实验六十七 原电池电动势的测定及其应用

合集下载

【最新精选】物理化学实验-电池电动势的测定实验报告

【最新精选】物理化学实验-电池电动势的测定实验报告

原电池电动势的测定与应用华南师范大学化学与环境学院合作: 指导老师:林晓明一、实验目的①掌握电位差计的测量原理和原电池电动势的测定方法;②加深对可逆电池,可逆电极、盐桥等概念的理解;③测定电池(Ⅰ)及电池(Ⅱ)的电动势;④了解可逆电池电动势测定的应用。

二、实验原理1.用对消法测定原电池电动势:原电池电动势不能能用伏特计直接测量,因为电池与伏特计连接后有电流通过,就会在电极上发生极化,结果使电极偏离平衡状态。

另外,电池本身有内阻,所以伏特计测得的只是不可逆电池的端电压。

而测量可逆电池的电动势,只能在无电流(或极小电流)通过电池的情况下进行,因此采用对消法(又叫补偿法)。

对消法是在待测电池上并联一个大小相等、方向相反的外加电源,这样待测电池中没有电流通过,外加电源的大小即等于待测电池的电动势。

本实验使用的电动势测量仪器是SDC型数字电位差计,它是利用对消法原理设计的。

2.原电池电动势测定:电池的书写习惯是左方为负极,右方为正极。

负极进行氧化反应,正极进行还原反应。

如果电池反应是自发的,则电池电动势为正。

符号“|”表示两相界面,“||”表示盐桥。

在电池中,电极都具有一定的电极电势。

当电池处于平衡态时,两个电极的电极电势只差就等于该可你电池的电动势,规定电池的电动势等于正、负电极的电极电势之差,即E=φ+-φ-式中,E是原电池的电动势。

φ+、φ-分别代表正、负极的电极电势。

根据电极电位的能斯特方程,有Oϕϕ=-RT/ZF·ln(α还原/α氧化)+Oϕϕ=-RT/ZF·ln(α还原/α氧化)电池(Ⅰ)Hg|Hg2Cl2(s)|KCl(饱和)‖AgNO3(0.02mol/L)|Ag负极反应:Hg + Cl-(饱和)−→− 1/2Hg2Cl2 + e-正极反应:Ag+ + e-−→− Ag总反应:Hg + Cl-(饱和)+ Ag+ −→−1/2Hg2Cl2 + Ag根据电极电位的能斯特公式,正极银电极的电极电位:φAg/Ag+ = φθAg/Ag+ + 0.05916V lgɑAg+其中φθAg/Ag+ = 0.799 - 0.00097(t-25)又因AgNO3 浓度很稀,ɑAg+≈ [Ag+] = 0.02负极饱和甘汞电极电位因其氯离子浓度在一定温度下是个定值,故其电极电位只与温度有关,其关系式:φ饱和甘汞 = 0.2415 - 0.00065(t–25)而电池电动势 E = φ+ - φ-;可以算出该电池电动势的理论值。

物理化学实验-电池电动势的测定实验报告

物理化学实验-电池电动势的测定实验报告

原电池电动势的测定与应用华南师范大学化学与环境学院合作: 指导老师:林晓明一、实验目的①掌握电位差计的测量原理和原电池电动势的测定方法;②加深对可逆电池,可逆电极、盐桥等概念的理解;③测定电池(Ⅰ)及电池(Ⅱ)的电动势;④了解可逆电池电动势测定的应用。

二、实验原理1.用对消法测定原电池电动势:原电池电动势不能能用伏特计直接测量,因为电池与伏特计连接后有电流通过,就会在电极上发生极化,结果使电极偏离平衡状态。

另外,电池本身有内阻,所以伏特计测得的只是不可逆电池的端电压。

而测量可逆电池的电动势,只能在无电流(或极小电流)通过电池的情况下进行,因此采用对消法(又叫补偿法)。

对消法是在待测电池上并联一个大小相等、方向相反的外加电源,这样待测电池中没有电流通过,外加电源的大小即等于待测电池的电动势。

本实验使用的电动势测量仪器是SDC型数字电位差计,它是利用对消法原理设计的。

2.原电池电动势测定:电池的书写习惯是左方为负极,右方为正极。

负极进行氧化反应,正极进行还原反应。

如果电池反应是自发的,则电池电动势为正。

符号“|”表示两相界面,“||”表示盐桥。

在电池中,电极都具有一定的电极电势。

当电池处于平衡态时,两个电极的电极电势只差就等于该可你电池的电动势,规定电池的电动势等于正、负电极的电极电势之差,即E=φ+-φ-式中,E是原电池的电动势。

φ+、φ-分别代表正、负极的电极电势。

根据电极电位的能斯特方程,有Oϕ=-RT/ZF·ln(αϕ+还原/α氧化)Oϕ=-RT/ZF·ln(αϕ-还原/α氧化)电池(Ⅰ)Hg|Hg2Cl2(s)|KCl(饱和)‖AgNO3(0.02mol/L)|Ag− 1/2Hg2Cl2 + e-负极反应:Hg + Cl-(饱和)−→正极反应:Ag+ + e-−→− Ag总反应:Hg + Cl-(饱和)+ Ag+ −→−1/2Hg2Cl2 + Ag根据电极电位的能斯特公式,正极银电极的电极电位:φAg/Ag+ = φθAg/Ag+ + 0.05916V lgɑAg+其中φθAg/Ag+ = 0.799 - 0.00097(t-25)又因AgNO3 浓度很稀,ɑAg+ ≈ [Ag+] = 0.02负极饱和甘汞电极电位因其氯离子浓度在一定温度下是个定值,故其电极电位只与温度有关,其关系式:φ饱和甘汞 = 0.2415 - 0.00065(t–25)而电池电动势 E = φ+ - φ-;可以算出该电池电动势的理论值。

电池电动势的测定及其应用实验报告

电池电动势的测定及其应用实验报告

电池电动势的测定及其应用一、实验目的:1.了解对消法测定电池电动势的原理;2.掌握电动势测定难溶物溶度积(K SP )的方法;3.掌握常用参比电极银一氯化银电极的制备方法。

二、实验原理:电池由两个半电池组成(半电池包括一个电极和相应的电解质溶液)当电池放电时,进行氧化反应的是负极,进行还原反应的是正极。

电池的电动势就是通过电池的电流趋近于零时两极之间的电位差。

它可表示成:E E E式中 E 、 E 分别表示正、负电极的电位。

当温度、压力恒定时,电池的电动势E(或电极电位 E 、 E )的大小取决于电极的性质和溶液中有关离子的活度。

电极电位与有关离子活度之间的关系可以由Nernst 方程表示:RTE E ln a B B(16-1)zF B式中:z 为电池反应的转移电子数,B为参加电极反应的物质 B 的化学计量数,产物B为正,反应物 B 为负。

本实验涉及的两个电池为:(1)(一)Ag(s),AgCl(s)│KCl(0.0200 mol L·-1)││ AgNO 3(0.0100 mol L·-1)│Ag(s)(+)(2)(一)Hg(l),Hg2Cl2(s)│KCl(饱和)││ AgNO3(0.0100 mol L·-1)│ Ag(s)(+)在上述电池中用到的三个电极是:(1银电电极反应1:Ag (0.01mol L 1) e Ag16-2)E Ag /Ag E AgRT /Ag F ln a Ag其中:E Ag /Ag 0.79910.00097(t 25) V式中:t 为摄氏温度(下同),(2)甘汞电极:电极反应:HgCl 2 (s) 2e 2Hg(l) 2Cl (a Cl)(16-3)E Hg 2Cl 2(s)/Hg E Hg 2Cl 2(s)/HgFlna Cl 对于饱和甘汞电极,温度一定时, a Cl为定值,因此饱和甘汞电极电位与 温度有关,其关系式为: E Hg 2Cl 2(s)/Hg 0.2415 0.00065(t 25) V(3) 银—氯化银电极电极反应AgCl(s) e Ag Cl (a C' l )(16-4)根据溶度积关系式 a A 'ga C' lK sp 得E{ AgCl( s) / Ag}RT ' E {Ag / Ag} R F Tln a 'AgRT KspE {Ag / Ag} ln 'spF a C' lRT RTE {Ag /Ag}F lnK sp F ln a C 'lRT '式中:E { AgCl ( s)/ Ag}RTE {Ag / Ag} ln K SP 0.2224 0.000645(t 25) V由上式可见,利用 Nernst 关系式可求得难溶盐的溶度积常数,为此我们将16-2)、( 16-4)两个电极连同盐桥组成电池(Ⅰ) ,其电动势可表示为:E E E=E Ag /Ag E AgCl(s)/AgRT RT RT=E { Ag /Ag} F ln a(E {Ag / Ag} ln K SP F F lna )RTRT= ln FK SP F ln(a Ag a cl )整理得:EFKSP aAg aclexp RT(16-6) 因此,给定电池 (I)中左右半电池活度 a C 'l和a Ag,若测得电池(I )的电动势,依上式即可求出 AgCl 的溶度积常数电池电动势一般采用 Poggendorff 对消法测定。

电动势的测定及其应用(实验报告).doc

电动势的测定及其应用(实验报告).doc

实验报告 电动势的测定及其应用一.实验目的1.掌握对消法测定电动势的原理及电位差计,检流计及标准电池使用注意事项及简单原理。

2.学会制备银电极,银~氯化银电极,盐桥的方法。

3.了解可逆电池电动势的应用。

二.实验原理原电池由正、负两极和电解质组成。

电池在放电过程中,正极上发生还原反应,负极则发生氧化反应,电池反应是电池中所有反应的总和。

电池除可用作电源外,还可用它来研究构成此电池的化学反应的热力学性质,从化学热力学得知,在恒温、恒压、可逆条件下,电池反应有以下关系: △r G m =-nFE式中△r G m 是电池反应的吉布斯自由能增量;n 为电极反应中电子得失数;F 为法拉第常数;E 为电池的电动势。

从式中可知,测得电池的电动势E 后,便可求得△r G m ,进而又可求得其他热力学参数。

但须注意,首先要求被测电池反应本身是可逆的,即要求电池的电极反应是可逆的,并且不存在不可逆的液接界。

同时要求电池必须在可逆情况下工作,即放电和充电过程都必须在准平衡状态下进行,此时只允许有无限小的电流通过电池。

因此,在用电化学方法研究化学反应的热力学性质时,所设计的电池应尽量避免出现液接界,在精确度要求不高的测量中,常用“盐桥”来减小液接界电势。

为了使电池反应在接近热力学可逆条件下进行,一般均采用电位差计测量电池的电动势。

原电池电动势主要是两个电极的电极电势的代数和,如能分别测定出两个电极的电势,就可计算得到由它们组成的电池电动势。

附【实验装置】(阅读了解)UJ25型电位差计UJ25型箱式电位差计是一种测量低电势的电位差计,其测量范围为mV .V 1171-μ(1K 置1⨯档)或mV V 17110-μ(1K 置10⨯档)。

使用V V 4.6~7.5外接工作电源,标准电池和灵敏电流计均外接,其面板图如图5.8.2所示。

调节工作电流(即校准)时分别调节1p R (粗调)、2p R (中调)和3p R (细调)三个电阻转盘,以保证迅速准确地调节工作电流。

物化实验报告电池电动势的测定及其应用

物化实验报告电池电动势的测定及其应用

物化实验报告电池电动势的测定及其应用
一、实验目的
1.学习和掌握电池电动势的测定原理。

2.掌握配制电池电解液的方法。

3.掌握电池电动势的应用。

二、实验原理
电池电动势是一种原子尺度上发生的势能,它是由电池电解质本身引起的力,由阴、阳极及电解质联合而成。

当它处于静止状态时,电池内部的电解质有特定的分布,并在这个分布状态下,具有一定的势能,这就是电池电动势。

实验中使用的电解质为硝酸铵和乙酸,电池的构造为硝酸铵(阴极)+银/银离子(阳极)。

两个电极分别在不同的溶液中,在实验条件下,通过电池的电解,在一定的条件下,将会发生电解反应:
阴极:2NH4NO3(aq)→2NH4+(aq)+2NO3-(aq)
阳极:2Ag+(aq)→2Ag(s)+2e-
两个反应路径相互影响,使得阴极的电解质离子浓度比阳极的电解质离子浓度低。

由于阴极电解质迁移到阳极,因此电池内部产生电势,从而产生电能。

三、实验步骤
1.准备实验药品:用适量的硝酸铵、乙酸及银离子溶液,准备实验所需的电解液。

2.配制电解液:将硝酸铵和乙酸按照比例混合,然后在其中加入银离子溶液,搅拌均匀即可得到电解液。

3.连接电池:将电解液填满电池双极夹。

原电池电动势的测定与应用

原电池电动势的测定与应用

原电池电动势的测定与应用 (应用物理化学实验报告)【实验目的】1) 掌握电位差计的测量原理和测量电池电动势的方法;2) 掌握电动势法测定化学反应热力学函数变化值的有关原理和方法; 3) 加深对可逆电池,可逆电极、盐桥等概念的理解; 4) 测定电池(1)的电动势;5) 了解可逆电池电动势测定的应用;6) 根据可逆热力学体系的要求设计可逆电池,测定其在不同温度下的电动势值,计算电池反应的热力学函数△G 、△S 、△H 。

【实验原理】1.对消法测定原电池电动势:原电池电动势不能能用伏特计直接测量,因为电池与伏特计连接后有电流通过,就会在电极上发生极化,结果使电极偏离平衡状态。

另外,电池本身有内阻,所以伏特计测得的只是不可逆电池的端电压。

而测量可逆电池的电动势,只能在无电流(或极小电流)通过电池的情况下测定。

对消法是在待测电池上并联一个大小相等、方向相反的外加电源,这样待测电池中没有电流通过,外加电源的大小即等于待测电池的电动势。

2.电池电动势测定原理:Hg| Hg 2Cl 2(s)| KCl( 饱和 ) || AgNO 3 (0.02 mol/L)|Ag 根据电极电位的能斯特公式,正极银电极的电极电位:+++-=Ag Ag Ag Ag Ag a F RT 1ln//θϕϕ 其中 θϕAg/Ag+ =0.799-0.00097(t-25.0) 又因AgNO 3浓度很稀02.0][=≈++Ag Ag α 负极饱和甘汞电极电位:ϕ饱和甘汞=θϕ饱和甘汞--Cl a F RT 1ln因其氯离子浓度在一定温度下是个定值,故其电极电位只与温度有关,其关系式:ϕ饱和甘汞 = 0.2415 - 0.00065(t –25.0)而电池电动势 E =ϕ+ - ϕ-;可以算出该电池电动势的理论值。

与测定值比较即可。

3. 注意事项①重复测量中须注意盐桥的两端不能对调; ②电极不要接反;【实验仪器及用品】1.实验仪器SDC 数字电位差计、 饱和甘汞电极、 光亮铂电极、 U 形管银电极、 250mL 烧杯、 20mL 烧杯 2.实验试剂0.02mol/L 的硝酸银溶液、饱和氯化钾溶液、硝酸钾、琼脂【实验步骤 】1.制备盐桥3%琼脂-饱和硝酸钾盐桥的制备方法:在250mL 烧杯中,加入100mL 蒸馏水和3g 琼脂,盖上表面皿,放在石棉网上用小火加热至近沸,继续加热至琼脂完全溶解。

物理化学实验电池电动势的测定及应用实验报告和完整实验数据

实验名称:电动势的测定及其应用实验目的:加深对可逆电池,可逆电极、盐桥等概念的理解;熟悉有关电动势的基本计算,学会用电动势法测定溶液的pH值实验原理:在恒温、恒压、可逆条件下,电池反应有满足∆G=−nFE;同时被测电池反应本身是可逆的,即只有无限小的电流通过电池;使用盐桥,减少液接电势;用补偿法原理设计的电势差计进行测量操作步骤:数据处理:<项目1>查阅文献数据,铜锌原电池标准电极电势理论值为1.108V,实测0.943V,实测值偏小<项目2>根据公式pH=0.4536−E0.0591,代入上述实验数据,可以得到:0.05mol/L的HAc溶液pH值为3.0360.10mol/L的HAc溶液pH值为2.865分析与讨论:1.每次测完电解质溶液温度,须将温度探头取出,避免探头腐蚀,2.勿将电极插入电解池底部,以免搅拌子损坏电极;同时测量电动势时需关闭搅拌,以保证溶液平稳思考题::电位差计,是按照对消法测量原理设计的一种平衡式电学测量装置,能直接给出待T1测电池的电动势值,测定时电位差计按钮按下的时间应尽量短,以防止电流通过而改变电极表面的平衡状态;标准电池,是用来校准工作电流以标定补偿电阻上的电位降;检流计,用来检验电动势是否对消,在测量过程中,若发现检流计受到冲击,应迅速按下短路按钮,以保护检流计;工作电池,为整个电路提供电源,其值不应小于标准电池或待测电池的值:电池,包括工作电池、标准电池和待测电池的正负极接反了;电路中的某处有断路;T2标准电池或待测电池的电动势大于工作电池的电动势,超出了测量范围:对消补偿法;原理,在一待测电池上并联一个大小相等,方向相反的外加电动势与T3电池电压相抗,减缓电池反应的进行,使得回路中的电流趋于零或待测电池中没有电流流过,外加电势差的大小即为待测电池的电动势:用盐桥将两溶液连接后,盐桥两端有两个液接界面,扩散作用以高浓度电解质的阴T4阳离子为主,而其是盐桥中电解质阴阳离子迁移速率几乎相等,所以形成的液接电位极小,可基本消除液接电势T:使甘汞电极电势增大,造成测定的原电池电动势偏小5:采用最后三次的数据,是因为电池开始使用时电动势会比较大,再往后面电动势会T6比较趋于稳定,再取其平均值得出的数据误差较小。

原电池电动势测定及应用

原电池电动势测定及应用原电池是一种能够将化学能转化为电能的装置。

常见的原电池有干电池、铅酸蓄电池、镉镍蓄电池等。

原电池的电动势是指,在电池内部两个不同电极材料之间,由于电化学反应而产生的电压差。

电动势越大,电池的输出电流和电能就越大,电池的性能也就越好。

本文将介绍原电池电动势的测定方法和其应用。

1. 理论计算法原电池电动势可通过化学反应式计算。

例如,在铅酸蓄电池中,反应式为Pb + PbO2 + 2H2SO4 → 2PbSO4 + 2H2O,化学反应式中所涉及的各元素的标准电极电势都是可以测定的。

因此,可以通过这些标准电极电势,计算出铅酸蓄电池的电动势。

2. 电位差法电位差法是通过将原电池与标准电池相比较,从而测定原电池电动势的一种方法。

假设现在要测量一个铅酸蓄电池的电动势,可以将该电池的电极接到标准氢电极上,并将另一电极与标准铜电极相连。

然后通过电桥法或伏安法测出两电极之间的电位差,从而计算出原电池的电动势。

3. 外施电势法外施电势法是一种直接测量原电池电动势的方法。

首先将原电池的电极接到电阻上,然后将其另一端连接到外部电源的正极上,使得原电池与外部电源并联。

通过调节外部电源的电势差,使得原电池电路中的电流为0,此时外部电源的电势差即为原电池的电动势。

原电池电动势的测定方法可以应用于电池的性能评估、研究和开发。

在电池的生产过程中,需要对电池电动势进行测定,以保证电池的性能能够满足设计要求。

在电池的研究和开发中,电动势的测定可以帮助研究人员评估不同电化学反应条件下的原电池电动势,从而优化电池的性能,提高其效率和能量密度。

在实际应用中,原电池的电动势可以用于驱动电子元件和机械设备等。

例如,在闪光灯中,闪光灯电路中的闪光灯管需要较高的电压来激发气体放电,电动势较高的铅酸蓄电池可以满足这个要求。

在无线传感器网络中,原电池电动势可以用来提供稳定的电源,使得传感器节点能够长时间工作。

总之,原电池电动势的测定和应用可以帮助我们更好地认识和应用电池,从而更好地满足我们的日常和工业生产需求。

原电池电动势的测定及其应用

2012年02 月28 日总评:姓名:学校:陕西师范大学年级:2010级专业:材料化学室温:10.0℃大气压: 100kpa一、实验名称:原电池电动势的测定及其应用二、实验目的:(1)掌握可逆电池电动势的测量原理和电位差计的操作技术;(2)学会几种电极和盐桥的制备方法;(3)通过原电池电动势的测定求算有关热力学函数;三、实验原理:原电池是由正,负两个电极和相应电解质溶液组成,电池反应中正极起还原作用,负极起氧化作用,电池反应是电池中两个电极反应的总和。

电池电动势不能直接用伏特计来测量,因为当伏特计与待测电池接通后,整个线路中便有电流通过,电池内部由于存在内电阻而产生某一电位降,并在电池两极发生化学反应,溶液浓度发生变化,电动势数值不稳定,所以只有在无电流通过的情况下进行测定,即采用对消法。

实验电路图如下:四、实验数据及处理:1、各电池电动势测量结果表1 各电池电动势测量结果根据上表实验数据作图:从上图中可以看出:= –0.00009解相关热力学函数:2、如果在25℃测得以下:Ag(s)+AgCl(s)|HCl(0.100 mol⋅L-1)‖AgNO3(0.100 mol⋅L-1)|Ag(s) 原电池电动势值为0.53868V,试求该温度下AgCl的K sp。

解:四、讨论思考:1.选择盐桥应注意什么问题?2.用Zn(Hg)与Cu组成电池时,有人认为Zn表面有Hg,因而Cu应为负极,Hg为正极,该说法是否正确,为什么?可能用到的知识点:(Δr G m)T,P= -Nfe (1)(2)(3)解:银电极反应: Ag++ e-→Ag银-氯化银电极反应: Ag + Cl-→AgCl+e-总的电池反应为: Ag++Cl-→AgCl①又②式②中n=1,在纯水中AgCl溶解度极小,所以活度积就等于溶度积。

所以:③③代入②,化简之有:④答:盐桥可以使得电池在可逆条件下工作,即充放电在准平衡状态下工作,只有无限小的电流通过电池。

原电池电动势的测定实验报告

原电池电动势的测定实验报告实验目的本实验的目的是通过测量原电池的电动势,了解原电池的工作原理以及电池的特性。

实验所用仪器1.伏特计2.电阻箱3.开关4.导线5.原电池实验原理原电池是由两种不同金属及它们的溶液所组成的,例如锌和铜片。

在原电池中,金属片和溶液之间形成了化学反应,产生了电子流动的电位差。

这个电位差被称为电动势(Electromotive Force, EMF)。

测量原电池的电动势可以帮助我们了解电池的性能。

实验步骤1.将伏特计连接到原电池的正负极上,确保正负极与伏特计的正负极相连。

2.使用电阻箱连接原电池的直流电路,并在电阻箱中设置合适的阻值。

3.打开开关,让电流通过原电池。

4.使用伏特计测量电路中的电压,记录测量结果。

5.根据欧姆定律,通过测量的电压和已知的电阻值,计算电路中的电流。

6.将测量的电流和电动势进行比较,得出原电池的电动势。

实验数据记录电压 (V)电流 (A)0.50.20.60.30.70.40.80.50.90.51.00.6数据处理与分析根据测量数据计算得到的电路中的电流如下: | 电压 (V) | 电流 (A) | |———-|———-| | 0.5 | 0.2 | | 0.6 | 0.3 | | 0.7 | 0.4 | | 0.8 | 0.5 | | 0.9 | 0.5 | | 1.0 | 0.6 |根据欧姆定律,电动势可以通过测量的电流和已知的电阻值计算得到。

根据实验数据,可以得出电动势与电路中的电流之间的关系如下: | 电流 (A) | 电动势 (V) | |———-|———–| | 0.2 | 0.5 | | 0.3 | 0.6 | | 0.4 | 0.7 | | 0.5 | 0.8 | | 0.5 | 0.9 | | 0.6 | 1.0 |通过绘制电流与电动势的关系图,可以观察到二者之间的线性关系。

根据图像的斜率和截距,可以进一步分析电池的特性和性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档