (1)利用集合间的包含关系处理:y=f(x)在(a,b)上单 调,则区间(a,b)是相应单调区间的子集. (2)f(x)单调递增(减)的充要条件是对任意的 x∈(a,b) 都有 f′(x)≥0(f′(x)≤0)且在(a,b)内的任一非空子区间 上,f′(x)不恒为零,应注意此时式子中的等号不能省略, 否则会漏解. (3)函数在某个区间上存在单调区间可转化为不等式 有解问题.
解:函数的定义域为(0,+∞),
f′(x)=ax-(a+1)+1x=ax2-a+x 1x+1=
ax-1x-1
x
.
①当 0<a<1 时,1a>1, ∴x∈(0,1)和1a,+∞时,f′(x)>0; x∈1,a1时,f′(x)<0, ∴函数 f(x)在(0,1)和1a,+∞上单调递增,在1,1a上 单调递减;
综上,当 0<a<1 时,函数 f(x)在(0,1)和1a,+∞上单 调递增,在1,a1上单调递减;
当 a=1 时,函数 f(x)在(0,+∞)上单调递增; 当 a>1 时,函数 f(x)在0,a1和(1,+∞)上单调递增, 在1a,1上单调递减.
【题后反思】 (1)研究含参数的函数的单调性,要依据参数对不等式 解集的影响进行分类讨论. (2)划分函数的单调区间时,要在函数定义域内讨论, 还要确定导数为零的点和函数的间断点.
②当 a>0 时,令 3x2-a=0,得 x=
33a或-
3a 3.
当 x> 33a或 x<- 33a时,f′(x)>0;
当- 33a<x< 33a时,f′(x)<0.
因此 f(x)在-∞,- 33a, 33a,+∞上单调递增, 在- 33a, 33a上单调递减.

2014高考数学一轮复习精品习题附解析第三章第2讲用导数研究函数的单调性与极值

2014高考数学一轮复习精品习题附解析第三章第2讲用导数研究函数的单调性与极值

第2讲 用导数研究函数的单调性与极值分层训练A 级 基础达标演练(时间:30分钟 满分:60分)一、填空题(每小题5分,共30分)1.若函数y =x 3+x 2+mx +1是R 上的单调函数,则实数m 的取值范围是________.解析 由题意,得y ′=3x 2+2x +m ≥0解集为R ,所以Δ=4-12m ≤0,解得m ≥13. 答案 ⎣⎢⎡⎭⎪⎫13,+∞2.(2011·广东卷)函数f (x )=x 3-3x 2+1在x =________处取得极小值. 解析 由f ′(x )=0,得x =0或x =2.由f ′(x )>0得x <0或x >2,由f ′(x )<0得0<x <2,所以f (x )在x =2处取得极小值. 答案 23.若f (x )=x 3+3ax 2+3(a +2)x +1有极大值和极小值,则a 的取值范围是________.解析 f ′(x )=3x 2+6ax +3(a +2),由题意知f ′(x )=0有两个不等的实根,由Δ=(6a )2-4×3×3(a +2)>0,即a 2-a -2>0,解得a >2或a <-1. 答案 (-∞,-1)∪(2,+∞)4.(2012·镇江统考)已知函数f (x )=ln x +2x ,若f (x 2+2)<f (3x ),则实数x 的取值范围是________.解析 由f (x )=ln x +2x ,得f ′(x )=1x +2x ln 2>0,x ∈(0,+∞),所以f (x )在(0,+∞)上单调递增,又f (x 2+2)<f (3x ),得0<x 2+2<3x ,所以x ∈(1,2). 答案 (1,2)5.已知函数f (x )=x 33-(4m -1)x 2+(15m 2-2m -7)x +2在实数集R 上是增函数,则实数m 的取值范围是________.解析 f ′(x )=x 2-2(4m -1)x +15m 2-2m -7,依题意,知f ′(x )≥0在R 上恒成立,所以Δ=4(m 2-6m +8)≤0得2≤m ≤4. 答案 [2,4]6.(2012·苏北四市第一次调研)已知函数f (x )=x 3+ax 2+bx +c (a ,b ,c ∈R ),若函数f (x )在区间[-1,0]上是单调递减函数,则a 2+b 2的最小值为________. 解析 由题意,f ′(x )=3x 2+2ax +b ≤0对x ∈[-1,0]恒成立,所以⎩⎨⎧f ′(-1)=3-2a +b ≤0,f ′(0)=b ≤0, 画出点(a ,b )对应的平面区域,由原点到直线2a -b -3=0距离d =35,得a 2+b 2≥d 2=95. 答案 95二、解答题(每小题15分,共30分)7.(2012·苏北模拟)设函数f (x )=e x -1+mx (m ∈R ).(1)若f (x )在[1,2]上为单调递减函数,求实数m 的取值范围;(2)若f (x )在x =1处有极值,且函数g (x )=f (x )-n 在(0,+∞)上有零点,求n 的最小值.解 (1)由f ′(x )=e x -1-mx 2≤0在x ∈[1,2]上恒成立,得m ≥x 2e x -1在[1,2]上恒成立.设h (x )=x 2e x -1,则由h ′(x )=e x -1(x 2+2x )>0在x ∈[1,2]上恒成立,得h (x )在[1,2]上单调递增,所以h (x )max =h (2)=4e ,所以m ≥4e. 故m 的取值范围是[4e ,+∞).(2)因为f ′(x )=e x -1-mx 2,且f (x )在x =1处有极值, 所以f ′(1)=0,解得m =1. 所以f (x )=ex -1+1x ,g (x )=f (x )-n =e x -1+1x -n .因为g′(x)=e x-1-1x2当x∈(0,1)时,有g′(x)<0,当x∈(1,+∞)时,有g′(x)>0,所以g(x)在(0,1)上递减,在(1,+∞)上递增,所以g(x)在x=1处取得极小值g(1)=2-n.由题意,g(x)在(0,+∞)上有零点,所以g(1)≤0,即2-n≤0,所以n≥2.故n的最小值为2.8.已知曲线f(x)=ln(2-x)+ax在点(0,f(0))处的切线斜率为1 2,(1)求f(x)的极值;(2)设g(x)=f(x)+kx,若g(x)在(-∞,1]上是增函数,求实数k的取值范围.解(1)f(x)的定义域是(-∞,2),f′(x)=1x-2+a.由题知f′(0)=-12+a=12,所以a=1,所以f′(x)=1x-2+1=x-1x-2.令f′(x)=0,得x=1.当x变化时,f′(x),f(x)的变化情况如下表所示所以f(x)在x=(2)g(x)=ln(2-x)+(k+1)x,g′(x)=1x-2+(k+1),由题知g′(x)≥0在(-∞,1]上恒成立,即k≥12-x-1在(-∞,1]上恒成立,因为x≤1,所以2-x≥1,所以0<12-x≤1,所以-1<12-x-1≤0,所以k≥0.故实数k的取值范围是[0,+∞).分层训练B级创新能力提升1.(2012·济南模拟)已知函数f(x)的定义域为(-2,2),导函数为f′(x)=x2+2cos x且f (0)=0,则满足f (1+x )+f (x 2-x )>0的实数x 的集合是________. 解析 因为当x ∈(-2,2)时,f ′(x )≥0且为偶函数,所以f (x )是奇函数且在(-2,2)上单调递增,于是由f (1+x )>-f (x 2-x )=f (x -x 2),得-2<x -x 2<1+x <2,解得-1<x <1. 答案 (-1,1)2.(2011·福建卷改编)若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值为________.解析 由题意,x =1是f ′(x )=12x 2-2ax -2b 的一个零点,所以12-2a -2b =0,即a +b =6(a >0,b >0),因此ab ≤⎝⎛⎭⎪⎫a +b 22=⎝ ⎛⎭⎪⎫622=9,当且仅当a =b =3时等号成立. 答案 93. 已知定义在R 上的函数f (x )满足f (4)=1,f ′(x )为f (x )的导函数,函数y =f ′(x )的图象如图所示,若两个正数a ,b 满足f (2a +b )<1,则b +1a +1的取值范围是________.解析 当x ∈[0,+∞)时,f ′(x )≥0,所以f (x )在区间[0,+∞)上单调递增,于是由f (2a +b )<f (4),得⎩⎨⎧0<2a +b <4,a >0,b >0,它表示的平面区域如图所示(不包括边界),所以13=k P A <b +1a +1<k PB =5.答案 ⎝ ⎛⎭⎪⎫13,54.(2012·盐城市二模)设f (x )是定义在R 上的可导函数,且满足f (x )+xf ′(x )>0,则不等式f (x +1)>x -1·f (x 2-1)的解集为________.解析 设F (x )=xf (x ),则由F ′(x )=f (x )+xf ′(x )>0,可得函数F (x )是R 上的增函数.又x +1>0,所以由f (x +1)>x -1f (x 2-1)可变形得 x +1f (x +1)>x 2-1f (x 2-1),即F (x +1)>F (x 2-1),所以⎩⎨⎧x +1>x 2-1,x ≥1,解得1≤x <2. 答案 [1,2)5.(2012·山东卷)已知函数f (x )=ln x +ke x (k 为常数,e =2.718 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. (1)求k 的值; (2)求f (x )的单调区间; 解 (1)由f (x )=ln x +k e x ,得f ′(x )=1-kx -x ln xx e x(x >0). 由题意,得f ′(1)=0,所以k =1. (2)由(1)得f ′(x )=1x e x (1-x -x ln x )(x >0).令h (x )=1-x -x ln x (x >0),则当x ∈(0,1)时,h (x )>0;当x ∈(1,+∞)时,h (x )<0,又e x >0,所以x ∈(0,1)时, f ′(x )>0,x ∈(1,+∞)时,f (x )<0. 因此f (x )的单调递增区间为(0,1), 单调递减区间为(1,+∞)6.(2010·辽宁卷)已知函数f (x )=(a +1)ln x +ax 2+1. (1)讨论函数f (x )的单调性;(2)设a <-1,如果对任意x 1,x 2∈(0,+∞),|f (x 1)-f (x 2)|≥4|x 1-x 2|,求实数a 的取值范围.解 (1)f (x )的定义域为(0,+∞),f ′(x )=a +1x +2ax =2ax 2+a +1x .当a ≥0时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; 当a ≤-1时,f ′(x )<0,故f (x )在(0,+∞)上单调递减; 当-1<a <0时,令f ′(x )=0,解得x = -a +12a .所以当x ∈⎝ ⎛⎭⎪⎫0,-a +12a 时,f ′(x )>0,此时函数f (x )单调递增;当x ∈⎝⎛⎭⎪⎫ -a +12a ,+∞时,f ′(x )<0,此时函数f (x )单调递减.(2)不妨设x 1≥x 2,而a <-1,由(1)知f (x )在(0,+∞)上单调递减,从而对于任意的x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2|成立,它等价于对任意的x1,x2∈(0,+∞),有f(x2)+4x2≥f(x1)+4x1.①令g(x)=f(x)+4x,则g′(x)=a+1x+2ax+4,①式等价于g(x)在(0,+∞)上单调递减,即a+1x+2ax+4≤0在(0,+∞)上恒成立,从而a≤-4x-12x2+1=(2x-1)2 2x2+1-2在(0,+∞)上恒成立,由于(2x-1)22x2+1-2≥-2,故a的取值范围是(-∞,-2].。

高中数学步步高大一轮复习讲义文科专题一PPT课件

高中数学步步高大一轮复习讲义文科专题一PPT课件

故 f(x)的单调递增区间为(-∞,
-1),(0,+∞),单调递减区
间为(-1,0).
第4页/共56页
高考题型突破
题型一
利用导数研究函数的单调性
【例 1】 设函数 f(x)=x(ex-1) 思维启迪 解析 思维升华
(2)f(x)=x(ex-1-ax),
-ax2.
令 g(x)=ex-1-ax,
(1)若 a=12,求 f(x)的单调区间; g′(x)=ex-a.
思维启迪 解析 思维升华
(2)解 2xln x≥-x2+ax-3, 则 设ha(≤x)2=ln2lxn+x+x+x+3x,3x(x>0), 则h′(x)=x+3x2x-1, ①当x∈(0,1)时,h′(x)<0,h(x)
单调递减, ②当x∈(1,+∞)时,
h′(x)>0,h(x)单调递增, 所以h(x)min=h(1)=4,对一切
-ax2. (1)若 a=12,求 f(x)的单调区间;
(2)若当 x≥0 时,f(x)≥0,求 a
求出 f′(x),分析函数的单 调性,得出结论.
的取值范围.
第3页/共56页
高考题型突破
题型一
利用导数研究函数的单调性
【例 1】 设函数 f(x)=x(ex-1)
-ax2. (1)若 a=12,求 f(x)的单调区间;
(2)若当 x≥0 时,f(x)≥0,求 a
若 a≤1,则当 x∈(0,+∞)时, g′(x)>0,g(x)为增函数,
的取值范围.
而 g(0)=0,
从而当 x≥0 时,g(x)≥0,
即 f(x)≥0.
若 a>1,则当 x∈(0,ln a)时, g′(x)<0,g(x)为减函数,

【步步高】2014届高考数学大一轮复习 2.7 函数的图象试题(含解析)新人教A版

【步步高】2014届高考数学大一轮复习 2.7 函数的图象试题(含解析)新人教A版

2.7 函数的图象一、选择题1.当a ≠0时,y =ax +b 与y =(b a )x的图象大致是( ).解析 (筛选法)A 中,a >0,b =1,b a =1,很容易排除;B 中,a >0,b >1,故b a>1,函数y =(b a )x 单调递增,也可排除;C 、D 中,a <0,0<b <1,故b a>1,排除D.故选C. 答案 C【点评】 本题采用了筛选法.解决此类问题时一般结合两种函数给定特殊值域特殊位置,确定它们图象与函数式是否吻合.2.已知函数y =f (x )的周期为2,当x ∈[-1,1]时f (x )=x 2,那么函数y =f (x )的图象与函数y =|lg x |的图象的交点共有( ). A .10个 B .9个 C .8个 D .1个解析 (数形结合法)画出两个函数图象可看出交点有10个.答案 A【点评】 本题采用了数形结合法.数形结合,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维结合起来,通过对图形的处理,发挥直观对抽象的支持作用,实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观. 3.y =x +cos x 的大致图象是( )解析当x =0时,y =1;当x =π2时,y =π2;当x =-π2时,y =-π2,观察各选项可知B正确. 答案B 4.函数cos622x xxy -=-的图象大致为( )答案 D5.函数y =11-x 的图象与函数y =2sin πx (-2≤x ≤4)的图象所有交点的横坐标之和等于( ).A .2B .4C .6D .8解析 此题考查函数的图象、两个函数图象的交点及函数的对称性问题.两个函数都是中心对称图形.如上图,两个函数图象都关于点(1,0)成中心对称,两个图象在[-2,4]上共8个公共点,每两个对应交点横坐标之和为2,故所有交点的横坐标之和为8. 答案 D6.函数21log 1xy x+=-的图象( ) A . 关于原点对称 B. 关于主线y x =-对称 C. 关于y 轴对称 D. 关于直线y x =对称解析 设21()log 1x f x x +=-,则21()log 1x f x x --=+=()f x -,所以函数21log 1xy x+=-是奇函数,其图象关于原点对称,故选A.答案 A7.函数y =f (x )与函数y =g (x )的图象如图则函数y =f (x )·g (x )的图象可能是( ).解析 从f (x )、g (x )的图象可知它们分别为偶函数、奇函数,故f (x )·g (x )是奇函数,排除B 项.又g (x )在x =0处无意义,故f (x )·g (x )在x =0处无意义,排除C 、D 两项. 答案 A 二、填空题8.已知定义在区间[0,1]上的函数y =f (x )的图象如图所示,对于满足0<x 1<x 2<1的任意x 1、x 2,给出下列结论:①f (x 2)-f (x 1)>x 2-x 1; ②x 2f (x 1)>x 1f (x 2); ③f x 1+f x 22<f ⎝⎛⎭⎪⎫x 1+x 22.其中正确结论的序号是________(把所有正确结论的序号都填上). 解析 由f (x 2)-f (x 1)>x 2-x 1,可得f x 2-f x 1x 2-x 1>1,即两点(x 1,f (x 1))与(x 2,f (x 2))连线的斜率大于1,显然①不正确,由x 2f (x 1)>x 1f (x 2)得f x 1x 1>f x 2x 2,即表示两点(x 1,f (x 1))、(x 2,f (x 2))与原点连线的斜率的大小,可以看出结论②正确;结合函数图象,容易判断③的结论是正确的. 答案 ②③9.已知函数y =f (x )和y =g (x )在[-2,2]的图象如下图所示:则方程f [g (x )]=0有且仅有________个根,方程f [f (x )]=0有且仅有________个根.解析:由图可知f(x)=0有三个根,设为x1,x2,x3,-2<x1<-1,x2=0,1<x3<2. 令g(x)=x1,由g(x)图象可知方程g(x)=x1有两个根,令g(x)=0得两个根,令g(x)=x3得两个根,∴f[g(x)]=0有6个根,同理可看出f[f(x)]=0有5个根.答案:6 510.如下图所示,向高为h的水瓶A、B、C、D同时以等速注水,注满为止.(1)若水量V与水深h函数图象是下图的(a),则水瓶的形状是________;(2)若水深h与注水时间t的函数图象是下图的(b),则水瓶的形状是________;(3)若注水时间t与水深h的函数图象是下图的(c),则水瓶的形状是________;(4)若水深h与注水时间t的函数的图象是图中的( d),则水瓶的形状是________.答案(1)A (2)D (3)B (4)C11.已知函数211xyx-=-的图像与函数y kx=的图像恰有两个交点,则实数k的取值X围是 .12.设函数f (x )=x |x |+bx +c ,给出下列命题: ①b =0,c >0时,方程f (x )=0只有一个实数根; ②c =0时,y =f (x )是奇函数; ③方程f (x )=0至多有两个实根.上述三个命题中所有正确命题的序号为________.解析 ①f (x )=x |x |+c =⎩⎪⎨⎪⎧x 2+cx ≥0-x 2+c x <0,如图①,曲线与x 轴只有一个交点,所以方程f (x )=0只有一个实数根,正确. ②c =0时,f (x )=x |x |+bx ,显然是奇函数. ③当c =0,b <0时,f (x )=x |x |+bx =⎩⎪⎨⎪⎧x 2+bxx ≥0-x 2+bx x <0.如图②,方程f (x )=0可以有三个实数根.综上所述,正确命题的序号为①②. 答案 ①② 三、解答题13.若方程2a =|a x-1|(a >0,a ≠1)有两个实数解,某某数a 的取值X 围.解:当a >1时,函数y =|a x-1|的图象如图①所示,显然直线y =2a 与该图象只有一个交点,故a >1不合适;当0<a <1时,函数y =|a x-1|的图象如图②所示, 要使直线y =2a 与该图象有两个交点,则0<2a <1, 即0<a <12.综上所述,实数a 的取值X 围为(0,12).14.已知函数f (x )=x1+x .(1)画出f (x )的草图; (2)指出f (x )的单调区间.解 (1)f (x )=x 1+x =1-1x +1,函数f (x )的图象是由反比例函数y =-1x的图象向左平移1个单位后,再向上平移1个单位得到,图象如图所示.(2)由图象可以看出,函数f (x )有两个单调递增区间: (-∞,-1),(-1,+∞).15.当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,求a 的取值X 围. 解析 设f 1(x )=(x -1)2,f 2(x )=log a x ,要使当x ∈(1,2)时,不等式 (x -1)2<log a x 恒成立,只需f 1(x )=(x -1)2在(1,2)上的图象在f 2(x )=log a x 的下方即可.当0<a <1时,综合函数图象知显然不成立.当a >1时,如图,要使在(1,2)上,f 1(x )=(x -1)2的图象在f 2(x )=log a x 的下方, 只需f 1(2)≤f 2(2),即(2-1)2≤log a 2,log a 2≥1, ∴1<a ≤2.∴a 的取值X 围是(1,2]16.讨论方程|1-x |=kx 的实数根的个数.思路分析 分别作出函数y =|1-x |与y =kx 的图象,结合图象讨论其交点个数. 解析 设y =|1-x |,y =kx ,则方程的实根的个数就是函数y =|1-x |的图象与y =kx 的图象交点的个数.由上边图象可知:当-1≤k<0时,方程没有实数根;当k=0或k<-1或k≥1时,方程只有一个实数根;当0<k<1时,方程有两个不相等的实数根.【点评】数形结合思想是高考必考内容,它对于解答选择、填空题即形象、又快捷,对于解答题,图象有利于分析、解决问题,但适当的解题步骤还是必须的.。

高考数学一轮复习第三章导数及其应用4导数的综合应用课件新人教A版2


-15考点1
考点2
考点3
当x变化时,g(x),g'(x)的变化情况如下表:
2
-∞,
3
x
g'(x)
+
0
单调递增↗
g(x)
2
,4
3
2
3
68
27
则函数 g(x)的极大值为 g
-
4
(4,+∞)
0
+
-m 单调递减↘ -16-m 单调递增↗
2
3
=
68
27
-m,极小值为 g(4)=-16-m.
∴要使 g(x)的图象与 x 轴有三个不同的交点,
则欲证
12 - 22
>2a,
只需证 2a(12 − 22 )>3x2-x1.
只需证 2a(12 − 22 )>2(x2-x1)+(x1+x2).
只需证 a(x1-x2)+
1 - 2
1 + 2
1
> .
2
因为 f'(x1)=0,f'(x2)=0,ax1=-ln x1,ax2=-ln x2,
(3)证明:由题设c>1,
设g(x)=1+(c-1)x-cx,
则g'(x)=c-1-cxln c,
ln
令 g'(x)=0,解得 x0=
-1
ln
ln
.
当 x<x0 时,g'(x)>0,g(x)单调递增;
当 x>x0 时,g'(x)<0,g(x)单调递减.
由(2)知 1<
-1
ln

高考数学一轮总复习 第二章 函数、导数及其应用 2.6 对数与对数函数课件 理


D.①②④
13
第十三页,共四十五页。
解析:若 M=N=0,则 logaM,logaN,logaM2,logaN2 无意义,若 logaM2=logaN2, 即 M2=N2,则|M|=|N|,①③④不正确,②正确.
答案:C
14
第十四页,共四十五页。
2.写出下列各式的值: (1)log2 22=________; (2)log53+log513=________; (3)lg 52+2lg 2-12-1=________;
「应用提示研一研」 1.换底公式的两个重要推论
其中 a>0 且 a≠1,b>0 且 b≠1,m,n∈R.
11
第十一页,共四十五页。
2.对数函数的图象与底数大小的比较 如图,作直线 y=1,则该直线与四个函数图象交点的横坐标为相应的底数.故 0 <c<d<1<a<b.由此我们可得到以下规律:在第一象限内从左到右底数逐渐增大.
12
第十二页,共四十五页。
「基础小题练一练」
1.对于 a>0 且 a≠1,下列结论正确的是( )
①若 M=N,则 logaM=logaN; ②若 logaM=logaN,则 M=N; ③若 logaM2=logaN2,则 M=N; ④若 M=N,则 logaM2=logaN2. A.①③
B.②④
C.②
5+(lg 5+lg 2)·lg 3=lg 5+lg 3=lg 15.
∴x=15.
答案:(1)81
5 (2)4
(3)15
23
第二十三页,共四十五页。
对数函数的图象(tú xiànɡ)及应用
[典 例 导 引] (1)函数 y=2log4(1-x)的图象大致是( )
(2)若不等式(x-1)2<logax 在 x∈(1,2)内恒成立,则实数 a 的取值范围为________.

2014届步步高大一轮复习讲义二.2.7

§2.7 函数的图像2014高考会这样考 1.考查基本初等函数的图像;2.考查图像的性质及变换;3.考查图像的应用.复习备考要这样做 1.会画一次函数、二次函数、反比例函数、指数函数、对数函数的图像;2.掌握常见的平移、伸缩、对称三种图像变换;3.利用图像解决一些方程解的个数,不等式解集等问题,巩固数形结合思想.1. 描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图像. 2. 图像变换(1)平移变换(2)对称变换①y =f (x )――→关于x 轴对称y =-f (x ); ②y =f (x )――→关于y 轴对称y =f (-x ); ③y =f (x )――→关于原点对称y =-f (-x );④y =a x (a >0且a ≠1)――→关于y =x 对称y =log a x (a >0且a ≠1). (3)翻折变换①y =f (x )――――――――――→保留x 轴上方图像将x 轴下方图像翻折上去y =|f (x )|. ②y =f (x )――――――――――――→保留y 轴右边图像,并作其关于y 轴对称的图像y =f (|x |). (4)伸缩变换①y =f (x )y =f (ax ).②y =f (x )y =af (x ). [难点正本 疑点清源]1. 数形结合的思想方法是学习函数内容的一条主线,也是高考考查的热点.作函数图像首先要明确函数图像的形状和位置.2. 图像的每次变换都针对自变量而言,如从f (-2x )的图像到f (-2x +1)的图像是向右平移12个单位.其中的x 变成x -12.3. 要理解一个函数的图像自身的对称性和两个不同函数图像对称关系的不同.1. 函数y =1-1x -1的图像是( )答案 B解析 将y =-1x 的图像向右平移1个单位,再向上平移一个单位,即可得到函数y =1-1x -1的图像. 2. 已知图①中的图像对应的函数为y =f (x ),则图②的图像对应的函数为( )A .y =f (|x |)B .y =|f (x )|C .y =f (-|x |)D .y =-f (|x |)答案 C解析 y =f (-|x |)=⎩⎪⎨⎪⎧f (-x ),x ≥0f (x ),x <0.3. 函数y =2x -x 2的图像大致是( )答案 A解析 由于2x -x 2=0在x <0时有一解;在x >0时有两解,分别为x =2和x =4.因此函数y =2x -x 2有三个零点,故应排除B 、C.又当x →-∞时,2x →0,而x 2→+∞,故y =2x -x 2→-∞,因此排除D.故选A.4. (2012·湖北)已知定义在区间[0,2]上的函数y =f (x )的图像如图所示,则y =-f (2-x )的图像为( )答案 B解析 当x =1时,y =-f (1)=-1,排除A 、C. 当x =2时,y =-f (0)=0,故选B.5. 若直线y =x +b 与曲线y =3-4x -x 2有公共点,则b 的取值范围是( )A.[]-1,1+22B.[]1-22,1+22C.[]1-22,3D.[]1-2,3答案 C解析 由y =3-4x -x 2, 得(x -2)2+(y -3)2=4(1≤y ≤3).∴曲线y =3-4x -x 2是半圆,如图中实线所示. 当直线y =x +b 与圆相切时, |2-3+b |2=2. ∴b =1±2 2. 由图可知b =1-2 2.∴b 的取值范围是[]1-22,3.题型一 作函数图像例1 分别画出下列函数的图像:(1)y =|lg x |; (2)y =2x +2;(3)y =x 2-2|x |-1; (4)y =x +2x -1.思维启迪:根据一些常见函数的图像,通过平移、对称等变换可以作出函数图像.解 (1)y =⎩⎪⎨⎪⎧lg x (x ≥1),-lg x (0<x <1)图像如图①.(2)将y =2x 的图像向左平移2个单位.图像如图②.(3)y =⎩⎪⎨⎪⎧x 2-2x -1 (x ≥0)x 2+2x -1 (x <0).图像如图③.(4)因y =1+3x -1,先作出y =3x 的图像,将其图像向右平移1个单位,再向上平移1个单位,即得y =x +2x -1的图像,如图④.探究提高 (1)熟练掌握几种基本函数的图像,如二次函数、反比例函数、指数函数、对数函数、幂函数、形如y =x +1x 的函数;(2)掌握平移变换、伸缩变换、对称变换、翻折变换、周期变换等常用的方法技巧,来帮助我们简化作图过程.作出下列函数的图像: (1)y =|x -2|(x +1);(2)y =10|lg x |. 解 (1)当x ≥2,即x -2≥0时, y =(x -2)(x +1)=x 2-x -2=⎝⎛⎭⎫x -122-94; 当x <2,即x -2<0时,y =-(x -2)(x +1)=-x 2+x +2=-⎝⎛⎭⎫x -122+94.∴y =⎩⎨⎧⎝⎛⎭⎫x -122-94,x ≥2,-⎝⎛⎭⎫x -122+94,x <2.这是分段函数,每段函数的图像可根据二次函数图像作出(如图). (2)当x ≥1时,lg x ≥0,y =10|lg x |=10lg x =x ;当0<x <1时,lg x <0,y =10|lg x |=10-lg x=10lg 1x =1x.∴y =⎩⎪⎨⎪⎧x ,x ≥1,1x ,0<x <1.这是分段函数,每段函数的图像可根据正比例函数或反比例函数图像作出(如图). 题型二 识图、辨图例2 函数f (x )=1+log 2x 与g (x )=21-x 在同一直角坐标系下的图像大致是( )思维启迪:在同一坐标系中判断两个函数的图像,可利用两个函数的单调性、对称性或特征点来判断. 答案 C解析 f (x )=1+log 2x 的图像由函数f (x )=log 2x 的图像向上平移一个单位而得到,所以函数图像经过(1,1)点,且为单调增函数,显然,A 项中单调递增的函数经过点(1,0),而不是(1,1),故不满足;函数g (x )=21-x =2×⎝⎛⎭⎫12x ,其图像经过(0,2)点,且为单调减函数,B 项中单调递减的函数与y 轴的交点坐标为(0,1),故不满足;D 项中两个函数都是单调递增的,故也不满足.综上所述,排除A ,B ,D.故选C.探究提高 函数图像的识辨可从以下方面入手:(1)从函数的定义域,判断图像的左右位置;从函数的值域,判断图像的上下位置; (2)从函数的单调性,判断图像的变化趋势; (3)从函数的奇偶性,判断图像的对称性; (4)从函数的周期性,判断图像的循环往复; (5)从函数的特征点,排除不合要求的图像.(1)函数y =x +cos x 的大致图像是( )(2)定义在R 上的偶函数f (x )的部分图像如图所示,则在(-2,0)上,下列函数中与f (x )的单调性不同的是 ( )A .y =x 2+1B .y =|x |+1C .y =⎩⎪⎨⎪⎧2x +1,x ≥0x 3+1,x <0D .y =⎩⎪⎨⎪⎧e x ,x ≥0e -x ,x <0答案 (1)B (2)C解析 (1)∵y ′=1-sin x ≥0, ∴函数y =x +cos x 为增函数,排除C. 又当x =0时,y =1,排除A ,当x =π2时,y =π2,排除D.∴选B.(2)f (x )在(-2,0)上为减函数,可逐个验证. 题型三 函数图像的应用 例3 已知函数f (x )=|x 2-4x +3|.(1)求函数f (x )的单调区间,并指出其增减性;(2)求集合M ={m |使方程f (x )=m 有四个不相等的实根}.思维启迪:利用函数的图像可直观得到函数的单调性,方程解的问题可转化为函数图像交点的问题.解 f (x )=⎩⎪⎨⎪⎧(x -2)2-1, x ∈(-∞,1]∪[3,+∞)-(x -2)2+1, x ∈(1,3) 作出函数图像如图.(1)函数的增区间为[1,2],[3,+∞); 函数的减区间为(-∞,1],[2,3].(2)在同一坐标系中作出y =f (x )和y =m 的图像,使两函数图像有四个不同的交点(如图). 由图知0<m <1,∴M ={m |0<m <1}.探究提高 (1)利用图像,可观察函数的对称性、单调性、定义域、值域、最值等性质. (2)利用函数图像可以解决一些形如f (x )=g (x )的方程解的个数问题.(1)(2011·课标全国)已知函数y =f (x )的周期为2,当x ∈[-1,1]时f (x )=x 2,那么函数y =f (x )的图像与函数y =|lg x |的图像的交点共有( )A .10个B .9个C .8个D .1个(2)直线y =1与曲线y =x 2-|x |+a 有四个交点,则a 的取值范围是________. 答案 (1)A (2)1<a <54解析 (1)观察图像可知,共有10个交点.(2)y =⎩⎪⎨⎪⎧x 2-x +a ,x ≥0,x 2+x +a ,x <0,作出图像,如图所示.此曲线与y 轴交于(0,a )点,最小值为a -14,要使y =1与其有四个交点,只需a -14<1<a ,∴1<a <54.高考中的函数图像及应用问题1. 已知函数解析式确定函数图像典例:(5分) (2012·课标全国)已知函数f (x )=1ln (x +1)-x,则y =f (x )的图像大致为( )考点分析 本题考查识图能力,考查对函数性质的灵活应用. 求解策略 策略一 (函数性质法)函数f (x )满足x +1>0,ln(x +1)-x ≠0,即x >-1且ln(x +1)-x ≠0,设g (x )=ln(x +1)-x ,则g ′(x )=1x +1-1=-x x +1.由于x +1>0,显然当-1<x <0时,g ′(x )>0,当x >0时,g ′(x )<0,故函数g (x )在x =0处取得极大值,也是最大值,故g (x )≤g (0)=0,当且仅当x =0时,g (x )=0,故函数f (x )的定义域是(-1,0)∪(0,+∞),且函数g (x )在(-1,0)∪(0,+∞)上的值域为(-∞,0),故函数f (x )的值域也是(-∞,0),且在x =0附近函数值无限小,观察各个选项中的函数图像,只有选项B 中的图像符合要求. 策略二 (特殊值检验法)当x =0时,函数无意义,排除选项D 中的图像,当x =1e -1时,f ⎝⎛⎭⎫1e -1=1ln ⎝⎛⎭⎫1e -1+1-⎝⎛⎭⎫1e -1=-e<0,排除选项A 、C 中的图像,故只能是选项B 中的图像.(注:这里选取特殊值x =⎝⎛⎭⎫1e -1∈(-1,0),这个值可以直接排除选项A 、C ,这种取特值的技巧在解题中很有用处) 答案 B解后反思 (1)确定函数的图像,要从函数的性质出发,利用数形结合的思想. (2)对于给出图像的选择题,可以结合函数的某一性质或特殊点进行排除. 2. 函数图像的变换问题 典例:(5分)若函数y=f(x)的图像如图所示,则函数y=-f(x+1)的图像大致为()考点分析本题考查图像的变换问题,函数图像的变换有平移变换、伸缩变换、对称变换,要理解函数图像变换的实质,每一次变换都针对自变量“x”而言.求解策略要想由y=f(x)的图像得到y=-f(x+1)的图像,需要先将y=f(x)的图像关于x 轴对称得到y=-f(x)的图像,然后再向左平移一个单位得到y=-f(x+1)的图像,根据上述步骤可知C正确.答案 C解后反思对图像的变换问题,从f(x)到f(ax+b),可以先进行平移变换,也可以先进行伸缩变换,要注意变换过程中两者的区别.三、图像应用典例:(10分)讨论方程|1-x|=kx的实数根的个数.考点分析本题考查绝对值的意义,考查分类讨论思想和数形结合思想.求解策略可以利用函数图像确定方程实数根的个数.规范解答解设y=|1-x|,y=kx,则方程的实根的个数就是函数y=|1-x|的图像与y=kx的图像交点的个数.[3分]由右边图像可知:当-1≤k<0时,方程没有实数根;[6分]当k=0或k<-1或k≥1时,方程只有一个实数根;[8分]当0<k<1时,方程有两个不相等的实数根.[10分]解后反思利用函数图像确定方程或不等式的解,形象直观,体现了数形结合思想;解题中要注意对方程适当变形,选择适当的函数作图.方法与技巧1. 列表描点法是作函数图像的辅助手段,要作函数图像首先要明确函数图像的位置和形状:(1)可通过研究函数的性质如定义域、值域、奇偶性、周期性、单调性等等;(2)可通 过函数图像的变换如平移变换、对称变换、伸缩变换等;(3)可通过方程的同解变形,如作函数y =1-x 2的图像. 2. 合理处理识图题与用图题(1)识图对于给定函数的图像,要从图像的左右、上下分布范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性,注意图像与函数解析式中参数的关系. (2)用图函数图像形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.常用函数图像研究含参数的方程或不等式解集的情况. 失误与防范1.作图要准确、要抓住关键点.2.当图形不能准确地说明问题时,可借助“数”的精确,注重数形结合的数学思想方法的运用.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. 为了得到函数y =12log 2(x -2)的图像,可将函数y =log 2x 的图像上所有点的( )A .纵坐标缩短到原来的12倍,横坐标不变,再向右平移2个单位长度B .纵坐标缩短到原来的12倍,横坐标不变,再向左平移2个单位长度C .横坐标伸长到原来的2倍,纵坐标不变,再向右平移2个单位长度D .横坐标伸长到原来的2倍,纵坐标不变,再向左平移2个单位长度答案 A解析 由y =log 2x ,y =12log 2x ,y =12log 2(x -2)可知,需将y =log 2x 图像上的点的纵坐标缩短到原来的12倍,横坐标不变,再向右平移2个单位长度得到函数y =12log 2(x -2)的图像.2. 把函数y =(x -2)2+2的图像向左平移1个单位,再向上平移1个单位,所得图像对应的函数的解析式是( )A .y =(x -3)2+3B .y =(x -3)2+1C .y =(x -1)2+3D .y =(x -1)2+1 答案 C解析 函数y =(x -2)2+2的图像向左平移1个单位,将其中的x 换为x +1,得到函数y =(x -1)2+2的图像;再向上平移1个单位,变成y =(x -1)2+3的图像.3. 若函数f (x )=log a (x +b )的大致图像如图所示,其中a ,b (a >0且a ≠1)为常数,则函数g (x )=a x +b 的大致图像是( )答案 B解析 由f (x )=log a (x +b )的图像知0<a <1,0<b <1,则g (x )=a x +b 为减函数且g (x )的图像是在y =a x 图像的基础上上移b 个单位,只有B 适合.4.(2011·陕西)设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x +2)=f (x ),则y =f (x )的图像可能是( )答案 B解析 由于f (-x )=f (x ),所以函数y =f (x )是偶函数,图像关于y 轴对称,所以A 、C 错误;由于f (x +2)=f (x ),所以T =2是函数y =f (x )的一个周期,D 错误.所以选B. 二、填空题(每小题5分,共15分) 5.已知下列曲线:以及编号为①②③④的四个方程:①x -y =0;②|x |-|y |=0;③x -|y |=0;④|x |-y =0.请按曲线A 、B 、C 、D 的顺序,依次写出与之对应的方程的编号________. 答案 ④②①③解析 按图像逐个分析,注意x 、y 的取值范围.6.(理)如图所示,正四棱柱ABCD —A 1B 1C 1D 1中,AA 1=2,AB =1,M ,N 分别在AD 1,BC 上移动,始终保持MN ∥平面DCC 1D 1,设BN =x ,MN =y ,则函数y =f (x )的图像大致是________.答案 ③解析 过M 作ME ⊥AD 于E ,连接EN . 则BN =AE =x ,ME =2x ,MN 2=ME 2+EN 2,即y 2=4x 2+1,y 2-4x 2=1 (0≤x ≤1,y ≥1),图像应是焦点在y 轴上的双曲线的一部分. 7. (2011·北京)已知函数f (x )=⎩⎪⎨⎪⎧2x , x ≥2,(x -1)3, x <2.若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是________.答案 (0,1)解析 画出分段函数f (x )的图像如图所示,结合图像可以看出,若f (x )=k 有两个不同的实根,也即函数y =f (x )的图像与y =k 有两个不同的交点,k 的取值范围为(0,1). 三、解答题(共22分)8. (10分)已知函数f (x )=x1+x.(1)画出f (x )的草图;(2)指出f (x )的单调区间.解 (1)f (x )=x 1+x =1-1x +1,函数f (x )的图像是由反比例函数y =-1x 的图像向左平移1个单位后,再向上平移1个单位得到,图像如图所示.(2)由图像可以看出,函数f (x )有两个单调递增区间: (-∞,-1),(-1,+∞).9. (12分)已知函数f (x )的图像与函数h (x )=x +1x+2的图像关于点A (0,1)对称.(1)求f (x )的解析式;(2)若g (x )=f (x )+ax,且g (x )在区间(0,2]上为减函数,求实数a 的取值范围.解 (1)设f (x )图像上任一点P (x ,y ),则点P 关于(0,1)点的对称点P ′(-x,2-y )在h (x )的图像上,即2-y =-x -1x +2,∴y =f (x )=x +1x (x ≠0).(2)g (x )=f (x )+ax =x +a +1x ,g ′(x )=1-a +1x 2.∵g (x )在(0,2]上为减函数,∴1-a +1x 2≤0在(0,2]上恒成立,即a +1≥x 2在(0,2]上恒成立,∴a +1≥4,即a ≥3,故a 的取值范围是[3,+∞).B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. 函数f (x )=⎩⎪⎨⎪⎧3x,x ≤1,log 13x ,x >1,则y =f (x +1)的图像大致是( )答案 B解析 将f (x )的图像向左平移一个单位即得到y =f (x +1)的图像. 2. 函数y =f (x )与函数y =g (x )的图像如图则函数y =f (x )·g (x )的图像可能是( )答案 A解析 从f (x )、g (x )的图像可知它们分别为偶函数、奇函数,故f (x )·g (x )是奇函数,排除B 项.又g (x )在x =0处无意义,故f (x )·g (x )在x =0处无意义,排除C 、D 两项. 3. (2011·课标全国)函数y =11-x的图像与函数y =2sin πx (-2≤x ≤4)的图像所有交点的横坐标之和等于( )A .2B .4C .6D .8答案 D解析 令1-x =t ,则x =1-t .由-2≤x ≤4,知-2≤1-t ≤4,所以-3≤t ≤3. 又y =2sin πx =2sin π(1-t )=2sin πt .在同一坐标系下作出y =1t和y =2sin πt 的图像.由图可知两函数图像在[-3,3]上共有8个交点,且这8个交点两两关于原点对称. 因此这8个交点的横坐标的和为0,即t 1+t 2+…+t 8=0.也就是1-x 1+1-x 2+…+1-x 8=0, 因此x 1+x 2+…+x 8=8. 二、填空题(每小题5分,共15分)4. (2012·课标全国改编)当0<x ≤12时,4x <log a x ,则a 的取值范围是________.答案 ⎝⎛⎭⎫22,1解析 易知0<a <1,则由函数y =4x 与y =log a x 的大致图像知,只需满足log a 12>2,解得a >22,∴22<a <1. 5. 用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x ,x +2,10-x }(x ≥0),则f (x )的最大值为________. 答案 6解析 f (x )=min{2x ,x +2,10-x }(x ≥0)的图像如图.令x +2=10- x ,得x =4.当x =4时,f (x )取最大值,f (4)=6.6. 设b >0,二次函数y =ax 2+bx +a 2-1的图像为下列之一,则a 的值为________.答案 -1解析 先根据条件对图像进行判断是解题的关键.因为b >0,所以对称轴不与y 轴重合,排除图像①②;对第三个图像,开口向下,则a <0,对称轴x =-b2a >0,符合条件,图像④显然不符合.根据图像可知,函数过原点,故f (0)=0,即a 2-1=0,又a <0,故a =-1. 三、解答题7. (13分)已知函数y =f (x )的定义域为R ,并对一切实数x ,都满足f (2+x )=f (2-x ).(1)证明:函数y =f (x )的图像关于直线x =2对称; (2)若f (x )是偶函数,且x ∈[0,2]时,f (x )=2x -1, 求x ∈[-4,0]时f (x )的表达式.(1)证明 设P (x 0,y 0)是函数y =f (x )图像上任一点,则y 0=f (x 0),点P 关于直线x =2的对称点为P ′(4-x 0,y 0). 因为f (4-x 0)=f [2+(2-x 0)]=f [2-(2-x 0)]=f (x 0)=y 0, 所以P ′也在y =f (x )的图像上,所以函数y =f (x )的图像关于直线x =2对称. (2)解 当x ∈[-2,0]时,-x ∈[0,2], 所以f (-x )=-2x -1.又因为f (x )为偶函数, 所以f (x )=f (-x )=-2x -1,x ∈[-2,0]. 当x ∈[-4,-2]时,4+x ∈[0,2], 所以f (4+x )=2(4+x )-1=2x +7, 而f (4+x )=f (-x )=f (x ),所以f (x )=2x +7,x ∈[-4,-2].所以f (x )=⎩⎪⎨⎪⎧2x +7,x ∈[-4,-2],-2x -1,x ∈[-2,0].。

人教A版高考总复习一轮理科数学精品课件第3章解答题专项 第2课时 利用导数研究不等式恒(能)成立问题


2
2
(2)若f(x)≥ax + (a≠0)在区间(0,+∞)上恒成立,求a的最小值.

(1)证明:要证f(x)≥x-1,只需证f(x)-x+1≥0,
令g(x)=f(x)-x+1=xln x-x+1,定义域为(0,+∞),g'(x)=ln x,
令g'(x)=ln x>0得x>1,故函数g(x)在(1,+∞)上单调递增,
出a的最大值;若不存在,请说明理由.
1
1-
解:(1)f(x)的定义域为(0,+∞),f'(x)= -1= .


令f'(x)=0,得x=1,当x∈(0,1)时,f'(x)>0,f(x)单调递增,当x∈(1,+∞)时,f'(x)<0,
f(x)单调递减,因此f(x)在x=1时,取得最大值f(1)=-1.
1
∴所求三角形的面积为2
×2×
−2
−1
2
=e-1.
−2
,0
e−1
,
(2)(方法 1 分类讨论法)∵f(x)=aex-1-ln x+ln a,
x-1 1
∴f'(x)=ae - ,且 a>0.
设 g(x)=f'(x),则 g'(x)=ae
1
+ 2 >0,∴g(x)=f'(x)在(0,+∞)上单调递增.
下面证明当a≥1时,f(x)≥1恒成立.
令T(a)=aex-1-ln x+ln a,只需证当a≥1时,T(a)≥1恒成立.
∵T'(a)=e
1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档