2014浙江省温州市中考数学试题及答案(Word解析版)
2014年中考数学压轴题精编--浙江篇(试题及答案)

2014年中考数学压轴题精编—浙江篇1.(浙江省杭州市)在平面直角坐标系xOy 中,抛物线的解析式是y =41x2+1,点C 的坐标为(-4,0),平行四边形OABC 的顶点A ,B 在抛物线上,AB 与y 轴交于点M ,已知点Q (x ,y )在抛物线上,点P (t ,0)在x 轴上. (1)写出点M 的坐标; (2)当四边形CMQP 是以MQ ,PC 为腰的梯形时.①求t 关于x 的函数解析式和自变量x 的取值范围;②当梯形CMQP 的两底的长度之比为1 :2时,求t 的值.1.解: (1)∵OABC 是平行四边形,∴AB ∥OC ,且=OC =4∵A ,B 在抛物线上,y 轴是抛物线的对称轴,∴A ,B 的横坐标分别是2和-2代入y =41x2+1,得A (2,2),B (-2,2)∴M (0,2) ················································· 2分(2)①过点Q 作QH ⊥x 轴于H ,连接CM 则QH =y ,PH =x -t由△PHQ ∽△COM ,得:2y =4tx ,即t =x -2y ∵Q (x ,y )在抛物线y =41x2+1上∴t =-21x2+x -2 ··········································· 4分当点P 与点C 重合时,梯形不存在,此时,t =-4,解得x =1±5 当Q 与B 或A 重合时,四边形为平行四边形,此时,x =±2∴x 的取值范围是x ≠1±5且x ≠±2的所有实数 ········································· 6分 ②分两种情况讨论:ⅰ)当CM >PQ 时,则点P 在线段OC 上∵CM ∥PQ ,CM =2PQ ,∴点M 纵坐标为点Q 纵坐标的2倍即2=2(41x2+1),解得x =0∴t =-21×02+0-2=-2 ········································································· 8分ⅱ)当CM <PQ 时,则点P 在OC 的延长线上∵CM ∥PQ ,CM =21PQ ,∴点Q 纵坐标为点M 纵坐标的2倍即41x2+1=2×2,解得:x =±32·························································· 10分 当x =-32时,得t =-21×(-32)2-32-2=-8-32当x =32时,得t =-21×(32)2+32-2=32-8 ································ 12分2.(浙江省台州市)如图1,Rt △ABC ≌Rt △EDF ,∠ACB =∠F =90°,∠A =∠E =30°.△EDF 绕着边AB 的中点D 旋转,DE ,DF 分别交线段..AC 于点M ,K . (1)观察:①如图2、图3,当∠CDF =0°或60°时,AM +CK _______MK (填“>”,“<”或“=”).xy OB C A 11 P Q M xyOBC A11P QH M②如图4,当∠CDF =30°时,AM +CK _______MK (只填“>”或“<”).(2)猜想:如图1,当0°<∠CDF <60°时,AM +CK _______MK ,证明你所得到的结论.(3)如果MK 2+CK 2=AM 2,请直接写出∠CDF 的度数和AMMK的值.2.解:(1)①= ②> ···················································································· 4分 (2)> ································································································ 6分 证明:作点C 关于FD 的对称点G ,连接GK 、GM 、GD 则GD =CD ,GK =CK ,∠GDK =∠CDK ∵D 是AB 的中点,∴AD =CD =GD ∵∠A =30°,∴∠CDA =120°∵∠EDF =60°,∴∠GDM +∠GDK =60° ∠ADM +∠CDK =60°∴∠ADM =∠GDM . ·············································································· 9分 又∵DM =DM ,∴△ADM ≌△GDM ,∴GM =AM∵GM +GK >MK ,∴AM +CK >MK . ······················································· 10分 (3)∠CDF =15°,AMMK=23. ···························································· 12分3.(浙江省台州市)如图,Rt △ABC 中,∠C =90°,BC =6,AC =8.点P ,Q 都是斜边AB 上的动点,点P 从B 向A 运动(不与点B 重合),点Q 从A 向B 运动,BP =AQ .点D ,E 分别是点A ,B 以Q ,P 为对称中心的对称点,HQ ⊥AB 于Q ,交AC 于点H .当点E 到达顶点A 时,P ,Q 同时停止运动.设BP 的长为x ,△HDE 的面积为y .(1)求证:△DHQ ∽△ABC ;(2)求y 关于x 的函数解析式并求y 的最大值; (3)当x 为何值时,△HDE 为等腰三角形?3.解:(1)∵A 、D 关于点Q 成中心对称,HQ ⊥AB , ∴∠HQD =∠C =90°,HD =HA∴∠HDQ =∠A . ··················································································· 3分 ∴△DHQ ∽△ABC . ··············································································· 4分 (2)①如图1,当0<x≤2.5时ED =10-4x ,QH =AQ ·tan ∠A =43x D B C A F E M K 图1 DB C A (F ,K ) E M图2 D B C A F E K 图3(M )D B C A FE M K 图4DBC AFEMKG此时y =21(10-4x )·43x =-23x2+415x ······················································ 6分当x=45时,y 最大=3275 ················································· 7分 ②如图2,当2.5<x≤5时ED =4x -10,QH =AQ ·tan ∠A =43x 此时y =21(4x -10)·43x =23x2-415x ······························ 9分 当x =5时,y 最大=475∴y 与x 之间的函数解析式为y =⎪⎩⎪⎨⎧-+-x x x x 415234152322 y 的最大值是475. ····················································· 10分(3)①如图1,当0<x≤2.5时若DE =DH ,∵DH =AH =A QA ∠cos =45x ,DE =10-4x∴10-4x =45x ,∴x =2140显然ED =EH ,HD =HE 不可能; ····························································· 11分 ②如图2,当2.5<x≤5时若DE =DH ,则4x -10=45x ,∴x =1140; ·················································· 12分若HD =HE ,此时点D ,E 分别与点B ,A 重合,x =5; ································ 13分若ED =EH ,则△EDH ∽△HDA∴DH ED =AD DH ,即x x 45104-=x x245,∴x =103320 ············································ 14分 ∴当x 的值为2140,1140,5,103320时,△HDE 是等腰三角形.4.(浙江省温州市)如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,过点B 作射线BB l ∥AC .动点D 从点A 出发沿射线AC 方向以每秒5个单位的速度运动,同时动点E 从点C 出发沿射线AC 方向以每秒3个单位的速度运动.过点D 作DH ⊥AB 于H ,过点E 作EF 上AC 交射线BB 1于F ,G 是EF 中点,连结DG .设点D 运动的时间为t 秒.(1)当t 为何值时,AD =AB ,并求出此时DE 的长度; (2)当△DEG 与△ACB 相似时,求t 的值;(3)以DH 所在直线为对称轴,线段AC 经轴对称变换后 的图形为A ′C ′. ①当t >53时,连结C ′C ,设四边形ACC ′A ′的面积为S , 求S 关于t 的函数关系式;②当线段A ′C ′与射线BB 1有公共点时,求t 的取值范围(写出答案即可).4.解:(1)∵∠ACB =90°,AC =3,BC =4∴AB =2243+=5 ················································································ 1分∵AD =5t ,CE =3t ,∴当AD =AB 时,5t =5∴t =1 ·································································································· 2分BH G F B 1(0<x≤2.5)(2.5<x≤5)(图1)(图2)∴AE =AC +CE =3+3t =6 ········································································ 3分 ∴DE =6-5=1 ······················································································ 4分 (2)∵EF =BC =4,G 是EF 中点,∴GE =2当AD <AE (即t <23)时,DE =AE -AD =3+3t -5t =3-2t若△DEG 与△ACB 相似,则EG DE =BC AC 或EG DE =ACBC∴223t -=43或223t -=34∴t =43或t =61 ······················································································ 6分当AD >AE (即t >23)时,DE =AD -AE =5t -(3+3t )=2t -3若△DEG 与△ACB 相似,则EG DE =BC AC 或EG DE =ACBC∴232-t =43或232-t =34∴t =49或t =617 ····················································································· 8分综上所述,当t =43或61或49或617时,△DEG 与△ACB 相似(3)①由轴对称变换得AA ′⊥DH ,CC ′⊥DH∴AA ′∥CC ′ 易知OC ≠AH ,故AA ′≠CC ′∴四边形ACC ′A ′是梯形 ········································ 9分∵∠A =∠A ,∠AHD =∠ACB =90°∴△AHD ∽△ACB ,AC AH =BC DH =ABAD∴AH =3t ,DH =4t∵sin ∠ADH =sin ∠CDO ,∴AD AH =CDCO即53=35-t CO ,∴CO =3t -59∴AA ′=2AH =6t ,CC ′=2CO =6t -518····················· 10分∵OD =CD ·cos ∠CDO =(5t -3)×54=4t -512 ∴OH =DH -OD =512············································································· 11分∴S =21(AA ′+CC ′ )·OH =21(6t +6t -518)×512=572t -25108 ························· 12分②65≤t≤3043 ····················································· 14分 略解:当点A ′落在射线BB 1上时(如图甲),AA ′=AB =5∴6t =5,∴t =65当点C ′落在射线BB 1上时(如图乙),易得CC ′∥AB 故四边形ACC ′B 是平行四边形∴6t -518=5,∴t =3043故65≤t≤3043D B HA EG F C B 1C ′O A ′B H GF B 1(图乙) C ′ OD B H AE GF C B 1(A ′) (图甲)5.(浙江省湖州市)如图,已知在矩形ABCD 中,AB =2,BC =3,P 是线段AD 边上的任意一点(不含端点A ,D ),连结PC ,过点P 作PE ⊥PC 交AB 于E .(1)在线段AD 上是否存在不同于P 的点Q ,使得QC ⊥QE ?若存在,求线段AP 与AQ 之间的数量关系;若不存在,请说明理由;(2)当点P 在AD 上运动时,对应的点E 也随之在AB 上运动,求BE 的取值范围.5.解:(1)假设存在这样的点Q∵PE ⊥PC ,∴∠APE +∠DPC =90° ∵∠D =90°,∴∠DPC +∠DCP =90°∴∠APE =∠DCP ,又∵∠A =∠D =90°∴△APE ∽△DCP ,∴DC AP =DP AE,∴AP ·DP =AE ·DC 同理可得AQ ·DQ =AE ·DC∴AQ ·DQ =AP ·DP ,即AQ ·(3-AQ )=AP ·(3-AP )∴AP 2-AQ 2=3AP -3AQ ,∴(AP +AQ )(AP -AQ )=3(AP -AQ )∵AP ≠AQ ,∴AP +AQ =3 ·························································· 2分 ∵AP ≠AQ ,∴AP ≠23,即P 不能是AD 的中点∴当P 是AD 的中点时,满足条件的Q 点不存在所以,当P 不是AD 的中点时,总存在这样的点Q 满足条件此时AP +AQ =3 ······································································· 3分 (2)设AP =x ,AE =y ,由AP ·DP =AE ·DC 可得x (3-x )=2y∴y =21x (3-x )=-21x2+23x =-21(x -23)2+89∴当x =23(在0<x <3范围内)时,y 最大值=89∴BE 的取值范围为87≤BE <2 ····················································· 5分6.(浙江省湖州市)如图,已知直角梯形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =AB =2,OC =3,过点B 作BD ⊥BC ,交OA 于点D .将∠DBC 绕点B 按顺时针方向旋转,角的两边分别交y 轴的正半轴、x 轴的正半轴于E 和F .(1)求经过A 、B 、C 三点的抛物线的解析式;(2)当BE 经过(1)中抛物线的顶点时,求CF 的长;(3)连结EF ,设△BEF 与△BFC 的面积之差为S ,问:当CF 为何值时S 最小,并求出这个最小值.B CA P D EB CA PDEQ6.解:(1)由题意得A (0,2),B (2,2),C (3,0) 设所求抛物线的解析式为y =ax2+bx +c则⎩⎪⎨⎪⎧c =24a +2b +c =29a +3b +c =0解得⎩⎨⎧a =-32b =34c =2·························································· 3分∴抛物线的解析式为y =-32x2+34x +2 (4)(2)设抛物线的顶点为G ,则G (1,38),过点G 作GH ⊥AB 则AH =BH =1,GH =38-2=32∵EA ⊥AB ,GH ⊥AB ,∴EA ∥GH ∴GH 是△BEA 的中位线,∴EA =2GH =34·····························过点B 作BM ⊥OC 于M ,则BM =OA =AB∵∠EBF =∠ABM =90°,∴∠EBA =∠FBM =90°-∠ABF∴Rt △EBA ≌Rt △FBM ,∴FM =EA =34∵CM =OC -OM =3-2=1,∴CF =FM +CM =37········································ 8分(3)设CF =a ,则FM =a -1或1-a ∴BF 2=FM 2+BM 2=(a -1)2+22=a2-2a +5∵△EBA ≌△FBM ,∴BE =BF则S △BEF=21BE ·BF =21BF 2=21(a2-2a +5) ··············································· 9分又∵S △BFC=21FC ·BM =21×a ×2=a ························································· 10分∴S=21(a2-2a +5)-a =21a2-2a +25即S=21(a -2)2+21·············································································· 11分∴当a =2(在0<a <3范围内)时,S 最小值=21··························································································· 12分7.(浙江省衢州市、丽水市、舟山市)△ABC 中,∠A =∠B =30°,AB =32.把△ABC 放在平面直角坐标系中,使AB 的中点位于坐标原点O (如图),△ABC 可以绕点O 作任意角度的旋转. (1)当点B 在第一象限,纵坐标是26时,求点B 的横坐标; (2)如果抛物线y =ax2+bx +c (a ≠0)的对称轴经过点C ,请你探究:①当a =45,b =-21,c =-553时,A ,B 两点是否都在这条抛物线上?并说明理由; ②设b =-2am ,是否存在这样的m 的值,使A ,B 两点不可能同时在这条抛物线上?若存在,直接写出m 的值;若不存在,请说明理由.7.解:(1)∵点O 是AB 的中点,∴OB =21AB =3 ··········································· 1分 设点B 的横坐标是x (x >0),则x2+(26)2=(3)2 ······························· 2分解得x 1=26,x 2=-26(舍去) ∴点B············································· 4分(2)①当a =45,b =-21,c =-553时, 得y =45x2-21x -553 即y =45( x -55)2-20513 ···································· 5分 以下分两种情况讨论情况1:设点C 在第一象限(如图甲),则点C 的横坐标为55OC =OB ·tan30°=3×33=1 ································ 6分由此,可求得点C 的坐标为(55,552) ················ 7分点A 的坐标为(-5152,515)∵A ,B 两点关于原点对称,∴点B 的坐标为(5152,-515)将x =-5152代入y =45x2-21x -553,得y =515,即等于点A 的纵坐标; 将x =5152代入y =45x2-21x -553,得y =-515,即等于点B 的纵坐标. ∴在这种情况下,A ,B 两点都在抛物线上.························································ 9分 情况2:设点C 在第四象限(如图乙),则点C 的坐标为(55,-552) 点A 的坐标为(5152,515),点B 的坐标为(-5152,-515) ∵当x =5152时,y =-515;当x =-5152时,y =515 ∴A ,B 两点都不在这条抛物线上. ··································································· 10分(情况2另解:经判断,如果A ,B 两点都在这条抛物线上,那么抛物线将开口向下,而已知的抛物线开口向上.所以A ,B 两点不可能都在这条抛物线上)②存在.m 的值是1或-1. ············································································ 12分 (y =a (x -m )2-am2+c ,因为这条抛物线的对称轴经过点C ,所以-1≤m ≤1.当m =±1时,点C 在x 轴上,此时A ,B 两点都在y 轴上.因此当m =±1时,A ,B 两点不可能同时在这条抛物线上)8.(浙江省宁波市)如图1,在平面直角坐标系中,O 是坐标原点,□ABCD 的顶点A 的坐标为(-2,0),点D 的坐标为(0,32),点B 在x 轴的正半轴上,点E 为线段AD 的中点,过点E 的直线l 与x轴(甲)(乙)交于点F ,与射线DC 交于点G . (1)求∠DCB 的度数;(2)当点F 的坐标为(-4,0)时,求点G 的坐标;(3)连结OE ,以OE 所在直线为对称轴,△OEF 经轴对称变换后得到△OEF ′,记直线EF ′与射线DC 的交点为H .①如图2,当点G 在点H 的左侧时,求证:△DEG ∽△DHE ; ②若△EHG 的面积为33,请直接写出点F 的坐标.(1)在Rt △AOD 中,∵tan ∠DAO =AODO=232=3∴∠DAB =60° ··········································································· 2分 ∵四边形ABCD 是平行四边形∴∠DCB =∠DAB =60° ······························································· 3分(2)∵四边形ABCD 是平行四边形∴CD ∥AB ,∴∠DGE =∠AFE 又∵∠DEG =∠AEF ,DE =AE∴△DEG ≌△AEF , ····································································· 4分 ∴DG =AF ,∴AF =OF -OA =4-2=2∴点G 的坐标为(2,32)·························································· 6分 (3)①∵CD ∥AB ,∴∠DGE =∠OFE∵△OEF 经轴对称变换后得到△OEF ′∴∠OFE =∠OF ′E ,∴∠DGE =∠OF ′E ············································ 7分在Rt △AOD 中,∵E 是AD 的中点,∴OE =21AD =AE又∵∠EAO =60°,∴∠EOA =∠AEO =60° 而∠EOF ′=∠EOA =60°,∴∠EOF ′=∠AEO∴AD ∥OF ′ ················································································· 8分 ∴∠OF ′E =∠DEH ,∴∠DEH =∠DGE 又∵∠HDE =∠EDG∴△DEG ∽△DHE ········································································ 9分 ②点F 的坐标为F 1(-13+1,0),F 2(-13-5,0) ················· 12分 解答如下(原题不作要求,仅供参考):过点E 作EM ⊥直线CD 于M ,∵CD ∥AB ,∴∠EDM =∠DAB =60° ∴EM =DE ·sin60°=2×23=3 ∵S △EHG=21GH ·EM =21GH ·3=33∴GH =6(图2)(图1)(备用图)。
浙江新中考2014届中考数学总复习课件(14)三角形

(2013· 长沙 )如果一个三角形的两边长 分别为 2 和 4,则第三边长可能是( A. 2 B. 4 C. 6 B ) D. 8
考点二
三角形的内角和与外角
(2013· 湘西州)如图,一副 分别含有 30° 和 45° 角的两个直角三 角板,拼在一起,其中∠ C= 90° , ∠ B = 45° , ∠ E = 30° , 则∠ BFD 的度数是 ( ) C. 30° D. 10° A. 15° B. 25°
【思路点拨】根据在三角形中任意两边之和大于 第三边,任意两边之差小于第三边,一一验证即可.
方法总结 1.判断三条线段能否组成三角形, 只要用两条较短 的线段相加,如果大于最长的那条就能够组成三角形 . 2.已知两边,求第三边的范围 .第三边的长度应是 大于两边的差而小于两边的和,这样就可求出第三边 长的范围 .
(2013· 襄阳)如图,在△ ABC 中,D 是 BC 延长线上一点,∠ B= 40° ,∠ ACD= 120° ,则∠ A 等于( C )
A. 60°
B. 70°
C. 80°
D. 90°
如图,在△ ABC 中,∠ B=67° ,∠ C = 33° ,AD 是△ ABC 的角平分线,则∠ CAD 的度数为 ( A )
第2课时
三角形
1.(2013· 温州 )下列各组数可能是一个三角形的边 长的是 ( C ) B. 4,5,9 D. 5,5,11 A ) D. 90° A. 1,2,4 C. 4,6,8
2. (2012· 嘉兴 )已知△ ABC 中, ∠ B 是∠ A 的 2 倍, ∠ C 比∠ A 大 20° ,则∠ A 等于 ( A. 40° B. 60° C. 80°
温馨提示 三角形三边关系的应用: 1 判断三条线段能否组成三角形 .若两条较短线 段的长之和大于最长线段的长,则这三条线段可以组 成三角形;反之,则不能组成三角形 . 2已知三角形两边长,可求第三边长的取值范围.
2014年浙江省温州市市直五校协作体中考一模数学试卷及答案

AC B温州市市直五校协作体2014年中考一模数学试卷2014.4参考公式:一元二次方程)0(02≠=++a c bx ax 的求根公式是aacb b x 242-±-=(ac b 42-≥0)一、选择题(本题有10小题,每小题4分,共40分。
每小题只有一个选项多选、错选均 不给分)1.-2的相反数是【 ▲ 】 A.21 B.21- C.2 D.-2 2.化简3a -2a 的结果是 【 ▲ 】A.1B.aC.5aD.5 3. 如图所示,该几何体的俯视图...是【 ▲ 】4. 如图,在平面直角坐标系xOy 中,将点P(3-,5)向右平移单位后所得点Q 的坐标是【 ▲ 】A .(-3.9)B . (-3,1)C .( -7,5)D .(15.如图,Rt △ABC 中,∠C=90°,若AB=5,sinA=53,则AC 的长是【 ▲ 】A. 3B.4C.5D. 66.在某次体育测试中,九年级(1)班6位同学的立定跳远成绩(单位:m )分别为: 1.71,1.85,1.85,1.95,2.10,2.31,则这组数据的众数是【 ▲ 】 A. 1.85 B. 1.90 C. 2.10 D. 2.317. 一次函数y=kx-2的图像经过点(1,3),则k 的值是【 ▲ 】 A .1B .2C .3D .5(第3题图)主视方向第9题图8.温州是著名水乡,河流遍布整个城市.某河流上建有一座美丽的石拱桥(如图).已知桥拱半径OC 为5m ,水面宽AB 为64m ,则石拱桥的桥顶到水面的距离CD 为【 ▲ 】A.64mB. 7mC. 65+ mD.6 m9.如图,边长12的正方形ABCD 中,有一个小正方形EFGH ,其中E 、F 、G 分别在AB 、BC 、FD 上.若BF=3,则小正方形的边长为【 ▲ 】 A.415B.32C. 4D.5 10. 如图,Rt △ABC 中,∠C=90°,AC=3,BC=4. 分别以AB 、AC 、BC 为边在AB 的同侧作正方 形ABEF 、ACPQ 、BDMC ,四块阴影部分的面 积分别为S 1、S 2、S 3、S 4。
【VIP专享】2014年浙江省初中毕业生学业考试(温州市试卷)

[
D. ∠B+∠C
D. 7
D. x 1
D. m2
[
D. 25℃
学习方法报社
源
9. 20 位同学在植树节这天共种了 52 棵树苗,其中男生每人种 3 棵,女生每人种 2 棵,设
男生有 x 人,女生有 y 人,根据题意,列 方程组正确的是( )
x y 52 A. 3x 2 y 20
x y 20 C. 2x 3y 52
A. (0,-4) B. (0,4) C. (2,0) D. (-2,0)
8 . 如图,已知点 A,B,C 在⊙O 上, 为优弧,下列选项中与∠AOB 相
等的是( )
A. 2∠C
B. 4∠B
C. 4∠A
C. 24℃
第 1 页 共 10 页
6.培养学生观察、思考、对比及分析综合的能力。过程与方法1.通过观察蚯蚓教的学实难验点,线培形养动观物察和能环力节和动实物验的能主力要;特2征.通。过教对学观方察法到与的教现学象手分段析观与察讨法论、,实对验线法形、动分物组和讨环论节法动教特学征准的备概多括媒,体继课续件培、养活分蚯析蚓、、归硬纳纸、板综、合平的面思玻维璃能、力镊。子情、感烧态杯度、价水值教观1和.通过学理解的蛔1虫.过观适1、察于程3观阅 六蛔寄.内列察读 、虫生出蚯材 让标容生3根常蚓料 学本教活.了 据见身: 生,师的2、解 问的体巩鸟 总看活形作 用蛔 题线的固类 结雌动态业 手虫 自形练与 本雄学、三: 摸对 学动状习人 节蛔生结4、、收 一人 后物和同类 课虫活构请一蚯集 摸体 回并颜步关 重的动、学、蚓鸟 蚯的 答归色学系 点形教生生让在类 蚓危 问纳。习从 并状学理列学平的害 题线蚯四线人 归、意特出四生面体以形蚓、形类 纳大图点常、五观玻存 表及动的鸟请动文 本小引以见引、察璃现 ,预物身类 3学物明 节有言及的、导巩蚯上状 是防的体之生和历 课什根蚯环怎学固蚓和, 干感主是所列环史 学么据蚓节二样生练引牛鸟 燥染要否以举节揭 到不上适动、区回习导皮类 还的特分分蚯动晓 的同节于物让分答。学纸减 是方征节布蚓物起 一,课穴并学蚯课生上少 湿法。?广的教, 些体所居归在生蚓前回运的 润;4泛益学鸟色生纳.靠物完的问答动原 的4蛔,处目类 习和活环.近在成前题蚯的因 ?了虫以。标就 生体的节身其实端并蚓快及 触解寄上知同 物表内特动体结验和总利的慢我 摸蚯生适识人 学有容点物前构并后结用生一国 蚯蚓在于与类 的什,的端中思端线问活样的 蚓人飞技有 基么引进主的的考?形题环吗十 体生行能着 本特出要几变以动,境?大 节活的1密 方征本“特节化下物.让并为珍 近习会形理切 法。课生征有以问的小学引什稀 腹性态解的 。2课物。什游题主.结生出么鸟 面和起结蛔关观题体么戏:要利明蚯?类 处适哪构虫系察:的特的特用确蚓等 ,于些特适。蛔章形殊形征板,这资 是穴疾点于可虫我态结式。书生种料 光居病是寄的们结构,五小物典, 滑生?重生鸟内学构,学、结的型以 还活5要生类部习与.其习巩鸟结的爱 是如原活生结了功颜消固类构线鸟 粗形何因的存构腔能色化练适特形护 糙态预之结的,肠相是系习于点动鸟 ?、防一构现你动适否统。飞都物为结蛔。和状认物应与的行是。主构虫课生却为和”其结的与题、病本理不蛔扁的他构特环以生?8特乐虫形观部特8征境小理三页点观的动位点梳相组等、这;,哪物教相,理适为方引些2鸟,育同师.知应单面导鸟掌类结了;?生识的位学你握日构解2互.。办特生认线益特了通动手征观识形减点它过,抄;察吗动少是们理生报5蛔?物,与的解.参一了虫它和有寄主蛔与份解结们环些生要虫其。蚯构都节已生特对中爱蚓。会动经活征人培鸟与飞物灭相。类养护人吗的绝适这造兴鸟类?主或应节成趣的为要濒的课情关什特临?就危感系么征灭来害教;?;绝学,育,习使。我比学们它生可们理以更解做高养些等成什的良么两好。类卫动生物习。惯根的据重学要生意回义答;的3.情通况过,了给解出蚯课蚓课与题人。类回的答关:系线,形进动行物生和命环科节学动价环值节观动的物教一育、。根教据学蛔重虫点病1.引蛔出虫蛔适虫于这寄种生典生型活的线结形构动和物生。理二特、点设;置2.问蚯题蚓让的学生生活思习考性预和习适。于穴居生活的形态、结构、生理等方面的特征;3.线形动物和环节动物的主要特征。
浙江省温州市市直五校协作体2014年中考第一次模拟考试数学试卷(word版)

AC B浙江省温州市市直五校协作体2014年中考第一次模拟考试数学试卷 2014.4参考公式:一元二次方程)0(02≠=++a c bx ax 的求根公式是aacb b x 242-±-=(ac b 42-≥0)一、选择题(本题有10小题,每小题4分,共40分。
每小题只有一个选项多选、错选均 不给分)1.-2的相反数是【 ▲ 】 A.21 B.21- C.2 D.-2 2.化简3a -2a 的结果是 【 ▲ 】A.1B.aC.5aD.5 3. 如图所示,该几何体的俯视图...是【 ▲ 】4. 如图,在平面直角坐标系xOy 中,将点P(3-,5)向右平移单位后所得点Q 的坐标是【 ▲ 】A .(-3.9)B . (-3,1)C .( -7,5)D .(15.如图,Rt △ABC 中,∠C=90°,若AB=5,sinA=53,则AC 的长是【 ▲ 】A. 3B.4C.5D. 66.在某次体育测试中,九年级(1)班6位同学的立定跳远成绩(单位:m )分别为: 1.71,1.85,1.85,1.95,2.10,2.31,则这组数据的众数是【 ▲ 】 A. 1.85 B. 1.90 C. 2.10 D. 2.317. 一次函数y=kx-2的图像经过点(1,3),则k 的值是【 ▲ 】(第3题图)主视方向第9题图A .1B .2C .3D .58.温州是著名水乡,河流遍布整个城市.某河流上建有一座美丽的石拱桥(如图).已知桥拱半径OC 为5m ,水面宽AB 为64m ,则石拱桥的桥顶到水面的距离CD 为【 ▲ 】A.64mB. 7mC. 65+ mD.6 m9.如图,边长12的正方形ABCD 中,有一个小正方形EFGH ,其中E 、F 、G 分别在AB 、BC 、FD 上.若BF=3,则小正方形的边长为【 ▲ 】 A.415B.32C. 4D.5 10. 如图,Rt △ABC 中,∠C=90°,AC=3,BC=4. 分别以AB 、AC 、BC 为边在AB 的同侧作正方 形ABEF 、ACPQ 、BDMC ,四块阴影部分的面 积分别为S 1、S 2、S 3、S 4。
【初中数学】浙江省温州地区2014年中考一模数学试卷 浙教版

AC B温州地区2014年中考一模数学试卷2014.4参考公式:一元二次方程)0(02≠=++a c bx ax 的求根公式是aacb b x 242-±-=(ac b 42-≥0)一、选择题(本题有10小题,每小题4分,共40分。
每小题只有一个选项多选、错选均 不给分)1.-2的相反数是【 ▲ 】 A.21 B.21- C.2 D.-2 2.化简3a -2a 的结果是 【 ▲ 】A.1B.aC.5aD.5 3. 如图所示,该几何体的俯视图...是【 ▲ 】4. 如图,在平面直角坐标系xOy 中,将点P(3-,5)向右平移单位后所得点Q 的坐标是【 ▲ 】A .(-3.9)B . (-3,1)C .( -7,5)D .(15.如图,Rt △ABC 中,∠C=90°,若AB=5,sinA=53,则AC 的长是【 ▲ 】A. 3B.4C.5D. 66.在某次体育测试中,九年级(1)班6位同学的立定跳远成绩(单位:m )分别为: 1.71,1.85,1.85,1.95,2.10,2.31,则这组数据的众数是【 ▲ 】 A. 1.85 B. 1.90 C. 2.10 D. 2.317. 一次函数y=kx-2的图像经过点(1,3),则k 的值是【 ▲ 】 A .1B .2C .3D .5(第3题图)主视方向第9题图8.温州是著名水乡,河流遍布整个城市.某河流上建有一座美丽的石拱桥(如图).已知桥拱半径OC 为5m ,水面宽AB 为64m ,则石拱桥的桥顶到水面的距离CD 为【 ▲ 】A.64mB. 7mC. 65+ mD.6 m9.如图,边长12的正方形ABCD 中,有一个小正方形EFGH ,其中E 、F 、G 分别在AB 、BC 、FD 上.若BF=3,则小正方形的边长为【 ▲ 】 A.415B.32C. 4D.5 10. 如图,Rt △ABC 中,∠C=90°,AC=3,BC=4. 分别以AB 、AC 、BC 为边在AB 的同侧作正方 形ABEF 、ACPQ 、BDMC ,四块阴影部分的面 积分别为S 1、S 2、S 3、S 4。
浙江省金华市2014年中考数学试卷及答案【Word解析版】
浙江省金华市2014年中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2014•金华)在数1,0,﹣1,﹣2中,最小的数是()A.1B.0C.﹣1 D.﹣2考点:有理数大小比较.分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣2<﹣1<0<1,故选:D.点评:本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.(3分)(2014•金华)如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直考点:直线的性质:两点确定一条直线.专题:应用题.分析:根据公理“两点确定一条直线”来解答即可.解答:解:经过刨平的木板上的两个点,能弹出一条笔直的墨线此操作的依据是两点确定一条直线.故选A.点评:此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.3.(3分)(2014•金华)一个几何体的三视图如图,那么这个几何体是()A.B.C.D.考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:由于俯视图为圆形可得几何体为球、圆柱或圆锥,再根据主视图和左视图可知几何体为圆柱与圆锥的组合体.故选:D.点评:考查学生对圆锥三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.4.(3分)(2014•金华)一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是()A.B.C.D.考点:概率公式.分析:用红球的个数除以球的总个数即可.解答:解:∵布袋里装有5个球,其中3个红球,2个白球,∴从中任意摸出一个球,则摸出的球是红球的概率是:.故选D.点评:本题考查了概率公式:概率=所求情况数与总情况数之比.5.(3分)(2014•金华)在式子,,,中,x可以取2和3的是()A.B.C.D.考点:二次根式有意义的条件;分式有意义的条件.分析:根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求得x的范围,进行判断.解答:解:A、x﹣2≠0,解得:x≠2,故选项错误;B、x﹣3≠0,解得:x≠3,选项错误;C、x﹣2≥0,解得:x≥2,则x可以取2和3,选项正确;D、x﹣3≥0,解得:x≥3,x不能取2,选项错误.故选C.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.6.(3分)(2014•金华)如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是()A.1B.1.5 C.2D.3考点:锐角三角函数的定义;坐标与图形性质.分析:根据正切的定义即可求解.解答:解:∵点A(t,3)在第一象限,∴AB=3,OB=t,又∵tanα==,∴t=2.故选C.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.7.(3分)(2014•金华)把代数式2x2﹣18分解因式,结果正确的是()A.2(x2﹣9)B.2(x﹣3)2C.2(x+3)(x﹣3)D.2(x+9)(x﹣9)考点:提公因式法与公式法的综合运用.分析:首先提取公因式2,进而利用平方差公式分解因式得出即可.解答:解:2x2﹣18=2(x2﹣9)=2(x+3)(x﹣3).故选:C.点评:此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.8.(3分)(2014•金华)如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是()A.70°B.65°C.60°D.55°考点:旋转的性质.分析:根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C,然后根据旋转的性质可得∠B=∠A′B′C.解答:解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,由旋转的性质得,∠B=∠A′B′C=65°.故选B.点评:本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.9.(3分)(2014•金华)如图是二次函数y=﹣x2+2x+4的图象,使y≤1成立的x的取值范围是()A.﹣1≤x≤3 B.x≤﹣1 C.x≥1 D.x≤﹣1或x≥3考点:二次函数与不等式(组).分析:根据函数图象写出直线y=1下方部分的x的取值范围即可.解答:解:由图可知,x≤﹣1或x≥3时,y≤1.故选D.点评:本题考查了二次函数与不等式,此类题目,利用数形结合的思想求解是解题的关键.10.(3分)(2014•金华)一张圆心角为45°的扇形纸板盒圆形纸板按如图方式分别剪成一个正方形,边长都为1,则扇形和圆形纸板的面积比是()A.5:4 B.5:2 C.:2 D.:考点:正多边形和圆;勾股定理.分析:先画出图形,分别求出扇形和圆的半径,再根据面积公式求出面积,最后求出比值即可.解答:解:如图1,连接OD,∵四边形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=1,∵∠AOB=45°,∴OB=AB=1,由勾股定理得:OD==,∴扇形的面积是=π;如图2,连接MB、MC,∵四边形ABCD是⊙M的内接四边形,四边形ABCD是正方形,∴∠BMC=90°,MB=MC,∴∠MCB=∠MBC=45°,∵BC=1,∴MC=MB=,∴⊙M的面积是π×()2=π,∴π÷(π)=,故选A.点评:本题考查了正方形性质,圆内接四边形性质,扇形的面积公式的应用,解此题的关键是求出扇形和圆的面积,题目比较好,难度适中.二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2014•金华)写出一个解为x≥1的一元一次不等式x+1≥2.考点:不等式的解集.专开放型.题:分析:根据不等式的解集,可得不等式.解答:解:写出一个解为x≥1的一元一次不等式 x+1≥2,故答案为:x+1≥2.点评:本题考查了不等式的解集,注意符合条件的不等式有无数个,写一个即可.12.(4分)(2014•金华)分式方程=1的解是x=2.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:2x﹣1=3,解得:x=2,经检验x=2是分式方程的解.故答案为:x=2.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.(4分)(2014•金华)小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家的速度是每分钟步行80米.考点:函数的图象.分析:先分析出小明家距学校800米,小明从学校步行回家的时间是15﹣5=10(分),再根据路程、时间、速度的关系即可求得.解答:解:通过读图可知:小明家距学校800米,小明从学校步行回家的时间是15﹣5=10(分),所以小明回家的速度是每分钟步行800÷10=80(米).故答案为:80.点评:本题主要考查了函数图象,先得出小明家与学校的距离和回家所需要的时间,再求解.14.(4分)(2014•金华)小亮对60名同学进行节水方法选择的问卷调查(每人选择一项),人数统计如图,如果绘制成扇形统计图,那么表示“一水多用”的扇形圆心角的度数是240°.考点:扇形统计图.分析:用周角乘以一水多用的所占的百分比即可求得其所占的圆心角的度数.解答:解:表示“一水多用”的扇形圆心角的度数是360°×=240°,故答案为:240°.点评:本题考查了扇形统计图的知识,能够从统计图中整理出进一步解题的信息是解答本题的关键.15.(4分)(2014•金华)如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是7.考点:全等三角形的判定与性质;线段垂直平分线的性质;勾股定理;矩形的性质.分析:根据线段中点的定义可得CG=DG,然后利用“角边角”证明△DEG和△CFG全等,根据全等三角形对应边相等可得DE=CF,EG=FG,设DE=x,表示出BF,再利用勾股定理列式求EG,然后表示出EF,再根据线段垂直平分线上的点到两端点的距离相等可得BF=EF,然后列出方程求出x的值,从而求出AD,再根据矩形的对边相等可得BC=AD.解答:解:∵G是CD的中点,AB=8,∴CG=DG=×8=4,在△DEG和△CFG中,,∴△DEG≌△CFG(ASA),∴DE=CF,EG=FG,设DE=x,则BF=BC+CF=AD+CF=4+x+x=4+2x,在Rt△DEG中,EG==,∴EF=2,∵FH垂直平分BE,∴BF=EF,∴4+2x=2,解得x=3,∴AD=AE+DE=4+3=7,∴BC=AD=7.故答案为:7.点评:本题考查了全等三角形的判定与性质,矩形的性质,线段垂直平分线上的点到两端点的距离相等的性质,勾股定理,熟记各性质并利用勾股定理列出方程是解题的关键.16.(4分)(2014•金华)如图2是装有三个小轮的手拉车在“爬”楼梯时的侧面示意图,定长的轮架杆OA,OB,OC抽象为线段,有OA=OB=OC,且∠AOB=120°,折线NG﹣GH﹣HE﹣EF表示楼梯,GH,EF是水平线,NG,HE是铅垂线,半径相等的小轮子⊙A,⊙B与楼梯两边都相切,且AO∥GH.(1)如图2①,若点H在线段OB时,则的值是;(2)如果一级楼梯的高度HE=(8+2)cm,点H到线段OB的距离d满足条件d≤3cm,那么小轮子半径r的取值范围是(11﹣3)cm≤r≤8cm.考点:圆的综合题.分析:(1)作P为⊙B的切点,连接BP并延长,作OL⊥BP于点L,交GH于点M,求出ML,OM,根据=求解,(2)作HD⊥OB,P为切点,连接BP,PH的延长线交BD延长线为点L,由△LDH∽△LPB,得出=,再根据30°的直角三角形得出线段的关系,得到DH和r的关系式,根据0≤d≤3的限制条件,列不等式组求范围.解答:解:(1)如图2①,P为⊙B的切点,连接BP并延长,作OL⊥BP于点L,交GH 于点M,∴∠BPH=∠BPL=90°,∵AO∥GH,∴BL∥AO∥GH,∵∠AOB=120°,∴∠OBL=60°,在RT△BPH中,HP=BP=r,∴ML=HP=r,OM=r,∵BL∥GH,∴===,故答案为:.(2)作HD⊥OB,P为切点,连接BP,PH的延长线交BD延长线为点L,∴∠LDH=∠LPB=90°,∴△LDH∽△LPB,∴=,∵AO∥PB,∠AOD=120°∴∠B=60°,∴∠BLP=30°,∴DL=DH,LH=2DH,∵HE=(8+2)cm∴HP=8+2﹣r,PL=HP+LH=8+2﹣r+2DH,∴=,解得DH=r﹣4﹣1,∵0cm≤DH≤3cm,∴0≤r﹣4﹣1≤3,解得:(11﹣3)cm≤r≤8cm.故答案为:(11﹣3)cm≤r≤8cm.点评:本题主要考查了圆的综合题,解决本题的关键是作出辅助线,运用30°的直角三角形得出线段的关系.三、解答题(共8小题,满分66分)17.(6分)(2014•金华)计算:﹣4cos45°+()﹣1+|﹣2|.考点:实数的运算;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项化为最简二次根式,第二项利用特殊角的三角函数值计算,第三项利用负指数幂法则计算,最后一项利用负指数幂法则计算即可得到结果.解答:解:原式=2﹣4×+2+2=4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2014•金华)先化简,再求值:(x+5)(x﹣1)+(x﹣2)2,其中x=﹣2.考点:整式的混合运算—化简求值.专题:计算题.分析:原式第一项利用多项式乘以多项式法则计算,第二项利用完全平方公式展开,去括号合并得到最简结果,将x的值代入计算即可求出值.解答:解:原式=x2﹣x+5x﹣5+x2﹣4x+4=2x2﹣1,当x=﹣2时,原式=8﹣1=7.点评:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.(6分)(2014•金华)在棋盘中建立如图的直角坐标系,三颗棋子A,O,B的位置如图,它们分别是(﹣1,1),(0,0)和(1,0).(1)如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;(2)在其他格点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个轴对称图形,请直接写出棋子P的位置的坐标.(写出2个即可)考利用轴对称设计图案;坐标与图形性质.点:分析:(1)根据A,B,O,C的位置,结合轴对称图形的性质进而画出对称轴即可;(2)利用轴对称图形的性质得出P点位置.解答:解:(1)如图2所示:直线l即为所求;(2)如图1所示:P(0,﹣1),P′(﹣1,﹣1)都符合题意.点评:此题主要考查了利用轴对称设计图案,正确把握轴对称图形的性质是解题关键.20.(8分)(2014•金华)一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式进行拼接.(1)若把4张、8张这样的餐桌拼接起来,四周分别可坐多少人?(2)若用餐的人数有90人,则这样的餐桌需要多少张?考点:规律型:图形的变化类.分析:(1)根据图形可知,每张桌子有4个座位,然后再加两端的各一个,于是n张桌子就有(4n+2)个座位;由此进一步求出问题即可;(2)由(1)中的规律列方程解答即可.解答:解:(1)1张长方形餐桌的四周可坐4+2=6人,2张长方形餐桌的四周可坐4×2+2=10人,3张长方形餐桌的四周可坐4×3+2=14人,…n张长方形餐桌的四周可坐4n+2人;所以4张长方形餐桌的四周可坐4×4+2=18人,8张长方形餐桌的四周可坐4×8+2=34人.(2)设这样的餐桌需要x张,由题意得4x+2=90解得x=22答:这样的餐桌需要22张.点评:此题考查图形的变化规律,首先应找出哪些部分发生了变化,是按照什么规律变化的,找出规律解决问题.21.(8分)(2014•金华)九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲乙两组,进行了四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘制成如图统计图.根据统计图,解答下列问题:(1)第三次成绩的优秀率是多少?并将条形统计图补充完整;(2)已求得甲组成绩优秀人数的平均数=7,方差=1.5,请通过计算说明,哪一组成绩优秀的人数较稳定?考点:折线统计图;条形统计图;加权平均数;方差.分析:(1)利用优秀率求得总人数,根据优秀率=优秀人数除以总人数计算;(2)先根据方差的定义求得乙班的方差,再根据方差越小成绩越稳定,进行判断.解答:解:(1)总人数:(5+6)÷55%=20,第三次的优秀率:(8+5)÷20×100%=65%,20×85%﹣8=17﹣8=9.补全条形统计图,如图所示:(2)=(6+8+5+9)÷4=7,S2乙组=×【(6﹣7)2+(8﹣7)2+(5﹣7)2+(9﹣7)2】=2.5,S2甲组<S2乙组,所以甲组成绩优秀的人数较稳定.点评:本本题考查了优秀率、平均数和方差等概念以及运用.它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.22.(10分)(2014•金华)【合作学习】如图,矩形ABCD的两边OB,OD都在坐标轴的正半轴上,OD=3,另两边与反比例函数y=(k≠0)的图象分别相交于点E,F,且DE=2.过点E作EH⊥x轴于点H,过点F作FG⊥EH于点G.回答下面的问题:①该反比例函数的解析式是什么?②当四边形AEGF为正方形时,点F的坐标时多少?(1)阅读合作学习内容,请解答其中的问题;(2)小亮进一步研究四边形AEGF的特征后提出问题:“当AE>EG时,矩形AEGF与矩形DOHE能否全等?能否相似?”针对小亮提出的问题,请你判断这两个矩形能否全等?直接写出结论即可;这两个矩形能否相似?若能相似,求出相似比;若不能相似,试说明理由.考点:反比例函数综合题.专题:综合题.分析:(1)①先根据矩形的性质得到D(2,3),然后利用反比例函数图象上点的坐标特征计算出k=6,则得到反比例函数解析式为y=;②设正方形AEGF的边长为a,则AE=AF=6,根据坐标与图形的关系得到B(2+a,0)),A(2+a,3),所以F点坐标为(2+a,3﹣a),于是利用反比例函数图象上点的坐标特征得(2+a)(3﹣a)=6,然后解一元二次方程可确定a的值,从而得到F点坐标;(2)当AE>EG时,假设矩形AEGF与矩形DOHE全等,则AE=OD=3,AF=DE=2,则得到F点坐标为(3,3),根据反比例函数图象上点的坐标特征可判断点F(3,3)不在反比例函数y=的图象上,由此得到矩形AEGF与矩形DOHE不能全等;当AE>EG时,若矩形AEGF与矩形DOHE相似,根据相似的性质得AE:OD=AF:DE,即==,设AE=3t,则AF=2t,得到F点坐标为(2+3t,3﹣2t),利用反比例函数图象上点的坐标特征得(2+3t)(3﹣2t)=6,解得t1=0(舍去),t2=,则AE=3t=,于是得到相似比==.解答:解:(1)①∵四边形ABOD为矩形,EH⊥x轴,而OD=3,DE=2,∴E点坐标为(2,3),∴k=2×3=6,∴反比例函数解析式为y=(x>0);②设正方形AEGF的边长为a,则AE=AF=6,∴B点坐标为(2+a,0)),A点坐标为(2+a,3),∴F点坐标为(2+a,3﹣a),把F(2+a,3﹣a)代入y=得(2+a)(3﹣a)=6,解得a1=1,a2=0(舍去),∴F点坐标为(3,2);(2)当AE>EG时,矩形AEGF与矩形DOHE不能全等.理由如下:假设矩形AEGF与矩形DOHE全等,则AE=OD=3,AF=DE=2,∴A点坐标为(5,3),∴F点坐标为(3,3),而3×3=9≠6,∴F点不在反比例函数y=的图象上,∴矩形AEGF与矩形DOHE不能全等;当AE>EG时,矩形AEGF与矩形DOHE能相似.∵矩形AEGF与矩形DOHE能相似,∴AE:OD=AF:DE,∴==,设AE=3t,则AF=2t,∴A点坐标为(2+3t,3),∴F点坐标为(2+3t,3﹣2t),把F(2+3t,3﹣2t)代入y=得(2+3t)(3﹣2t)=6,解得t1=0(舍去),t2=,∴AE=3t=,∴相似比===.点评:本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、矩形的性质和图形全等的性质、相似的性质;理解图形与坐标的关系;会解一元二次方程.23.(10分)(2014•金华)等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.(1)若AE=CF;①求证:AF=BE,并求∠APB的度数;②若AE=2,试求AP•AF的值;(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.考点:相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质.分析:(1)①证明△ABE≌△CAF,借用外角即可以得到答案;②利用勾股定理求得AF 的长度,再用平行线分线段成比例定理或者三角形相似及求得的比值,即可以得到答案.(2)当点F靠近点C的时候点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形,继而求得半径和对应的圆心角的度数,求得答案.点F靠近点B时,点P的路径就是过点B向AC做的垂线段的长度;解答:(1)①证明:∵△ABC为等边三角形,∴AB=AC,∠C=∠CAB=60°,又∵AE=CF,在△ABE和△CAF中,,∴△ABE≌△CAF(SAS),∴AF=BE,∠ABE=∠CAF.又∵∠APE=∠ABP+∠BAP,∴∠APE=∠BAP+∠CAF=60°.∴∠APB=120°.②如图,过点E作EH∥BC,交AF于H,AM⊥BC,垂足为M,∵AE=CF=2,△ABC为等边三角形,AB=BC=AC=6,∴MF=1,AM=,根据勾股定理,AF=;∵EH∥BC,∴,∴,∴,∴AP•AF===12.(2)①当点F靠近点C的时候点P的路径是一段弧,由题目不难看出当E为AC 的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形,且∠ABP=∠ABP=30°,∴∠AOB=120°,又∵AB=6,∴OA=,点P的路径是.(2)点F靠近点B时,点P的路径就是过点B向AC做的垂线段的长度;因为等边三角形ABC的边长为6,所以点P的路径的长度为:.点评:本题考查了等边三角形性质的综合应用以及相似三角形的判定及性质的应用,解答本题的关键是注意转化思想的运用.24.(12分)(2014•金华)如图,直角梯形ABCO的两边OA,OC在坐标轴的正半轴上,BC∥x轴,OA=OC=4,以直线x=1为对称轴的抛物线过A,B,C三点.(1)求该抛物线的函数解析式;(2)已知直线l的解析式为y=x+m,它与x轴交于点G,在梯形ABCO的一边上取点P.①当m=0时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线l于点H,连结OP,试求△OPH的面积;②当m=﹣3时,过点P分别作x轴、直线l的垂线,垂足为点E,F.是否存在这样的点P,使以P,E,F为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)利用待定系数法求出抛物线的解析式;(2)①如答图1,作辅助线,利用关系式S△OPH=S△OMH﹣S△OMP求解;②本问涉及复杂的分类讨论,如答图2所示.由于点P可能在OC、BC、BK、AK、OA上,而等腰三角形本身又有三种情形,故讨论与计算的过程比较复杂,需要耐心细致、考虑全面.解答:解:(1)由题意得:A(4,0),C(0,4).设抛物线的解析式为y=ax2+bx+c,则有,解得,∴抛物线的函数解析式为:y=﹣x2+x+4.(2)①当m=0时,直线l:y=x.∵抛物线对称轴为x=1,∴CP=1.如答图1,延长HP交y轴于点M,则△OMH、△CMP均为等腰直角三角形.∴CM=CP=1,∴OM=OC+CM=5.S△OPH=S△OMH﹣S△OMP=(OM)2﹣OM•OP=×(×5)2﹣×5×1=﹣=,∴S△OPH=.②当m=﹣3时,直线l:y=x﹣3.设直线l与x轴、y轴交于点G、点D,则G(3,0),D(﹣3,0).假设存在满足条件的点P.a)当点P在OC边上时,如答图2﹣1所示,此时点E与点O重合.设PE=a(0<a≤4),则PD=3+a,PF=PD=(3+a).过点F作FN⊥y轴于点N,则FN=PN=PF,∴EN=|PN﹣PE|=|PF﹣PE|.在Rt△EFN中,由勾股定理得:EF==.若PE=PF,则:a=(3+a),解得a=3(+1)>4,故此种情形不存在;若PF=EF,则:PF=,整理得PE=PF,即a=3+a,不成立,故此种情形不存在;若PE=EF,则:PE=,整理得PF=PE,即(3+a)=a,解得a=3.∴P(0,3).b)当点P在BC边上时,如答图2所示,此时PE=4.设CP=a(0≤a≤2),则P(a,4);设直线PE与直线l交点为Q,则Q(a,a﹣3),∴PQ=7﹣a.∴PF=(7﹣a).与a)同理,可求得:EF=.若PE=PF,则(7﹣a)=4,解得a=7﹣4>2,故此种情形不存在;若PF=EF,则PF=,整理得PE=PF,即4=•(7﹣a),解得a=3>2,故此种情形不存在;若PE=EF,则PE=,整理得PF=PE,即(7﹣a)=4,解得a=﹣1,故此种情形不存在.∵A(4,0),B(2,4),∴可求得直线AB解析式为:y=﹣2x+8;联立y=﹣2x+8与y=x﹣3,解得x=,y=.设直线BC与直线l交于点K,则K(,).c)当点P在线段BK上时,如答图2﹣3所示.设P(a,8﹣2a)(2≤a≤),则Q(a,a﹣3),∴PE=8﹣2a,PQ=11﹣3a,∴PF=(11﹣3a).与a)同理,可求得:EF=.若PE=PF,则8﹣2a=(11﹣3a),解得a=1﹣2<0,故此种情形不存在;若PF=EF,则PF=,整理得PE=PF,即8﹣2a=•(11﹣3a),解得a=3,符合条件,此时P(3,2);若PE=EF,则PE=,整理得PF=PE,即(11﹣3a)=(8﹣2a),解得a=5>,故此种情形不存在.d)当点P在线段KA上时,如答图2﹣4所示.∵PE、PF夹角为135°,∴只可能是PE=PF成立.∴点P在∠KGA的平分线上.设此角平分线与y轴交于点M,过点M作MN⊥直线l于点N,则OM=MN,MD=MN,由OD=OM+MD=3,可求得M(0,3﹣3).又G(3,0),可求得直线MG的解析式为:y=(﹣1)x+3﹣3.联立直线MG:y=(﹣1)x+3﹣3与直线AB:y=﹣2x+8,可求得:P(1+2,6﹣4).e)当点P在OA边上时,此时PE=0,等腰三角形不存在.综上所述,存在满足条件的点P,点P坐标为:(0,3)、(3,2)、(1+2,6﹣4).点评:本题是二次函数压轴题,涉及二次函数的图象与性质、待定系数法、图形面积、勾股定理、角平分线性质等知识点,重点考查了分类讨论的数学思想.第(2)②问中涉及复杂的分类讨论,使得试题的难度较大.。
浙江新中考2014届中考数学总复习课件(5)一次方程与方程组
解:(1)设年降水量为 x 万立方米,每人年平均用 水量为 y 立方米,
12 000+20x=16×20y, 根据题意,得 12 000+15x=20×15y, x=200, y=50.
解得
答:年降水量为 200 万立方米,每人年平均用水 量为 50 立方米.
(2)设该城镇居民年平均用水量为 z 立方米才能实 现目标,12 000+25×200=20×25z,解得 z=34, ∴50-34=16(立方米) 答: 该城镇居民人均每年需要节约 16 立方米的水 才能实现目标.
七巧板拼图 趣题巧解 数学应用 魔方复原 66 89 86 68 66 60 80 68 66 80 90 68
甲 乙 丙
(1)比赛后,甲猜测七巧板拼图、趣题巧解、数学 应用、魔方复原这四项得分分别按 10%,40%,20%, 30% 折算记入总分.根据猜测,求出甲的总分; (2)本次大赛组委会最后决定, 总分为 80 分以上(包 括 80 分)的学生获一等奖.现获悉乙、丙的总分分别 是 70 分,80 分,甲的七巧板拼图、魔方复原两项得分 折算后的分数和是 20 分.问甲能否获得这次比赛一等 奖?
(3)某企业投入 1 000 万元设备,每天能淡化 5 000 立方米海水,淡化率为 70% ,每淡化 1 m3 海水所需的 费用为 1.5 元,政府补贴 0.3 元.企业将淡化水以 3.2 元 /立方米的价格出售, 每年还需各项支出 40 万元. 按 每年实际生产 300 天计算,该企业至少几年后能收回 成本(结果精确到个位 )?
2x+y=8, 3.(2012· 湖州)解方程组 x-y=1. 2x+y=8,① 解: ①+②,得 3x=9,∴x= x-y=1, ②
3.把 x=3 代入②,得 3-y=1,∴y=2,∴原方程组
2014浙江省温州中学高一期中考试数学试题和答案(文创班
温州中学2013学年第二学期期中试卷高一文创班数学试卷一、选择题(每小题4分,共40分) 1.—= ( )A.B.C.D. 22.在ABC ∆中,C b a cos 2=,则ABC ∆一定是( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形3.等差数列}{n a 中,43=++963πa a a ,则=++)4(cos 102πa a ( ) A. 1- B. 22- C. 0 D. 224.已知平面向量)1,1(),1,1(-==b a ,则向量=-2321( )A .(21)--,B .(21)-,C. (1),-2 D .(1)-,2 5.等比数列}{n a 中,若,则等比数列}{n a 的前100项的和为( )A D 6.在中,:sin A ,则的值( )A.41 B.41- C.21- D.217.已知{}n a 是公差为2-的等差数列,若8299963-=++++a a a a ,则97741a a a a ++++ 等于 ( )A .50B . 150C . 50-D . 82-8.若等比数列{}n a 的前n 项和为n S ,且1810=S ,2420=S ,则40S 等于 ( )A.380 B.376 C. 379 D. 382 9.已知直角梯形ABCD 中,AD //BC ,090ADC ∠=,3,2AD BC ==,P 是腰DC 上的动点,则3PA PB +的最小值为( )A .3B .6C .9D .1210.已知ABC ∆的三边c b a ,,,面积S 满足22)(b a c S --=,且2a b +=,则S 的最大值为( ) A .817 B .617 C .517 D .417二、填空题(每小题4分,共20分)11.已知数列{}n a 的前n 项和n n S n 92-=,第k 项满足85<<k a ,则=k . 12.已知{a n }是递增数列,且对任意n ∈N *都有a n =n 2+λn 恒成立,则实数λ的取值范围是_______________. 13.数列{}n a 的通项公式11++=n n a n ,若{}n a 的前n 项和为5,则n 为________.14.已知ABC ∆中,︒=∠30A ,AB ,BC 分别是中项,则ABC ∆的面积等于15.在ABC ∆中,已知C B A 、、成等差数列,且边2=AC ,则⋅的最大值 .三、解答题(本大题共4题,共40分)16.已知数列{}n a 是一个等差数列,且72=a ,15=a 。
浙江省11市中考数学试题分类解析汇编(16专题)专题2:代数之方程(组)和不等式(组)问题
浙江省11市2014年中考数学试题分类解析汇编(16专题)专题2:代数之方程(组)和不等式(组)问题江苏泰州鸣午数学工作室 编辑一、选择题1. (2014年浙江杭州3分)已知边长为a 的正方形面积为8,则下列关于a 的说法中,错误的是【 】A. a 是无理数B. a 是方程2x 80-=的解C. a 是8的算术平方根D. a 满足不等式组a 30a 40->⎧⎨-<⎩【答案】D.【考点】1. 无理数的判定;2. 方程和不等式的解;3. 算术平方根;4.实数的大小比较. 【分析】根据无理数的判定,方程、不等式的解和算术平方根的概念逐一作出判断:A. 由长为a 的正方形面积为8得a 822==a 是无理数. 选项命题正确;B. ∵(2280-=,∴a 是方程2x 80-=的解. 选项命题正确;C. 根据算术平方根的概念知a 是8的算术平方根. 选项命题正确;D. ∵489<<,∴2223<<. ∴a 不满足不等式组a 30a 40->⎧⎨-<⎩. 选项命题错误.故选D.2. (2014年浙江湖州3分)已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为13,则a 等于【 】A .1B .2C .3D .4 【答案】A .【考点】1. 概率;2.方程思想的应用. 【分析】根据题意得:2123a 3=++,解得:a=1,经检验,a=1是原分式方程的解,∴a=1. 故选A .3. (2014年浙江宁波4分)已知命题“关于x 的一元二次方程2x bx 10++=,当b 0<时必有实数解”,能说明这个命题是假命题的一个反例是【 】A. b 1=-B. b 2=C. b 2=-D. b 0=4. (2014年浙江绍兴4分)不等式3x+2>﹣1的解集是【 】A .1x 3->B .1x 3-< C .x 1-> D .x 1-< 【答案】C .【考点】解一元一次不等式.【分析】按照解不等式的运算顺序,先移项,再合并同类项,把x 的系数化为1即可:移项得,3x >﹣1﹣2, 合并同类项得,3x >﹣3, 把x 的系数化为1得,x >﹣1. 故选C .5. (2014年浙江绍兴4分)天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有2个各20克的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图2,则被移动的玻璃球的质量为【 】A .10克B .15克C .20克D .25克 【答案】A .【考点】1.阅读理解型问题;2.一元一次方程的应用.【分析】根据天平仍然处于平衡状态列出一元一次方程求解即可:设左、右侧秤盘中一袋玻璃球的质量分别为m 克、n 克, 根据题意得:m=n+40.设被移动的玻璃球的质量为x 克, 根据题意得:m x n x 20-=++,解得()()1x m n 20n 40n 20102=--=+--=. 故选A .6. (2014年浙江台州4分)将分式方程2x 31x 1x 1-=--去分母,得到正确的整式方程是【 】 A. 12x 3-= B. x 12x 3--= C. 12x 3+= D. x 12x 3-+= 【答案】B . 【考点】去分母法则.【分析】去掉分母,观察可得最简公分母是x ﹣21,方程两边乘最简公分母,可以把分式方程转化为整式方程: ()()()2x 31x 1x 1x 1x 12x 3x 1x 1⋅--⋅-=⋅-⇒--=--. 故选B .7. (2014年浙江温州4分) 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是【 】A. x y 523x 2y 20+=⎧⎨+=⎩ B.x y 522x 3y 20+=⎧⎨+=⎩C. x y 202x 3y 52+=⎧⎨+=⎩D.x y 203x 2y 52+=⎧⎨+=⎩【答案】D .【考点】由实际问题抽象出二元一次方程组.【分析】要列方程(组),首先要根据题意找出存在的等量关系. 本题等量关系为: ①男女生共20人;②男女生共植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.据此列出方程组:x y 203x 2y 52+=⎧⎨+=⎩.故选D .二、填空题1. (2014年浙江杭州4分)设实数x ,y 满足方程组1x y 431x y 23⎧-=⎪⎪⎨⎪+=⎪⎩,则x y += ▲ .2. (2014年浙江湖州4分)方程2x ﹣1=0的解是x= ▲ . 【答案】12. 【考点】解一元一次方程.【分析】根据等式性质计算.即解方程步骤中的移项、系数化为1:移项得:2x=1, 系数化为1得:x=12. 3. (2014年浙江嘉兴5分)方程2x 3x 0-=的根为 ▲ . 【答案】12x 0,x 3== . 【考点】解一元二次方程.【分析】应用因式分解法解方程即可:()212x 3x 0x x 30x 0,x 30x 0,x 3-=⇒-=⇒=-=⇒==4. (2014年浙江金华4分)写出一个解为x 1≥的一元一次不等式 ▲ . 【答案】x 10-≥(答案不唯一). 【考点】1.开放型;2.不等式的解集.【分析】根据不等式的性质,从x≥1逆推即可得到一元一次不等式:x 1x 10≥⇒-≥(答案不唯一).5. (2014年浙江金华4分)分式方程312x 1=-的解是 ▲ . 【答案】x 2=. 【考点】解分式方程.【分析】先去掉分母,观察可得最简公分母是2x ﹣1,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解:3132x 12x 132x 4x 22x 1=⇒=-⇒-=--⇒-=-⇒=-,经检验,x 2=是原方程的解.6. (2014年浙江丽水、衢州4分)有一组数据:3,a ,4,6,7,它们的平均数是5,那么这组数据的方差是 ▲ 【答案】2.【考点】1.平均数;2. 方差;3.方程思想的应用.【分析】根据平均数是5,列方程求出a ,从而根据方差公式求解: ∵数据:3,a ,4,6,7的平均数是5,∴3a 4675a 55++++=⇒=.∴方差()()()()()2222221s 355545657525⎡⎤=-+-+-+-+-=⎣⎦.7. (2014年浙江丽水、衢州4分)如图,某小区规划在一个长30m 、宽20m 的长方形ABCD 上修建三条同样宽的通道,使其中两条与AB 平行,另一条与AD 平行,其余部分种花草。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014浙江省温州市中考数学试题 满分:150分,考试时间:120分钟. 一、选择题(每小题4分,共40分) 1. 计算4)3(的结果是
A. -7 B. -1 C. 1 D. 7 2. 右图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一个组是 A. 5~10元 B. 10~15元 C. 15~20元 D. 20~25元 3. 如图所示的支架是由两个长方体构成的组合体,则它的主视图是
4. 要使分式12xx有意义,则x的取值应满足 A. 2x B. 1x C. 2x D. 1x 5. 计算36mm的结果是 A. 18m B. 9m C. 3m D. 2m 6. 小明记录了一星期每天的最高气温如下表,则这个星期每天最高气温的中位数是 星期 一 二 三 四 五 六 日 最高气温(℃) 22 24 23 25 24 22 21
A. 22℃ B. 23℃ C. 24℃ D. 25℃ 7. 一次函数42xy的图像与y轴交点的坐标是
A. (0,-4) B. (0,4) C. (2,0) D. (-2,0) 8. 如图,已知点A,B,C在⊙O上,为优弧,下列选项中与∠AOB相等的是 A. 2∠C B. 4∠B C. 4∠A D. ∠B+∠C 9. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,列方程组正确的是
A. 523220xyxy B. 522320xyxy C. 202352xyxy D. 203252xyxy 10.如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点重合,在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例
函数(0)kykx中,k的值的变化情况是( ) A.一直增大 B.一直减小 C.先增大后减小 D.先减小后增大 二、填空题(本题有6小题,每小题5分,共30分) 11. 因式分解:aa32 12. 如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3= 度 13. 不等式423x的解是 14. 如图,在△ABC中,∠C=90°,AC=2,BC=1,则tanA的值是
15. 请举反例说明“对于任意实数x,552xx的值总是正数”是假命题,你举的反例是x= (写出一个x的值即可) 16.如图,在矩形ABCD中,AD=8,E是边AB上一点,且AE=14AB,⊙O经过点E,与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在直线相较于另一点F,且EG:EF=5:2.当边AD或BC所在的直线与⊙O相切时,AB的长是 . 三、解答题(本题有8小题,共80分) 17.(本题10分) (1)计算:20122(5)(3)2014;(2)化简:2(1)2(1)aa 18.(本题8分)如图,在所给方格纸中,每个小正方形边长都是1,标号为①,②,③的三个三角形均为格点三角形(顶点在方格顶点处).请按要求将图甲、图乙中的指定图形分割成三个三角形,使它们与标号为①,②,③的三个三角形分别对应全等. (1)图甲中的格点正方形ABCD; (2)图乙中的平行四边形ABCD. 注:图甲、图乙在答题卡上,分割线画成实线.
19.(本题8分)一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球、8个黑球、7个红球. (1)求从袋中摸出一个球是黄球的概率;
(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个黑球的概率是13,求从袋中取出黑球的个数?
20.(本题10分)如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F. (1)求∠F的度数;(2)若CD=2,求DF的长.
21.(本题10分)如图,抛物线cxxy22与x轴交于A,B两点,它们的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F.已知点A的坐标为(-1,0). (1)求该抛物线的解析式及顶点M的坐标; (2)求△EMF与△BNF的面积之比.
22.(本题8分) 勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感.他惊喜地发现:当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明.下面是小聪利用图1证明勾股定理的过程: 将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:222cba. 证明:连结DB,过点D作BC边上的高DF, 则DF=EC=ab,
∵ 21122ADCBACDABCSSSbab四形,
又∵211()22ADCBADBDCBSSScaba四形, ∴ 221111()2222babcaba, ∴ 222cba 请参照上述证法,利用图2完成下面的证明: 将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:222cba. 证明:连结 ∵ ACBEDS多边形 又∵ ACBEDS多边形 ∴ ∴ 222cba. 23.(本题12分)八(1)班五位同学参加学校举办的数学竞赛,试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A、B、C、D、E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表: 参赛同学 答对题数 答错题数 未答题数 A 19 0 1 B 17 2 1 C 15 2 3 D 17 1 2 E / / 7 (1)根据以上信息,求A、B、C、D四位同学成绩的平均分; (2)最后获知:A、B、C、D、E五位同学成绩分别是95分、81分、64分、83分、58分. ①求E同学的答对题数和答错题数; ②经计算:A、B、C、D四位同学实际成绩平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况.请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可).
24.(本题14分)如图,在平面直角坐标系中,点A、B的坐标分别是(-3,0)、(0,6),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP、CO为邻边构造□PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒. (1)当点C运动到线段OB的中点时,求t的值及点E的坐标; (2)当点C在线段OB上时,求证:四边形ADEC为平行四边形; (3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M、N分别在第一、四象限,在运动过程中,设□PCOD的面积为S. ①当点M、N中,有一点落在四边形ADEC的边上时,求出所有满足条件的t的值; ②若点M,N中恰好只有一个点落在四边形ADEC内部(不包括边界)时,直接写出S的取值范围. 2014浙江省温州市中考数学试题 满分:150分,考试时间:120分钟. 一、选择题(每小题4分,满分40分) 1.(4分)(2014浙江温州)计算:(-3)+4的结果是( ) A. -7 B. -1 C. 1 D. 7 考点: 有理数的加法. 分析: 根据异号两数相加,取绝对值较大的数的符号,再用较大的绝对值减去较小的绝对值,可得答案. 解答: 解:原式=+(4-3) =1, 故选:C. 点评: 本题考查了有理数的加法,先确定和的符号,再进行绝对值得运算.
2.(4分)(2014浙江温州)如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是( )
A. 5-10元 B. 10-15元 C. 15-20元 D. 20-25元 考点: 频数(率)分布直方图. 分析: 根据图形所给出的数据直接找出捐款人数最多的一组即可. 解答: 解:根据图形所给出的数据可得: 15-20元的有20人,人数最多, 则捐款人数最多的一组是15-20元; 故选C. 点评: 本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
3.(4分)(2014浙江温州)如图所示的支架是由两个长方形构成的组合体,则它的主视图是( )
A. B. C. D. 考点: 简单组合体的三视图. 分析: 找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中. 解答: 解:从几何体的正面看可得此几何体的主视图是, 故选:D. 点评: 本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
4.(4分)(2014浙江温州)要使分式有意义,则x的取值应满足( ) A. x≠2 B. x≠-1 C. x=2 D. x=-1
考点: 分式有意义的条件. 分析: 根据分式有意义,分母不等于0列式计算即可得解. 解答: 解:由题意得,x-2≠0, 解得x≠2. 故选A. 点评: 本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念: (1)分式无意义⇔分母为零; (2)分式有意义⇔分母不为零; (3)分式值为零⇔分子为零且分母不为零.
5.(4分)(2014浙江温州)计算:m6•m3的结果( ) A. m18 B. m9 C. m3 D. m2
考点: 同底数幂的乘法. 分析: 根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,进行计算即可. 解答: 解:m6•m3=m9.
故选B. 点评: 本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则.
6.(4分)(2014浙江温州)小明记录了一星期天的最高气温如下表,则这个星期每天的最高气温的中位数是( ) 星期 一 二 三 四 五 六 日 最高气温(℃) 22 24 23 25 24 22 21
A. 22℃ B. 23℃ C. 24℃ D. 25℃ 考点: 中位数. 分析: 将数据从小到大排列,根据中位数的定义求解即可. 解答: 解:将数据从小到大排列为:21,22,22,23,24,24,25, 中位数是23. 故选B. 点评: 本题考查了中位数的知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
7.(4分)(2014浙江温州)一次函数y=2x+4的图象与y轴交点的坐标是( ) A. (0,-4) B. (0,4) C. (2,0) D. (-2,0)