江西省宜春市高安市2018届中考数学一模试卷含答案解析

合集下载

2019年江西省宜春市高安市中考数学一模试卷(含参考答案)

2019年江西省宜春市高安市中考数学一模试卷(含参考答案)

2019年江西省宜春市高安市中考数学一模试卷一、选择题(本大题共有6小题,每小题3分,共18分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.﹣3的倒数是( )A.﹣B.C.﹣3D.32.如图1放置的一个机器零件,若其主(正)视图如图2,则其俯视图是( )A.B.C.D.3.已知sin a=,且a是锐角,则a=( )A.75°B.60°C.45°D.30°4.学校开展为贫困地区捐书活动,以下是5名同学捐书的册数:2,2,x,4,9.已知这组数据的平均数是4,则这组数据的中位数和众数分别是( )A.2和2B.4和2C.2和3D.3和25.如图,Rt△ABC中,∠ACB=90°,DE过点C且平行于AB,若∠BCE=35°,则∠A的度数为( )A.35°B.45°C.55°D.65°6.假定有一排蜂房,形状如图,一只蜜蜂在左下角的蜂房中,由于受伤,只能爬,不能飞,而且只能永远向右方(包括右上、右下)爬行,从一间蜂房爬到与之相邻的右蜂房中去.则从最初位置爬到4号蜂房中,不同的爬法有( )A.4种B.6种C.8种D.10种二、填空题(本大题共6个小题,每小题3分,共18分.)7.计算: +2﹣1= .8.我国最长的河流长江全长约为6300千米,用科学记数法表示为 千米.9.若关于x的一元二次方程x2+2x﹣k=0没有实数根,则k的取值范围是 .10.一个圆锥的底面半径为3cm,侧面展开图是半圆,则圆锥的侧面积是 cm2.11.线段AB、CD在平面直角坐标系中的位置如图所示,O为坐标原点.若线段AB上一点P的坐标为(a,b),则直线OP与线段CD的交点的坐标为 .12.如图,在菱形ABCD中,∠B=60°,点E、F分别从点B、D出发以同样的速度沿边BC、DC向点C运动.给出以下四个结论:①AE=AF;②∠CEF=∠CFE;③当点E,F分别为边BC,DC的中点时,△AEF是等边三角形;④当点E,F分别为边BC,DC的中点时,△AEF的面积最大.上述结论中正确的序号有 .(把你认为正确的序号都填上)三、解答题(本大题共5个小题,每小题6分,共30分.解答应写出文字说明、证明过程或演算步骤.)13.解方程:14.如图所示,在正方形网格中,每个小正方形的边长都是1,每个小格点的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)使三角形的三边长分别为3,2,.(2)使三角形为边长都为无理数的钝角三角形且面积为4.15.先化简(1﹣)÷,再从不等式2x﹣1<6的正整数解中选一个适当的数代入求值.16.如图,△ABC与△ABD中,AD与BC相交于O点,∠1=∠2,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC=BD,并给出证明.你添加的条件是: .证明: .17.在试制某种洗发液新品种时,需要选用两种不同的添加剂.现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用.根据试验设计原理,通常要先从芳香度为0,1,2的三种添加剂中随机选取一种,再从芳香度为3,4,5的三种添加剂中随机选取一种,进行搭配试验.请你利用树状图(树形图)或列表的方法,表示所选取两种不同添加剂所有可能出现的结果,并求出芳香度之和等于4的概率.四、(本大题共4小题,每小题8分,共32分.)18.2008年北京奥运会的比赛门票开始接受公众预定.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用12000元预定15张下表中球类比赛的门票:比赛项目票价(元/场)男篮1000足球800乒乓球500(1)若全部资金用来预定男篮门票和乒乓球门票,问这个球迷可以预订男篮门票和乒乓球门票各多少张?(2)若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票与乒乓球门票数相同,且足球门票的费用不超过男篮门票的费用,问可以预订这三种球类门票各多少张?19.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣2,1),B(1,n)两点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出一次函数的值大于反比例函数的值的x的取值范围.20.国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,某市就“你每天在校体育活动时间是多少?”的问题随机调查了辖区内300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5h;B组:0.5h≤t<1h;C组:1h≤t<1.5h;D组:t≥1.5h请根据上述信息解答下列问题:(1)C组的人数是 ;(2)本次调查数据的中位数落在 组内;(3)若该辖区约有24 000名初中学生,请你估计其中达国家规定体育活动时间的人约有多少?21.在平面直角坐标系中,△AOB的位置如图所示,已知∠AOB=90°,AO=BO,点A的坐标为(﹣3,1).(1)求点B的坐标;(2)求过A,O,B三点的抛物线的解析式;(3)设点B关于抛物线的对称轴l的对称点为B1,求△AB1B的面积.五、(本大题共1小题,共10分).22.已知:如图①,②,在矩形ABCD中,AB=4,BC=8,P,Q分别是边BC,CD上的点.(1)如图①,若AP⊥PQ,BP=2,求CQ的长;(2)如图②,若,且E,F,G分别为AP,PQ,PC的中点,求四边形EPGF的面积.六、(本大题共1小题,共12分)23.如图①,②,在平面直角坐标系xOy中,点A的坐标为(4,0),以点A为圆心,4为半径的圆与x 轴交于O,B两点,OC为弦,∠AOC=60°,P是x轴上的一动点,连接CP.(1)求∠OAC的度数;(2)如图①,当CP与⊙A相切时,求PO的长;(3)如图②,当点P在直径OB上时,CP的延长线与⊙A相交于点Q,问PO为何值时,△OCQ是等腰三角形?2019年江西省宜春市高安市中考数学一模试卷参考答案与试题解析一、选择题(本大题共有6小题,每小题3分,共18分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.2.【分析】找到从上面看所到的图形即可.【解答】解:从上面看可得到左右相邻的3个矩形.故选:D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看到的视图.3.【分析】根据sin60°=得出a的值.【解答】解:∵sin a=sin60°=,a是锐角,∴a=60°.故选:B.【点评】本题考查特殊角的三角函数值.特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.4.【分析】根据平均数的定义得到关于x的方程,求x,再根据中位数和众数的定义求解.【解答】解:根据平均数的含义得:=4,所以x=3;将这组数据从小到大的顺序排列(2,2,3,4,9),处于中间位置的数是3,那么这组数据的中位数是3;在这一组数据中2是出现次数最多的,故众数是2.故选:D.【点评】本题为统计题,考查平均数、众数与中位数的意义,解题要细心.5.【分析】题中有三个条件,图形为常见图形,可先由AB∥DE,∠BCE=35°,根据两直线平行,内错角相等求出∠B,然后根据三角形内角和为180°求出∠A.【解答】解:∵AB∥DE,∠BCE=35°,∴∠B=∠BCE=35°(两直线平行,内错角相等),又∵∠ACB=90°,∴∠A=90°﹣35°=55°(在直角三角形中,两个锐角互余).故选:C.【点评】两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.6.【分析】本题应分两种情况考虑:①当蜜蜂先向右爬行时;②当蜜蜂先向右上爬行时;然后将两种情况中所以可能的爬行路线一一列出,即可求出共有多少种不同的爬法.【解答】解:本题可分两种情况:①蜜蜂先向右爬,则可能的爬法有:一、1⇒2⇒4;二、1⇒3⇒4;三、1⇒3⇒2⇒4;共有3种爬法;②蜜蜂先向右上爬,则可能的爬法有:一、0⇒3⇒4;二、0⇒3⇒2⇒4;三、0⇒1⇒2⇒4;三、0⇒1⇒3⇒4;四、0⇒1⇒3⇒2⇒4;共5种爬法;因此不同的爬法共有3+5=8种.故选:C.【点评】本题应该先确立大致的解题思路,然后将有可能的爬法按序排列,以免造成头绪混乱,少解错解等情况.二、填空题(本大题共6个小题,每小题3分,共18分.)7.【分析】分别根据零指数幂,负指数幂的运算法则计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=(﹣)0+2﹣1=1+=1.故答案为1.【点评】本题主要考查了零指数幂,负指数幂的运算.负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.8.【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.此题n>0,n=3.【解答】解:6 300=6.3×103.故答案为:6.3×103.【点评】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).9.【分析】若关于x的一元二次方程x2+2x﹣k=0没有实数根,则△=b2﹣4ac<0,列出关于k的不等式,求得k的取值范围即可.【解答】解:∵关于x的一元二次方程x2+2x﹣k=0没有实数根,∴△=b2﹣4ac<0,即22﹣4×1×(﹣k)<0,解这个不等式得:k<﹣1.故答案为:k<﹣1.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.【分析】利用圆锥侧面展开图的弧长=底面周长,可求得圆锥的底面周长以及圆锥母线长,那么圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面半径为3cm,则底面周长=6πcm,侧面展开图是半圆,则母线长=6π×2÷2π=6cm,∴圆锥的侧面积=×6π×6=18πcm2.【点评】本题利用了圆的周长公式和扇形面积公式求解.11.【分析】根据坐标图,可知B点坐标是(4,3),D点坐标是(8,6),A点坐标是(3,1),C点坐标是(6,2),那么连接BD,直线BD一定过原点O,连接AC直线AC一定过原点O,且B是OD 的中点,同理A是OC的中点,于是AB是△OCD的中位线,从AB上任取一点P(a、b),则直线OP与CD的交点E的坐标是(2a,2b).【解答】解:设直线OP与线段CD的交点为E,∵AB∥CD,且O,B,D三点在一条直线上,OB=BD∴OP=PE∴若点P的坐标为(a,b),∴点E的坐标是(2a,2b).故答案为(2a,2b).【点评】正确的读图是解决本题的前提条件,由AB∥CD联想到三角形相似,或平行线分线段成比例定理,是解决这道题的关键.12.【分析】根据菱形的性质对各个结论进行验证从而得到正确的序号.【解答】解:∵点E、F分别从点B、D出发以同样的速度沿边BC、DC向点C运动,∴BE=DF,∵AB=AD,∠B=∠D,∴△ABE≌△ADF,∴AE=AF,①正确;∴CE=CF,∴∠CEF=∠CFE,②正确;∵在菱形ABCD中,∠B=60°,∴AB=BC,∴△ABC是等边三角形,∴当点E,F分别为边BC,DC的中点时,BE=AB,DF=AD,∴△ABE和△ADF是直角三角形,且∠BAE=∠DAF=30°,∴∠EAF=120°﹣30°﹣30°=60°,∴△AEF是等边三角形,③正确;∵△AEF的面积=菱形ABCD的面积﹣△ABE的面积﹣△ADF的面积﹣△CEF的面积=AB2﹣BE•AB××2﹣××(AB﹣BE)2=﹣BE2+AB2,∴△AEF的面积是BE的二次函数,∴当BE=0时,△AEF的面积最大,④错误.故正确的序号有①②③.【点评】本题考查了菱形的性质、全等三角形的判定和等边三角形的判定.三、解答题(本大题共5个小题,每小题6分,共30分.解答应写出文字说明、证明过程或演算步骤.)13.【分析】观察可得方程最简公分母为:(x+1)(1﹣2x),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:两边同乘以(x+1)(1﹣2x),得:(x﹣1)(1﹣2x)+2x(x+1)=0,整理,得5x﹣1=0,解得x=,经检验,x=是原方程的根.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.14.【分析】(1)(2)利用数形结合的思想解决问题即可.【解答】解:(1)满足条件的△ABC如图所示.(2)满足条件的△DEF如图所示.【点评】本题考查作图﹣应用与设计,无理数,勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.15.【分析】先把括号里的式子进行通分,再把后面的式子根据完全平方公式、平方差公式进行因式分解,然后约分,再求出不等式的解集,最后代入一个合适的数据代入即可.【解答】解:(1﹣)÷=×=,∵2x﹣1<6,∴2x<7,∴x<,把x=3代入上式得:原式==4.【点评】此题考查了分式的化简求值以及一元一次不等式的解法,用到的知识点是通分、完全平方公式、平方差公式以及一元一次不等式的解法,熟练掌握公式与解法是解题的关键.16.【分析】要使AC=BD,可以证明△ACB≌△BDA或者△ACO≌△BDO从而得到结论.【解答】解:添加条件例举:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC等.证明:(1)如果添加条件是AD=BC时,∵BC=AD,∠2=∠1,AB=BA,在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD;(2)如果添加条件是OC=OD时,∵∠1=∠2∴OA=OB∴OA+OD=OB+OD∴BC=AD又∵∠2=∠1,AB=BA在△ABC与△BAD 中,,∴△ABC≌△BAD,∴AC=BD;(3)如果添加条件是∠C=∠D时,∵∠2=∠1,AB=BA,在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD;(4)如果添加条件是∠CAO=∠DBC时,∵∠1=∠2,∴∠CAO+∠1=∠DBC+∠2,∴∠CAB=∠DBA,又∵AB=BA,∠2=∠1,在△ABC与△BAD 中,,∴△ABC≌△BAD,∴AC=BD.故答案为:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC.【点评】本题考查了全等三角形的判定及性质;判定两个三角形全等的方法有:SSS,SAS,ASA,AAS,本题已知一边一角,所以可以寻找夹这个角的另外一边或者是另外两个角.17.【分析】因为此题需要两步完成,所以采用列表法或者采用树状图法都比较简单;解题时要注意是放回实验还是不放回实验.列举出所有情况,让芳香度之和等于4的情况数除以总情况数即为所求的概率.【解答】解:列表法:第一次第二次012334544565567树状图:(4分)所有可能出现的结果共有9种,芳香度之和等于4的结果有两种.∴所选取两种不同添加剂的芳香度之和等于4的概率为.【点评】考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.四、(本大题共4小题,每小题8分,共32分.)18.【分析】(1)男篮门票总价+乒乓球门票总价=12000,列方程即可求解;(2)关系式为:男篮门票总价+乒乓球门票总价+足球门票总价≤12000;足球门票的费用≤男篮门票的费用.据此列不等式即可求解.【解答】解:(1)设预定男篮门票x张,则乒乓球门票(15﹣x)张,根据题意得1000x+500(15﹣x)=12000解得x=9∴15﹣x=15﹣9=6.答:这个球迷可以预订男篮门票和乒乓球门票各9张,6张;(2)设足球门票与乒乓球门票数都预定y张,则男篮门票数为(15﹣2y)张,根据题意得解得由y为正整数可得y=5,15﹣2y=5.答:预订这三种球类门票各5张.【点评】解决本题的关键是读懂题意,找到所求量的等量关系及符合题意的不等关系式组.19.【分析】(1)利用点A的坐标可求出反比例函数解析式,再把B(1,n)代入反比例函数解析式,即可求得n的值,于是得到一次函数的解析式;(2)根据图象和A,B两点的坐标即可写出一次函数的值大于反比例函数的值的x的取值范围.【解答】解:(1)∵A(﹣2,1)在反比例函数y=的图象上,∴1=,解得m=﹣2.∴反比例函数解析式为y=,∵B(1,n)在反比例函数h上,∴n=﹣2,∴B的坐标(1,﹣2),把A(﹣2,1),B(1,﹣2)代入y=kx+b得,解得:,∴一次函数的解析式为y=﹣x﹣1;(2)由图象知:当x<﹣2或0<x<1时,一次函数的值大于反比例函数.【点评】本题主要考查了反比例函数与一次函数的交点问题,解题的关键是求出反比例函数解析式和一次函数的解析式.20.【分析】(1)根据直方图可得总人数以及各小组的已知人数,进而根据其间的关系可计算C组的人数;(2)根据中位数的概念,中位数应是第150、151人时间的平均数,分析可得答案;(3)首先计算样本中达国家规定体育活动时间的频率,再进一步估计总体达国家规定体育活动时间的人数.【解答】解:(1)根据题意有,C组的人数为300﹣20﹣100﹣60=120;(2)根据中位数的概念,中位数应是第150、151人时间的平均数,分析可得其均在C组,故调查数据的中位数落在C组;(3)达国家规定体育活动时间的人数约占×100%=60%.所以,达国家规定体育活动时间的人约有24000×60%=14400(人);故答案为:(1)120,(2)C,(3)达国家规定体育活动时间的人约有14400人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.21.【分析】(1)如果过A作AC⊥x轴,垂足为C,作BD⊥x轴垂足为D.不难得出△AOC和△BOD 全等,那么B的横坐标就是A点纵坐标的绝对值,B的纵坐标就是A点的横坐标的绝对值,由此可得出B的坐标.(2)已知了A,O的坐标,根据(1)求出的B点的坐标,可用待定系数法求出抛物线的解析式.(3)根据(2)的解析式可得出对称轴的解析式,然后根据B点的坐标得出B1的坐标,那么BB1就是三角形的底边,B的纵坐标与A的纵坐标的差的绝对值就是△ABB1的高,由此可求出其面积.【解答】解:(1)作AC⊥x轴,垂足为C,作BD⊥x轴垂足为D.则∠ACO=∠ODB=90°,∴∠AOC+∠OAC=90°.又∵∠AOB=90°,∴∠AOC+∠BOD=90°∴∠OAC=∠BOD.在△ACO和△ODB中,∴△ACO≌△ODB(AAS).∴OD=AC=1,DB=OC=3.∴点B的坐标为(1,3).(2)因抛物线过原点,故可设所求抛物线的解析式为y=ax2+bx.将A(﹣3,1),B(1,3)两点代入,得,解得:a=,b=故所求抛物线的解析式为y=x2+x.(3)在抛物线y=x2+x中,对称轴l的方程是x=﹣=﹣点B1是B关于抛物线的对称轴l的对称点,故B1坐标(﹣,3)在△AB1B中,底边B1B=,高的长为2.故S△AB1B=××2=.【点评】本题主要考查了全等三角形的判定以及用待定系数法求二次函数解析式,二次函数的性质等知识点.五、(本大题共1小题,共10分).22.【分析】(1)、由同角的余角相等可得∠APB=∠PQC,故△ABP∽△PCQ,有,代入BP,AB,PC的值求得CQ的值;(2)、取BP的中点H,连接EH,由三角形的中位线的性质可得四边形EHGF是直角梯形,由,设CQ=a,有BP=2a,用含a的代数式表示出EH,FG,HP,HG,两用梯形和三角形的面积公式求得S四边形EPGF=S梯形EHGF﹣S△EHP的值.【解答】解:(1)∵四边形ABCD是矩形∴∠B=∠C=90°,∴∠CPQ+∠PQC=90°,∵AP⊥PQ,∴∠CPQ+∠APB=90°,∴∠APB=∠PQC,∴△ABP∽△PCQ,∴,即,∴CQ=3;(2)解法一:取BP的中点H,连接EH,由,设CQ=a,则BP=2a,∵E,F,G,H分别为AP,PQ,PC,BP的中点,∴EH∥AB,FG∥CD,又∵AB∥CD,∠B=∠C=90°,∴EH∥FG,EH⊥BC,FG⊥BC,∴四边形EHGF是直角梯形,∴EH=AB=2,FG=CQ=a,HP=BP=a,HG=HP+PG=BC=4,∴S梯形EHGF=(EH+FG)•HG=(2+a)•4=4+a,S△EHP=HP•EH=a•2=a,∴S四边形EPGF=S梯形EHGF﹣S△EHP=4+a﹣a=4;解法二:连接AQ,由=2,设CQ=a,则BP=2a,DQ=4﹣a,PC=8﹣2a,S△APQ=S矩形ABCD﹣S△ABP﹣S△PCQ﹣S△ADQ=4×8﹣•2a•4﹣(8﹣2a)a﹣×8(4﹣a)=a2﹣4a+16∵E,F,G分别是AP,PQ,PC的中点∴EF∥AQ,EF=AQ.∴△PEF∽△PAQ∴,S△PEF=S△APQ=(a2﹣4a+16)同理:S△PFG=S△PCQ=a(8﹣2a)∴S四边形EPGF=S△PEF+S△PFG=(a2﹣4a+16)+a(8﹣2a)=4.【点评】本题利用了矩形的性质,相似三角形的判定和性质,三角形和梯形的面积公式求解.六、(本大题共1小题,共12分)23.【分析】(1)OA=AC首先三角形OAC是个等腰三角形,因为∠AOC=60°,三角形AOC是个等边三角形,因此∠OAC=60°;(2)如果PC与圆A相切,那么AC⊥PC,在直角三角形APC中,有∠PCA的度数,有A点的坐标也就有了AC的长,可根据余弦函数求出PA的长,然后由PO=PA﹣OA得出OP的值.(3)本题分两种情况:①以O为顶点,OC,OQ为腰.那么可过C作x轴的垂线,交圆于Q,此时三角形OCQ就是此类情况所说的等腰三角形;那么此时PO可在直角三角形OCP中,根据∠COA的度数,和OC即半径的长求出PO.②以Q为顶点,QC,QD为腰,那么可做OC的垂直平分线交圆于Q,则这条线必过圆心,如果设垂直平分线交OC于D的话,可在直角三角形AOQ中根据∠QAE的度数和半径的长求出Q的坐标;然后用待定系数法求出CQ所在直线的解析式,得出这条直线与x轴的交点,也就求出了PO的值.【解答】解:(1)∵∠AOC=60°,AO=AC,∴△AOC是等边三角形,∴∠OAC=60°.(2)∵CP与⊙A相切,∴∠ACP=90°,∴∠APC=90°﹣∠OAC=30°;又∵A(4,0),∴AC=AO=4,∴PA=2AC=8,∴PO=PA﹣OA=8﹣4=4.(3)①过点C作CP1⊥OB,垂足为P1,延长CP1交⊙A于Q1;∵OA是半径,∴,∴OC=OQ1,∴△OCQ1是等腰三角形;又∵△AOC是等边三角形,∴P1O=OA=2;②过A作AD⊥OC,垂足为D,延长DA交⊙A于Q2,CQ2与x轴交于P2;∵A是圆心,∴DQ2是OC的垂直平分线,∴CQ2=OQ2,∴△OCQ2是等腰三角形;过点Q2作Q2E⊥x轴于E,在Rt△AQ2E中,∵∠Q2AE=∠OAD=∠OAC=30°,∴Q2E=AQ2=2,AE=2,∴点Q2的坐标(4+,﹣2);在Rt△COP1中,∵P1O=2,∠AOC=60°,∴,∴C点坐标(2,);设直线CQ2的关系式为y=kx+b,则,解得,∴y=﹣x+2+2;当y=0时,x=2+2,∴P2O=2+2.【点评】本题综合考查函数、圆的切线,等边三角形的判定以及垂径定理等知识点.要注意(3)中的等腰三角形要按顶点和腰的不同来分类讨论.。

宜春高安2018-2019学度初一下年中数学试卷含解析解析

宜春高安2018-2019学度初一下年中数学试卷含解析解析

宜春高安2018-2019学度初一下年中数学试卷含解析解析【一】选择题〔本大题共6小题,每题3分,共18分〕1、在0,,0.101001…,,,这6个数中,无理数有〔〕A、1个B、2个C、3个D、4个2、假设x轴上旳点P到y轴旳距离为3,那么点P为〔〕A、〔3,0〕B、〔3,0〕或〔﹣3,0〕C、〔0,3〕D、〔0,3〕或〔0,﹣3〕3、以下条件不能判定AB∥CD旳是〔〕A、∠3=∠4B、∠A+∠ADC=180°C、∠1=∠2D、∠A=∠54、线段CD是由线段AB平移得到旳,点A〔﹣1,4〕旳对应点为C〔4,7〕,那么点B〔﹣4,﹣1〕旳对应点D旳坐标为〔〕A、〔1,2〕B、〔2,9〕C、〔5,3〕D、〔﹣9,﹣4〕①立方根等于它本身旳数有﹣1,0,1;②负数没有立方根;③=2;④任何正数都有两个立方根,且它们互为相反数;⑤平方根等于它本身旳数有0和1、正确旳有〔〕A、1个B、2个C、3个D、4个6、如图,动点P从〔0,3〕动身,沿所示方向运动,每当碰到矩形旳边时反弹,反弹时反射角等于入射角,当点P第2016次碰到矩形旳边时,点P旳坐标为〔〕A、〔0,3〕B、〔5,0〕C、〔1,4〕D、〔8,3〕【二】填空题〔本大题共6小题,每题3分,共18分〕7、旳立方根是、8、把命题“同位角相等”改写成“假如…那么…”旳形式为、9、假设≈44.90,≈14.20,那么≈、10、规定用符号[x]表示一个实数旳整数部分,例如[3.69]=3、[]=1,按此规定,[﹣1]=、11、如图,将一个含有30°角旳直角三角形旳两个顶点放在一个矩形旳对边上,假设∠1=35°,那么∠2=、12、平面直角坐标系中,点A旳坐标为〔2,0〕,点B旳坐标为〔﹣1,0〕,点C在y轴上,假如三角形ABC旳面积等于6,那么点C旳坐标为、【三】〔本大题共5小题,每题6分,共30分〕13、计算:|1﹣|+×﹣、14、依照以下语句画图:如图,∠AOB内有一点P:〔1〕过点P作OB旳垂线段,垂足为Q;〔2〕过点P作线段PC∥OB交OA于点C,作线段PD∥OA交OB于点D;〔3〕写出图中与∠O相等旳角、15、求以下各式中x旳值:〔1〕25x2+25=41;〔2〕〔2x﹣3〕3=﹣64、16、如图,:AD⊥BC于D,EG⊥BC于G,∠E=∠1、求证:AD平分∠BAC、下面是部分推理过程,请你将其补充完整:∵AD⊥BC于D,EG⊥BC于G〔〕∴∠ADC=∠EGC=90°∴AD∥EG、∴∠1=∠2、=∠3〔两直线平行,同位角相等〕又∵∠E=∠1〔〕∴∠2=∠3、∴AD平分∠BAC、17、将直角三角形ABC 沿CB 方向平移CF 旳长度后,得到直角三角形DEF 、DG=4,CF=6,AC=10,求阴影部分旳面积、【四】〔本大题共4小题,每题8分,共32分〕18、如图,直线AB 、CD 相交于点O ,OE 把∠BOD 分成两部分;〔1〕直截了当写出图中∠AOC 旳对顶角为,∠BOE 旳邻补角为;〔2〕假设∠AOC=70°,且∠BOE :∠EOD=2:3,求∠AOE 旳度数、19、在边长为1旳小正方形网格中,△AOB 旳顶点均在格点上,〔1〕将△AOB 向左平移3个单位长度得到△A 1O 1B 1,请画出△A 1O 1B 1;〔2〕在〔2〕旳条件下,写出A 1、O 1、B 1旳坐标;〔3〕求五边形AA 1O 1OB 旳面积、20、2a+1旳平方根是±3,3a+2b ﹣4旳立方根是﹣2,求4a ﹣5b+8旳立方根、21、如下图,数轴上表示1和对应点分别为A 、B ,点B 到点A 旳距离等于点C 到点O 旳距离相等,设点C 表示旳数为x 、〔1〕请你写出数x 旳值;〔2〕求〔x ﹣〕2旳立方根、【五】〔本大题共1小题,共10分〕22、如图,∠1=∠2,∠BAC=20°,∠ACF=80°、〔1〕求∠2旳度数;〔2〕FC 与AD 平行吗?什么缘故?〔3〕依照以上结论,你能确定∠ADB与∠FCB旳大小关系吗?请说明理由、六、〔本大题共1小题,共12分〕23、如图1,在平面直角坐标系中,A〔a,0〕,C〔b,2〕,且满足,过C作CB⊥x轴于B、〔1〕求△ABC旳面积、〔2〕假设过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED 旳度数、〔3〕在y轴上是否存在点P,使得△ABC和△ACP旳面积相等?假设存在,求出P点坐标;假设不存在,请说明理由、2018-2016学年江西省宜春市高安市七年级〔下〕期中数学试卷参考【答案】与试题【解析】【一】选择题〔本大题共6小题,每题3分,共18分〕1、在0,,0.101001…,,,这6个数中,无理数有〔〕A、1个B、2个C、3个D、4个【分析】无理数确实是无限不循环小数、理解无理数旳概念,一定要同时理解有理数旳概念,有理数是整数与分数旳统称、即有限小数和无限循环小数是有理数,而无限不循环小数是无理数、由此即可判定选择项、【解答】解:无理数有:0.101001…,,共3个、应选C、【点评】此题要紧考查了无理数旳定义,其中初中范围内学习旳无理数有:π,2π等;开方开不尽旳数;以及像0.1010010001…,等有如此规律旳数、2、假设x轴上旳点P到y轴旳距离为3,那么点P为〔〕A、〔3,0〕B、〔3,0〕或〔﹣3,0〕C、〔0,3〕D、〔0,3〕或〔0,﹣3〕【分析】依照x轴上旳点P到y轴旳距离为3,可得点P旳横坐标为±3,进而依照x轴上点旳纵坐标为0可得具体坐标、【解答】解:∵x轴上旳点P到y轴旳距离为3,∴点P旳横坐标为±3,∵x轴上点旳纵坐标为0,∴点P旳坐标为〔3,0〕或〔﹣3,0〕,应选:B、【点评】此题考查了点旳坐标旳相关知识;用到旳知识点为:x轴上点旳纵坐标为0、3、以下条件不能判定AB∥CD旳是〔〕A、∠3=∠4B、∠A+∠ADC=180°C、∠1=∠2D、∠A=∠5【分析】依照平行线旳判定方法对各选项分析推断后利用排除法求解、【解答】解:A、∵∠3=∠4,∴AB∥CD〔内错角相等,两直线平行〕,故本选项错误;B、∵∠A+∠ADC=180°,∴AB∥CD〔同旁内角互补,两直线平行〕,故本选项错误、C、∵∠1=∠2,∴AD∥BC〔内错角相等,两直线平行〕,判定旳不是AB∥CD,故本选项正确;D、∵∠B=∠5,∴AB∥CD〔同位角相等,两直线平行〕,故本选项错误;应选C、【点评】此题考查了平行线旳判定,熟练掌握平行线旳判定方法是解题旳关键,要注意内错角、同位角、同旁内角与截线、被截线旳关系、4、线段CD是由线段AB平移得到旳,点A〔﹣1,4〕旳对应点为C〔4,7〕,那么点B〔﹣4,﹣1〕旳对应点D旳坐标为〔〕A、〔1,2〕B、〔2,9〕C、〔5,3〕D、〔﹣9,﹣4〕【分析】依照点A、C旳坐标确定出平移规律,再求出点D旳坐标即可、【解答】解:∵点A〔﹣1,4〕旳对应点为C〔4,7〕,∴平移规律为向右5个单位,向上3个单位,∵点B〔﹣4,﹣1〕,∴点D旳坐标为〔1,2〕、应选:A、【点评】此题考查了坐标与图形变化﹣平移,平移中点旳变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减、5、以下命题中:①立方根等于它本身旳数有﹣1,0,1;②负数没有立方根;③=2;④任何正数都有两个立方根,且它们互为相反数;⑤平方根等于它本身旳数有0和1、正确旳有〔〕A、1个B、2个C、3个D、4个【分析】利用立方根旳定义及求法、平方根旳定义及求法分别推断后即可确定正确旳选项、【解答】解:①立方根等于它本身旳数有﹣1,0,1,正确;②负数没有立方根,错误;③=2,错误;④任何正数都有两个立方根,且它们互为相反数,错误;⑤平方根等于它本身旳数有0,故错误,应选A、【点评】此题考查了命题与定理旳知识,解题旳关键是了解立方根旳定义及求法、平方根旳定义及求法,难度不大、6、如图,动点P从〔0,3〕动身,沿所示方向运动,每当碰到矩形旳边时反弹,反弹时反射角等于入射角,当点P第2016次碰到矩形旳边时,点P旳坐标为〔〕A、〔0,3〕B、〔5,0〕C、〔1,4〕D、〔8,3〕【分析】依照反弹时反射角等于入射角画出点旳运动轨迹,表示出点旳坐标,总结规律得到【答案】、【解答】解:当点P第1次碰到矩形旳边时,点P旳坐标为〔3,0〕,当点P第2次碰到矩形旳边时,点P旳坐标为〔7,4〕,当点P第3次碰到矩形旳边时,点P旳坐标为〔8,3〕,当点P第4次碰到矩形旳边时,点P旳坐标为〔5,0〕,当点P第5次碰到矩形旳边时,点P旳坐标为〔1,4〕,当点P第6次碰到矩形旳边时,点P旳坐标为〔0,3〕,当点P第7次碰到矩形旳边时,点P旳坐标为〔3,0〕,2016÷6=336,故当点P第2016次碰到矩形旳边时,点P旳坐标为:〔0,3〕、应选:A、【点评】此题考查旳是依照图形找出点旳坐标旳变化规律,正确理解题意、画出合适旳示意图、表示出变化过程中各点旳坐标、正确总结规律是解题旳关键、【二】填空题〔本大题共6小题,每题3分,共18分〕7、旳立方根是2、【分析】依照算术平方根旳定义先求出,再依照立方根旳定义即可得出【答案】、【解答】解:∵=8,∴旳立方根是2;故【答案】为:2、【点评】此题要紧考查了立方根旳定义,求一个数旳立方根,应先找出所要求旳那个数是哪一个数旳立方、由开立方和立方是互逆运算,用立方旳方法求那个数旳立方根、注意一个数旳立方根与原数旳性质符号相同、8、把命题“同位角相等”改写成“假如…那么…”旳形式为假如两个角是同位角,那么这两个角相等、【分析】命题有题设与结论组成,把命题旳题设写在假如旳后面,结论写在那么旳后面即可、【解答】解:命题“同位角相等”改写成“假如…那么…”旳形式为:假如两个角是同位角,那么这两个角相等、故【答案】为假如两个角是同位角,那么这两个角相等、【点评】此题考查了命题与定理:推断一件情况旳语句,叫做命题、许多命题差不多上由题设和结论两部分组成,题设是事项,结论是由事项推出旳事项,一个命题能够写成“假如…那么…”形式、有些命题旳正确性是用推理证实旳,如此旳真命题叫做定理、9、假设≈44.90,≈14.20,那么≈4.490、【分析】先将2016写成20.16×100,再运用二次根式旳性质进行化简计算、【解答】解:∵≈44.90∴≈44.90即×≈44.90∴×10≈44.90即≈4.490故【答案】为:4.490【点评】此题要紧考查了算术平方根,解决问题旳关键是依照二次根式旳性质进行化简、解题时需要运用公式:=×〔a≥0,b≥0〕、10、规定用符号[x]表示一个实数旳整数部分,例如[3.69]=3、[]=1,按此规定,[﹣1]=2、【分析】先求出〔﹣1〕旳范围,再依照范围求出即可、【解答】解:∵9<13<16,∴3<<4,∴2<﹣1<3,∴[﹣1]=2、故【答案】是:2、【点评】此题要紧考查了无理数旳估算,解题关键是确定无理数旳整数部分即可解决问题、11、如图,将一个含有30°角旳直角三角形旳两个顶点放在一个矩形旳对边上,假设∠1=35°,那么∠2=125°、【分析】由∠1、∠3与三角板旳直角三角之和为平角可算出∠3旳度数,再由矩形对边平行结合“两直线平行,同旁内角互补”得出∠2+∠3=180°,代入∠3旳度数即可求出结论、【解答】解:在图形中标出∠3,如下图、∵∠1+∠3+90°=180°,∠1=35°,∴∠3=90°﹣35°=55°、∵矩形对边平行,∴∠2+∠3=180°,∴∠2=180°﹣∠3=125°、故【答案】为:125°、【点评】此题考查了平行线旳性质以及角旳计算,解题旳关键是求出∠3=55°、此题属于基础题,难度不大,解决该题型题目时,依照平行线旳性质得出相等〔或互补〕旳角是关键、12、平面直角坐标系中,点A旳坐标为〔2,0〕,点B旳坐标为〔﹣1,0〕,点C在y轴上,假如三角形ABC旳面积等于6,那么点C旳坐标为〔0,4〕或〔0,﹣4〕、【分析】先求出AB旳长度,再依照三角形旳面积求出点C旳纵坐标,然后依照y轴上点旳坐标特征写出即可、【解答】解:∵点A旳坐标为〔2,0〕,点B旳坐标为〔﹣1,0〕,∴A、B都在x轴上,且AB=2﹣〔﹣1〕=3,设点C旳纵坐标为y,∵△ABC旳面积等于6,∴×3×|y|=6,解得y=±4,∵点C在y轴上,∴点C旳坐标为〔0,4〕或〔0,﹣4〕、故【答案】为:〔0,4〕或〔0,﹣4〕、【点评】此题考查了坐标与图形性质,三角形旳面积,易错点在于要注意点C有两种情况、【三】〔本大题共5小题,每题6分,共30分〕13、计算:|1﹣|+×﹣、【分析】此题涉及绝对值、立方根、二次根式化简四个考点、针对每个考点分别进行计算,然后依照实数旳运算法那么求得计算结果、【解答】解:原式=﹣1﹣×﹣=﹣1﹣=﹣、【点评】此题考查实数旳综合运算能力,是各地中考题中常见旳计算题型、解决此类题目旳关键是掌握绝对值、立方根、二次根式化简等考点旳运算、14、依照以下语句画图:如图,∠AOB内有一点P:〔1〕过点P作OB旳垂线段,垂足为Q;〔2〕过点P作线段PC∥OB交OA于点C,作线段PD∥OA交OB于点D;〔3〕写出图中与∠O相等旳角、【分析】〔1〕利用三角板旳直角,过点P作OA⊥PQ即可;〔2〕过点P画线段PC∥OB交OA于点C,画线段PD∥OA交OB于点D即可;〔3〕利用平行线旳性质即可求解、【解答】解:〔1〕如下图:〔2〕如下图:〔3〕与∠O相等旳角有:∠ACP,∠PDB,∠P、【点评】此题要紧考查了差不多作图旳中旳垂线和平行线旳作法以及作一个角等于角,要求能够熟练地运用尺规作图,并保留作图痕迹、15、求以下各式中x旳值:〔1〕25x2+25=41;〔2〕〔2x﹣3〕3=﹣64、【分析】〔1〕方程整理后,开方即可求出解;〔2〕方程开立方即可求出解、【解答】解:〔1〕方程整理得:x2=,开方得:x=±;〔2〕开立方得:2x﹣3=﹣4,解得:x=﹣、【点评】此题考查了立方根,以及平方根,熟练掌握各自旳定义是解此题旳关键、16、如图,:AD⊥BC于D,EG⊥BC于G,∠E=∠1、求证:AD平分∠BAC、下面是部分推理过程,请你将其补充完整:∵AD⊥BC于D,EG⊥BC于G〔〕∴∠ADC=∠EGC=90°∴AD∥EG同位角相等,两直线平行、∴∠1=∠2两直线平行,内错角相等、∠E=∠3〔两直线平行,同位角相等〕又∵∠E=∠1〔〕∴∠2=∠3等量代换、∴AD平分∠BAC角平分线旳定义、【分析】依照平行线旳判定与性质进行解答即可、【解答】解:∵AD⊥BC于D,EG⊥BC于G〔〕∴∠ADC=∠EGC=90°∴AD∥EG,〔同位角相等,两直线平行〕、∴∠1=∠2,〔两直线平行,内错角相等〕、∠E=∠3〔两直线平行,同位角相等〕又∵∠E=∠1〔〕∴∠2=∠3,〔等量代换〕、∴AD平分∠BAC、〔角平分线旳定义〕故【答案】为:同位角相等,两直线平行;两直线平行,内错角相等;∠E;等量代换;角平分线旳定义、【点评】此题考查旳是平行线旳判定与性质,用到旳知识点为:同位角相等,两直线平行;两直线平行,内错角相等,同位角相等、17、将直角三角形ABC沿CB方向平移CF旳长度后,得到直角三角形DEF、DG=4,CF=6,AC=10,求阴影部分旳面积、【分析】依照平移旳性质,通过平移,对应点所连旳线段平行且相等,可得四边形ABED是平行四边形,再依照平行四边形旳面积公式即可求解、【解答】解:∵将△ABC沿CB向右平移得到△DEF,CF=6,∴AD∥BE,AD=BE=6,∴四边形ABED是平行四边形,∴四边形ABED旳面积=BE×AC=6×10=60、【点评】此题要紧考查平移旳差不多性质:①平移不改变图形旳形状和大小;②通过平移,对应点所连旳线段平行且相等,对应线段平行且相等,对应角相等、【四】〔本大题共4小题,每题8分,共32分〕18、如图,直线AB、CD相交于点O,OE把∠BOD分成两部分;〔1〕直截了当写出图中∠AOC旳对顶角为∠BOD,∠BOE旳邻补角为∠AOE;〔2〕假设∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE旳度数、【分析】〔1〕利用对顶角、邻补角旳定义直截了当回答即可;〔2〕依照对顶角相等求出∠BOD 旳度数,再依照∠BOE :∠EOD=2:3求出∠BOE 旳度数,然后利用互为邻补角旳两个角旳和等于180°即可求出∠AOE 旳度数、【解答】解:〔1〕∠AOC 旳对顶角为∠BOD ,∠BOE 旳邻补角为∠AOE ;〔2〕∵∠DOE=∠AOC=70°,∠DOE=∠BOE+∠EOD 及∠BOE :∠EOD=2:3,∴得,∴,∴∠BOE=28°,∴∠AOE=180°﹣∠BOE=152°、【点评】此题要紧考查了对顶角,邻补角旳定义,利用对顶角相等旳性质和互为邻补角旳两个角旳和等于180°求解、19、在边长为1旳小正方形网格中,△AOB 旳顶点均在格点上,〔1〕将△AOB 向左平移3个单位长度得到△A 1O 1B 1,请画出△A 1O 1B 1;〔2〕在〔2〕旳条件下,写出A 1、O 1、B 1旳坐标;〔3〕求五边形AA 1O 1OB 旳面积、【分析】〔1〕直截了当利用平移旳性质得出对应点位置进而得出【答案】;〔2〕利用所画图形进而得出A 1、O 1、B 1旳坐标;〔3〕直截了当利用五边形AA 1O 1OB 所在矩形面积减去周围三角形面积进而得出【答案】、【解答】解:〔1〕如下图:△A 1O 1B 1,即为所求;〔2〕A 1〔﹣2,3〕、B 1〔﹣3,0〕、C 1〔0,2〕;〔3〕五边形AA 1O 1OB 旳面积为:3×6﹣×1×3﹣×1×2﹣×2×3=18﹣5.5=12.5、【点评】此题要紧考查了平移变换以及图形面积求法,依照题意得出对应点位置是解题关键、20、2a+1旳平方根是±3,3a+2b﹣4旳立方根是﹣2,求4a﹣5b+8旳立方根、【分析】先依照平方根,立方根旳定义列出关于a、b旳二元一次方程组,再代入进行计算求出4a﹣5b+8旳值,然后依照立方根旳定义求解、【解答】解:∵2a+1旳平方根是±3,3a+2b﹣4旳立方根是﹣2,∴2a+1=9,3a+2b﹣4=﹣8,解得a=4,b=﹣8,∴4a﹣5b+8=4×4﹣5×〔﹣8〕+8=64,∴4a﹣5b+8旳立方根是4、【点评】此题考查了平方根,立方根旳定义,列式求出a、b旳值是解题旳关键、21、如下图,数轴上表示1和对应点分别为A、B,点B到点A旳距离等于点C到点O旳距离相等,设点C表示旳数为x、〔1〕请你写出数x旳值;〔2〕求〔x﹣〕2旳立方根、【分析】〔1〕依照数轴上两点间旳距离求出AB之间旳距离即为x旳值;〔2〕把x旳值代入所求代数式进行计算即可、【解答】解:〔1〕∵点A、B分别表示1,,∴AB=﹣1,即x=﹣1;〔2〕∵x=﹣1,∴〔x﹣〕2=〔﹣1﹣〕2=〔﹣1〕2=1、【点评】此题考查旳是实数与数轴及两点间旳距离,熟知实数与数轴上旳点是【一】一对应关系是解答此题旳关键、【五】〔本大题共1小题,共10分〕22、如图,∠1=∠2,∠BAC=20°,∠ACF=80°、〔1〕求∠2旳度数;〔2〕FC与AD平行吗?什么缘故?〔3〕依照以上结论,你能确定∠ADB与∠FCB旳大小关系吗?请说明理由、【分析】〔1〕利用平角定义,依照题意确定出∠2旳度数即可;〔2〕FC与AD平行,理由为:利用内错角相等两直线平行即可得证;〔3〕∠ADB=∠FCB,理由为:由FC与AD平行,利用两直线平行同位角相等即可得证、【解答】解:〔1〕∵∠1=∠2,∠BAC=20°,∠1+∠2+∠BAC=180°,∴∠2=80°;〔2〕∵∠2=∠ACF=80°,∴FC∥AD;〔3〕∠ADB=∠FCB,理由为:证明:∵FC∥AD,∴∠ADB=∠FCB、【点评】此题考查了平行线旳判定,熟练掌握平行线旳判定方法是解此题旳关键、六、〔本大题共1小题,共12分〕23、如图1,在平面直角坐标系中,A〔a,0〕,C〔b,2〕,且满足,过C作CB⊥x轴于B、〔1〕求△ABC旳面积、〔2〕假设过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED 旳度数、〔3〕在y轴上是否存在点P,使得△ABC和△ACP旳面积相等?假设存在,求出P点坐标;假设不存在,请说明理由、【分析】〔1〕依照非负数旳性质易得a=﹣2,b=2,然后依照三角形面积公式计算;〔2〕过E作EF∥AC,依照平行线性质得BD∥AC∥EF,且∠3=∠CAB=∠1,∠4=∠ODB=∠2,因此∠AED=∠1+∠2=〔∠CAB+∠ODB〕;然后把∠CAB+∠ODB=∠5+∠6=90°代入计算即可;〔3〕分类讨论:设P 〔0,t 〕,当P 在y 轴正半轴上时,过P 作MN ∥x 轴,AN ∥y 轴,BM ∥y 轴,利用S △APC =S 梯形MNAC ﹣S △ANP ﹣S △CMP =4可得到关于t 旳方程,再解方程求出t ; 当P 在y 轴负半轴上时,运用同样方法可计算出t 、【解答】解:〔1〕∵〔a+2〕2+=0,∴a=2=0,b ﹣2=0,∴a=﹣2,b=2,∵CB ⊥AB∴A 〔﹣2,0〕,B 〔2,0〕,C 〔2,2〕,∴△ABC 旳面积=×2×4=4;〔2〕解:∵CB ∥y 轴,BD ∥AC ,∴∠CAB=∠5,∠ODB=∠6,∠CAB+∠ODB=∠5+∠6=90°,过E 作EF ∥AC ,如图①,∵BD ∥AC ,∴BD ∥AC ∥EF ,∵AE ,DE 分别平分∠CAB ,∠ODB ,∴∠3=∠CAB=∠1,∠4=∠ODB=∠2,∴∠AED=∠1+∠2=〔∠CAB+∠ODB 〕=45°;〔3〕解:①当P 在y 轴正半轴上时,如图②,设P 〔0,t 〕,过P 作MN ∥x 轴,AN ∥y 轴,BM ∥y 轴,∵S △APC =S 梯形MNAC ﹣S △ANP ﹣S △CMP =4,∴﹣t ﹣〔t ﹣2〕=4,解得t=3,②当P 在y 轴负半轴上时,如图③∵S △APC =S 梯形MNAC ﹣S △ANP ﹣S △CMP =4∴+t ﹣〔2﹣t 〕=4,解得t=﹣1,∴P 〔0,﹣1〕或〔0,3〕、【点评】此题考查了平行线旳判定与性质:两直线平行,内错角相等、也考查了非负数旳性质、坐标与图形性质以及三角形面积公式、。

2019年江西省宜春市高安市中考数学一模试卷(含答案解析)

2019年江西省宜春市高安市中考数学一模试卷(含答案解析)

2019年江西省宜春市高安市中考数学一模试卷一、选择题(本大题共有6小题,每小题3分,共18分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.﹣3的倒数是()A.﹣B.C.﹣3D.32.如图1放置的一个机器零件,若其主(正)视图如图2,则其俯视图是()A.B.C.D.3.已知sin a=,且a是锐角,则a=()A.75°B.60°C.45°D.30°4.学校开展为贫困地区捐书活动,以下是5名同学捐书的册数:2,2,x,4,9.已知这组数据的平均数是4,则这组数据的中位数和众数分别是()A.2和2B.4和2C.2和3D.3和25.如图,Rt△ABC中,∠ACB=90°,DE过点C且平行于AB,若∠BCE=35°,则∠A的度数为()A.35°B.45°C.55°D.65°6.假定有一排蜂房,形状如图,一只蜜蜂在左下角的蜂房中,由于受伤,只能爬,不能飞,而且只能永远向右方(包括右上、右下)爬行,从一间蜂房爬到与之相邻的右蜂房中去.则从最初位置爬到4号蜂房中,不同的爬法有()A.4种B.6种C.8种D.10种二、填空题(本大题共6个小题,每小题3分,共18分.)7.计算:+2﹣1=.8.我国最长的河流长江全长约为6300千米,用科学记数法表示为千米.9.若关于x的一元二次方程x2+2x﹣k=0没有实数根,则k的取值范围是.10.一个圆锥的底面半径为3cm,侧面展开图是半圆,则圆锥的侧面积是cm2.11.线段AB、CD在平面直角坐标系中的位置如图所示,O为坐标原点.若线段AB上一点P的坐标为(a,b),则直线OP与线段CD的交点的坐标为.12.如图,在菱形ABCD中,∠B=60°,点E、F分别从点B、D出发以同样的速度沿边BC、DC 向点C运动.给出以下四个结论:①AE=AF;②∠CEF=∠CFE;③当点E,F分别为边BC,DC的中点时,△AEF是等边三角形;④当点E,F分别为边BC,DC的中点时,△AEF的面积最大.上述结论中正确的序号有.(把你认为正确的序号都填上)三、解答题(本大题共5个小题,每小题6分,共30分.解答应写出文字说明、证明过程或演算步骤.)13.解方程:14.如图所示,在正方形网格中,每个小正方形的边长都是1,每个小格点的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)使三角形的三边长分别为3,2,.(2)使三角形为边长都为无理数的钝角三角形且面积为4.15.先化简(1﹣)÷,再从不等式2x﹣1<6的正整数解中选一个适当的数代入求值.16.如图,△ABC与△ABD中,AD与BC相交于O点,∠1=∠2,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC=BD,并给出证明.你添加的条件是:.证明:.17.在试制某种洗发液新品种时,需要选用两种不同的添加剂.现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用.根据试验设计原理,通常要先从芳香度为0,1,2的三种添加剂中随机选取一种,再从芳香度为3,4,5的三种添加剂中随机选取一种,进行搭配试验.请你利用树状图(树形图)或列表的方法,表示所选取两种不同添加剂所有可能出现的结果,并求出芳香度之和等于4的概率.四、(本大题共4小题,每小题8分,共32分.)18.2008年北京奥运会的比赛门票开始接受公众预定.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用12000元预定15张下表中球类比赛的门票:比赛项目票价(元/场)男篮1000足球800乒乓球500(1)若全部资金用来预定男篮门票和乒乓球门票,问这个球迷可以预订男篮门票和乒乓球门票各多少张?(2)若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票与乒乓球门票数相同,且足球门票的费用不超过男篮门票的费用,问可以预订这三种球类门票各多少张?19.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣2,1),B(1,n)两点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出一次函数的值大于反比例函数的值的x的取值范围.20.国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,某市就“你每天在校体育活动时间是多少?”的问题随机调查了辖区内300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5h;B组:0.5h≤t<1h;C组:1h≤t<1.5h;D组:t≥1.5h请根据上述信息解答下列问题:(1)C组的人数是;(2)本次调查数据的中位数落在组内;(3)若该辖区约有24 000名初中学生,请你估计其中达国家规定体育活动时间的人约有多少?21.在平面直角坐标系中,△AOB的位置如图所示,已知∠AOB=90°,AO=BO,点A的坐标为(﹣3,1).(1)求点B的坐标;(2)求过A,O,B三点的抛物线的解析式;(3)设点B关于抛物线的对称轴l的对称点为B1,求△AB1B的面积.五、(本大题共1小题,共10分).22.已知:如图①,②,在矩形ABCD中,AB=4,BC=8,P,Q分别是边BC,CD上的点.(1)如图①,若AP⊥PQ,BP=2,求CQ的长;(2)如图②,若,且E,F,G分别为AP,PQ,PC的中点,求四边形EPGF的面积.六、(本大题共1小题,共12分)23.如图①,②,在平面直角坐标系xOy中,点A的坐标为(4,0),以点A为圆心,4为半径的圆与x轴交于O,B两点,OC为弦,∠AOC=60°,P是x轴上的一动点,连接CP.(1)求∠OAC的度数;(2)如图①,当CP与⊙A相切时,求PO的长;(3)如图②,当点P在直径OB上时,CP的延长线与⊙A相交于点Q,问PO为何值时,△OCQ 是等腰三角形?2019年江西省宜春市高安市中考数学一模试卷参考答案与试题解析一、选择题(本大题共有6小题,每小题3分,共18分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.2.【分析】找到从上面看所到的图形即可.【解答】解:从上面看可得到左右相邻的3个矩形.故选:D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看到的视图.3.【分析】根据sin60°=得出a的值.【解答】解:∵sin a=sin60°=,a是锐角,∴a=60°.故选:B.【点评】本题考查特殊角的三角函数值.特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.4.【分析】根据平均数的定义得到关于x的方程,求x,再根据中位数和众数的定义求解.【解答】解:根据平均数的含义得:=4,所以x=3;将这组数据从小到大的顺序排列(2,2,3,4,9),处于中间位置的数是3,那么这组数据的中位数是3;在这一组数据中2是出现次数最多的,故众数是2.故选:D.【点评】本题为统计题,考查平均数、众数与中位数的意义,解题要细心.5.【分析】题中有三个条件,图形为常见图形,可先由AB∥DE,∠BCE=35°,根据两直线平行,内错角相等求出∠B,然后根据三角形内角和为180°求出∠A.【解答】解:∵AB∥DE,∠BCE=35°,∴∠B=∠BCE=35°(两直线平行,内错角相等),又∵∠ACB=90°,∴∠A=90°﹣35°=55°(在直角三角形中,两个锐角互余).故选:C.【点评】两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.6.【分析】本题应分两种情况考虑:①当蜜蜂先向右爬行时;②当蜜蜂先向右上爬行时;然后将两种情况中所以可能的爬行路线一一列出,即可求出共有多少种不同的爬法.【解答】解:本题可分两种情况:①蜜蜂先向右爬,则可能的爬法有:一、1⇒2⇒4;二、1⇒3⇒4;三、1⇒3⇒2⇒4;共有3种爬法;②蜜蜂先向右上爬,则可能的爬法有:一、0⇒3⇒4;二、0⇒3⇒2⇒4;三、0⇒1⇒2⇒4;三、0⇒1⇒3⇒4;四、0⇒1⇒3⇒2⇒4;共5种爬法;因此不同的爬法共有3+5=8种.故选:C.【点评】本题应该先确立大致的解题思路,然后将有可能的爬法按序排列,以免造成头绪混乱,少解错解等情况.二、填空题(本大题共6个小题,每小题3分,共18分.)7.【分析】分别根据零指数幂,负指数幂的运算法则计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=(﹣)0+2﹣1=1+=1.故答案为1.【点评】本题主要考查了零指数幂,负指数幂的运算.负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.8.【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n 次幂.此题n>0,n=3.【解答】解:6 300=6.3×103.故答案为:6.3×103.【点评】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).9.【分析】若关于x的一元二次方程x2+2x﹣k=0没有实数根,则△=b2﹣4ac<0,列出关于k的不等式,求得k的取值范围即可.【解答】解:∵关于x的一元二次方程x2+2x﹣k=0没有实数根,∴△=b2﹣4ac<0,即22﹣4×1×(﹣k)<0,解这个不等式得:k<﹣1.故答案为:k<﹣1.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.【分析】利用圆锥侧面展开图的弧长=底面周长,可求得圆锥的底面周长以及圆锥母线长,那么圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面半径为3cm,则底面周长=6πcm,侧面展开图是半圆,则母线长=6π×2÷2π=6cm,∴圆锥的侧面积=×6π×6=18πcm2.【点评】本题利用了圆的周长公式和扇形面积公式求解.11.【分析】根据坐标图,可知B点坐标是(4,3),D点坐标是(8,6),A点坐标是(3,1),C点坐标是(6,2),那么连接BD,直线BD一定过原点O,连接AC直线AC一定过原点O,且B是OD的中点,同理A是OC的中点,于是AB是△OCD的中位线,从AB上任取一点P(a、b),则直线OP与CD的交点E的坐标是(2a,2b).【解答】解:设直线OP与线段CD的交点为E,∵AB∥CD,且O,B,D三点在一条直线上,OB=BD∴OP=PE∴若点P的坐标为(a,b),∴点E的坐标是(2a,2b).故答案为(2a,2b).【点评】正确的读图是解决本题的前提条件,由AB∥CD联想到三角形相似,或平行线分线段成比例定理,是解决这道题的关键.12.【分析】根据菱形的性质对各个结论进行验证从而得到正确的序号.【解答】解:∵点E、F分别从点B、D出发以同样的速度沿边BC、DC向点C运动,∴BE=DF,∵AB=AD,∠B=∠D,∴△ABE≌△ADF,∴AE=AF,①正确;∴CE=CF,∴∠CEF=∠CFE,②正确;∵在菱形ABCD中,∠B=60°,∴AB=BC,∴△ABC是等边三角形,∴当点E,F分别为边BC,DC的中点时,BE=AB,DF=AD,∴△ABE和△ADF是直角三角形,且∠BAE=∠DAF=30°,∴∠EAF=120°﹣30°﹣30°=60°,∴△AEF是等边三角形,③正确;∵△AEF的面积=菱形ABCD的面积﹣△ABE的面积﹣△ADF的面积﹣△CEF的面积=AB2﹣BE•AB××2﹣××(AB﹣BE)2=﹣BE2+AB2,∴△AEF的面积是BE的二次函数,∴当BE=0时,△AEF的面积最大,④错误.故正确的序号有①②③.【点评】本题考查了菱形的性质、全等三角形的判定和等边三角形的判定.三、解答题(本大题共5个小题,每小题6分,共30分.解答应写出文字说明、证明过程或演算步骤.)13.【分析】观察可得方程最简公分母为:(x+1)(1﹣2x),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:两边同乘以(x+1)(1﹣2x),得:(x﹣1)(1﹣2x)+2x(x+1)=0,整理,得5x﹣1=0,解得x=,经检验,x=是原方程的根.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.14.【分析】(1)(2)利用数形结合的思想解决问题即可.【解答】解:(1)满足条件的△ABC如图所示.(2)满足条件的△DEF如图所示.【点评】本题考查作图﹣应用与设计,无理数,勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.15.【分析】先把括号里的式子进行通分,再把后面的式子根据完全平方公式、平方差公式进行因式分解,然后约分,再求出不等式的解集,最后代入一个合适的数据代入即可.【解答】解:(1﹣)÷=×=,∵2x﹣1<6,∴2x<7,∴x<,把x=3代入上式得:原式==4.【点评】此题考查了分式的化简求值以及一元一次不等式的解法,用到的知识点是通分、完全平方公式、平方差公式以及一元一次不等式的解法,熟练掌握公式与解法是解题的关键.16.【分析】要使AC=BD,可以证明△ACB≌△BDA或者△ACO≌△BDO从而得到结论.【解答】解:添加条件例举:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC等.证明:(1)如果添加条件是AD=BC时,∵BC=AD,∠2=∠1,AB=BA,在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD;(2)如果添加条件是OC=OD时,∵∠1=∠2∴OA=OB∴OA+OD=OB+OD∴BC=AD又∵∠2=∠1,AB=BA在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD;(3)如果添加条件是∠C=∠D时,∵∠2=∠1,AB=BA,在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD;(4)如果添加条件是∠CAO=∠DBC时,∵∠1=∠2,∴∠CAO+∠1=∠DBC+∠2,∴∠CAB=∠DBA,又∵AB=BA,∠2=∠1,在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD.故答案为:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC.【点评】本题考查了全等三角形的判定及性质;判定两个三角形全等的方法有:SSS,SAS,ASA,AAS,本题已知一边一角,所以可以寻找夹这个角的另外一边或者是另外两个角.17.【分析】因为此题需要两步完成,所以采用列表法或者采用树状图法都比较简单;解题时要注意是放回实验还是不放回实验.列举出所有情况,让芳香度之和等于4的情况数除以总情况数即为所求的概率.【解答】解:列表法:012第一次第二次334544565567树状图:(4分)所有可能出现的结果共有9种,芳香度之和等于4的结果有两种.∴所选取两种不同添加剂的芳香度之和等于4的概率为.【点评】考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.四、(本大题共4小题,每小题8分,共32分.)18.【分析】(1)男篮门票总价+乒乓球门票总价=12000,列方程即可求解;(2)关系式为:男篮门票总价+乒乓球门票总价+足球门票总价≤12000;足球门票的费用≤男篮门票的费用.据此列不等式即可求解.【解答】解:(1)设预定男篮门票x张,则乒乓球门票(15﹣x)张,根据题意得1000x+500(15﹣x)=12000解得x=9∴15﹣x=15﹣9=6.答:这个球迷可以预订男篮门票和乒乓球门票各9张,6张;(2)设足球门票与乒乓球门票数都预定y张,则男篮门票数为(15﹣2y)张,根据题意得解得由y为正整数可得y=5,15﹣2y=5.答:预订这三种球类门票各5张.【点评】解决本题的关键是读懂题意,找到所求量的等量关系及符合题意的不等关系式组.19.【分析】(1)利用点A的坐标可求出反比例函数解析式,再把B(1,n)代入反比例函数解析式,即可求得n的值,于是得到一次函数的解析式;(2)根据图象和A,B两点的坐标即可写出一次函数的值大于反比例函数的值的x的取值范围.【解答】解:(1)∵A(﹣2,1)在反比例函数y=的图象上,∴1=,解得m=﹣2.∴反比例函数解析式为y=,∵B(1,n)在反比例函数h上,∴n=﹣2,∴B的坐标(1,﹣2),把A(﹣2,1),B(1,﹣2)代入y=kx+b得,解得:,∴一次函数的解析式为y=﹣x﹣1;(2)由图象知:当x<﹣2或0<x<1时,一次函数的值大于反比例函数.【点评】本题主要考查了反比例函数与一次函数的交点问题,解题的关键是求出反比例函数解析式和一次函数的解析式.20.【分析】(1)根据直方图可得总人数以及各小组的已知人数,进而根据其间的关系可计算C 组的人数;(2)根据中位数的概念,中位数应是第150、151人时间的平均数,分析可得答案;(3)首先计算样本中达国家规定体育活动时间的频率,再进一步估计总体达国家规定体育活动时间的人数.【解答】解:(1)根据题意有,C组的人数为300﹣20﹣100﹣60=120;(2)根据中位数的概念,中位数应是第150、151人时间的平均数,分析可得其均在C组,故调查数据的中位数落在C组;(3)达国家规定体育活动时间的人数约占×100%=60%.所以,达国家规定体育活动时间的人约有24000×60%=14400(人);故答案为:(1)120,(2)C,(3)达国家规定体育活动时间的人约有14400人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.21.【分析】(1)如果过A作AC⊥x轴,垂足为C,作BD⊥x轴垂足为D.不难得出△AOC和△BOD全等,那么B的横坐标就是A点纵坐标的绝对值,B的纵坐标就是A点的横坐标的绝对值,由此可得出B的坐标.(2)已知了A,O的坐标,根据(1)求出的B点的坐标,可用待定系数法求出抛物线的解析式.(3)根据(2)的解析式可得出对称轴的解析式,然后根据B点的坐标得出B1的坐标,那么BB1就是三角形的底边,B的纵坐标与A的纵坐标的差的绝对值就是△ABB1的高,由此可求出其面积.【解答】解:(1)作AC⊥x轴,垂足为C,作BD⊥x轴垂足为D.则∠ACO=∠ODB=90°,∴∠AOC+∠OAC=90°.又∵∠AOB=90°,∴∠AOC+∠BOD=90°∴∠OAC=∠BOD.在△ACO和△ODB中,∴△ACO≌△ODB(AAS).∴OD=AC=1,DB=OC=3.∴点B的坐标为(1,3).(2)因抛物线过原点,故可设所求抛物线的解析式为y=ax2+bx.将A(﹣3,1),B(1,3)两点代入,得,解得:a=,b=故所求抛物线的解析式为y=x2+x.(3)在抛物线y=x2+x中,对称轴l的方程是x=﹣=﹣点B1是B关于抛物线的对称轴l的对称点,故B1坐标(﹣,3)在△AB1B中,底边B1B=,高的长为2.故S△AB1B=××2=.【点评】本题主要考查了全等三角形的判定以及用待定系数法求二次函数解析式,二次函数的性质等知识点.五、(本大题共1小题,共10分).22.【分析】(1)、由同角的余角相等可得∠APB=∠PQC,故△ABP∽△PCQ,有,代入BP,AB,PC的值求得CQ的值;(2)、取BP的中点H,连接EH,由三角形的中位线的性质可得四边形EHGF是直角梯形,由,设CQ=a,有BP=2a,用含a的代数式表示出EH,FG,HP,HG,两用梯形和三角形的面积公式求得S四边形EPGF =S梯形EHGF﹣S△EHP的值.【解答】解:(1)∵四边形ABCD是矩形∴∠B=∠C=90°,∴∠CPQ+∠PQC=90°,∵AP⊥PQ,∴∠CPQ+∠APB=90°,∴∠APB=∠PQC,∴△ABP∽△PCQ,∴,即,∴CQ =3;(2)解法一:取BP 的中点H ,连接EH ,由, 设CQ =a ,则BP =2a ,∵E ,F ,G ,H 分别为AP ,PQ ,PC ,BP 的中点,∴EH ∥AB ,FG ∥CD ,又∵AB ∥CD ,∠B =∠C =90°,∴EH ∥FG ,EH ⊥BC ,FG ⊥BC ,∴四边形EHGF 是直角梯形,∴EH =AB =2,FG =CQ =a ,HP =BP =a ,HG =HP +PG =BC =4,∴S 梯形EHGF =(EH +FG )•HG =(2+a )•4=4+a ,S △EHP =HP •EH =a •2=a , ∴S 四边形EPGF =S 梯形EHGF ﹣S △EHP =4+a ﹣a =4;解法二:连接AQ ,由=2,设CQ =a ,则BP =2a ,DQ =4﹣a ,PC =8﹣2a ,S △APQ =S 矩形ABCD ﹣S △ABP ﹣S △PCQ ﹣S △ADQ=4×8﹣•2a •4﹣(8﹣2a )a ﹣×8(4﹣a )=a 2﹣4a +16∵E ,F ,G 分别是AP ,PQ ,PC 的中点∴EF ∥AQ ,EF =AQ .∴△PEF ∽△PAQ∴,S △PEF =S △APQ =(a 2﹣4a +16)同理:S △PFG =S △PCQ =a (8﹣2a )∴S 四边形EPGF =S △PEF +S △PFG=(a 2﹣4a +16)+a (8﹣2a )=4.【点评】本题利用了矩形的性质,相似三角形的判定和性质,三角形和梯形的面积公式求解.六、(本大题共1小题,共12分)23.【分析】(1)OA=AC首先三角形OAC是个等腰三角形,因为∠AOC=60°,三角形AOC是个等边三角形,因此∠OAC=60°;(2)如果PC与圆A相切,那么AC⊥PC,在直角三角形APC中,有∠PCA的度数,有A点的坐标也就有了AC的长,可根据余弦函数求出PA的长,然后由PO=PA﹣OA得出OP的值.(3)本题分两种情况:①以O为顶点,OC,OQ为腰.那么可过C作x轴的垂线,交圆于Q,此时三角形OCQ就是此类情况所说的等腰三角形;那么此时PO可在直角三角形OCP中,根据∠COA的度数,和OC 即半径的长求出PO.②以Q为顶点,QC,QD为腰,那么可做OC的垂直平分线交圆于Q,则这条线必过圆心,如果设垂直平分线交OC于D的话,可在直角三角形AOQ中根据∠QAE的度数和半径的长求出Q的坐标;然后用待定系数法求出CQ所在直线的解析式,得出这条直线与x轴的交点,也就求出了PO的值.【解答】解:(1)∵∠AOC=60°,AO=AC,∴△AOC是等边三角形,∴∠OAC=60°.(2)∵CP与⊙A相切,∴∠ACP=90°,∴∠APC=90°﹣∠OAC=30°;又∵A(4,0),∴AC=AO=4,∴PA=2AC=8,∴PO=PA﹣OA=8﹣4=4.(3)①过点C作CP1⊥OB,垂足为P1,延长CP1交⊙A于Q1;∵OA是半径,∴,∴OC=OQ1,∴△OCQ1是等腰三角形;又∵△AOC是等边三角形,∴P1O=OA=2;②过A作AD⊥OC,垂足为D,延长DA交⊙A于Q2,CQ2与x轴交于P2;∵A是圆心,∴DQ2是OC的垂直平分线,∴CQ2=OQ2,∴△OCQ2是等腰三角形;过点Q2作Q2E⊥x轴于E,在Rt△AQ2E中,∵∠Q2AE=∠OAD=∠OAC=30°,∴Q2E=AQ2=2,AE=2,∴点Q2的坐标(4+,﹣2);在Rt△COP1中,∵P1O=2,∠AOC=60°,∴,∴C点坐标(2,);设直线CQ2的关系式为y=kx+b,则,解得,∴y=﹣x+2+2;当y=0时,x=2+2,∴P2O=2+2.【点评】本题综合考查函数、圆的切线,等边三角形的判定以及垂径定理等知识点.要注意(3)中的等腰三角形要按顶点和腰的不同来分类讨论.。

江西省宜春市高安市2019年中考数学一模试卷(Word版,含答案解析)

江西省宜春市高安市2019年中考数学一模试卷(Word版,含答案解析)

2019年江西省宜春市高安市中考数学一模试卷一、选择题(本大题共有6小题,每小题3分,共18分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.﹣3的倒数是( )A .﹣B .C .﹣3D .32.如图1放置的一个机器零件,若其主(正)视图如图2,则其俯视图是( )A .B .C .D .3.已知sin a =,且a 是锐角,则a =( ) A .75° B .60° C .45° D .30°4.学校开展为贫困地区捐书活动,以下是5名同学捐书的册数:2,2,x ,4,9.已知这组数据的平均数是4,则这组数据的中位数和众数分别是( )A .2和2B .4和2C .2和3D .3和25.如图,Rt △ABC 中,∠ACB =90°,DE 过点C 且平行于AB ,若∠BCE =35°,则∠A 的度数为( )A .35°B .45°C .55°D .65°6.假定有一排蜂房,形状如图,一只蜜蜂在左下角的蜂房中,由于受伤,只能爬,不能飞,而且只能永远向右方(包括右上、右下)爬行,从一间蜂房爬到与之相邻的右蜂房中去.则从最初位置爬到4号蜂房中,不同的爬法有( )A.4种B.6种C.8种D.10种二、填空题(本大题共6个小题,每小题3分,共18分.)7.计算:+2﹣1=.8.我国最长的河流长江全长约为6300千米,用科学记数法表示为千米.9.若关于x的一元二次方程x2+2x﹣k=0没有实数根,则k的取值范围是.10.一个圆锥的底面半径为3cm,侧面展开图是半圆,则圆锥的侧面积是cm2.11.线段AB、CD在平面直角坐标系中的位置如图所示,O为坐标原点.若线段AB上一点P的坐标为(a,b),则直线OP与线段CD的交点的坐标为.12.如图,在菱形ABCD中,∠B=60°,点E、F分别从点B、D出发以同样的速度沿边BC、DC 向点C运动.给出以下四个结论:①AE=AF;②∠CEF=∠CFE;③当点E,F分别为边BC,DC的中点时,△AEF是等边三角形;④当点E,F分别为边BC,DC的中点时,△AEF的面积最大.上述结论中正确的序号有.(把你认为正确的序号都填上)三、解答题(本大题共5个小题,每小题6分,共30分.解答应写出文字说明、证明过程或演算步骤.)13.解方程:14.如图所示,在正方形网格中,每个小正方形的边长都是1,每个小格点的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)使三角形的三边长分别为3,2,.(2)使三角形为边长都为无理数的钝角三角形且面积为4.15.先化简(1﹣)÷,再从不等式2x﹣1<6的正整数解中选一个适当的数代入求值.16.如图,△ABC与△ABD中,AD与BC相交于O点,∠1=∠2,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC=BD,并给出证明.你添加的条件是:.证明:.17.在试制某种洗发液新品种时,需要选用两种不同的添加剂.现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用.根据试验设计原理,通常要先从芳香度为0,1,2的三种添加剂中随机选取一种,再从芳香度为3,4,5的三种添加剂中随机选取一种,进行搭配试验.请你利用树状图(树形图)或列表的方法,表示所选取两种不同添加剂所有可能出现的结果,并求出芳香度之和等于4的概率.四、(本大题共4小题,每小题8分,共32分.)18.2008年北京奥运会的比赛门票开始接受公众预定.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用12000元预定15张下表中球类比赛的门票:(1)若全部资金用来预定男篮门票和乒乓球门票,问这个球迷可以预订男篮门票和乒乓球门票各多少张?(2)若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票与乒乓球门票数相同,且足球门票的费用不超过男篮门票的费用,问可以预订这三种球类门票各多少张?19.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣2,1),B(1,n)两点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出一次函数的值大于反比例函数的值的x的取值范围.20.国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,某市就“你每天在校体育活动时间是多少?”的问题随机调查了辖区内300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5h;B组:0.5h≤t<1h;C组:1h≤t<1.5h;D组:t≥1.5h请根据上述信息解答下列问题:(1)C组的人数是;(2)本次调查数据的中位数落在组内;(3)若该辖区约有24 000名初中学生,请你估计其中达国家规定体育活动时间的人约有多少?21.在平面直角坐标系中,△AOB的位置如图所示,已知∠AOB=90°,AO=BO,点A的坐标为(﹣3,1).(1)求点B的坐标;(2)求过A,O,B三点的抛物线的解析式;(3)设点B关于抛物线的对称轴l的对称点为B1,求△AB1B的面积.五、(本大题共1小题,共10分).22.已知:如图①,②,在矩形ABCD中,AB=4,BC=8,P,Q分别是边BC,CD上的点.(1)如图①,若AP⊥PQ,BP=2,求CQ的长;(2)如图②,若,且E,F,G分别为AP,PQ,PC的中点,求四边形EPGF的面积.六、(本大题共1小题,共12分)23.如图①,②,在平面直角坐标系xOy中,点A的坐标为(4,0),以点A为圆心,4为半径的圆与x轴交于O,B两点,OC为弦,∠AOC=60°,P是x轴上的一动点,连接CP.(1)求∠OAC的度数;(2)如图①,当CP与⊙A相切时,求PO的长;(3)如图②,当点P在直径OB上时,CP的延长线与⊙A相交于点Q,问PO为何值时,△OCQ是等腰三角形?2019年江西省宜春市高安市中考数学一模试卷参考答案与试题解析一、选择题(本大题共有6小题,每小题3分,共18分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.2.【分析】找到从上面看所到的图形即可.【解答】解:从上面看可得到左右相邻的3个矩形.故选:D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看到的视图.3.【分析】根据sin60°=得出a的值.【解答】解:∵sin a=sin60°=,a是锐角,∴a=60°.故选:B.【点评】本题考查特殊角的三角函数值.特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.4.【分析】根据平均数的定义得到关于x的方程,求x,再根据中位数和众数的定义求解.【解答】解:根据平均数的含义得:=4,所以x=3;将这组数据从小到大的顺序排列(2,2,3,4,9),处于中间位置的数是3,那么这组数据的中位数是3;在这一组数据中2是出现次数最多的,故众数是2.故选:D.【点评】本题为统计题,考查平均数、众数与中位数的意义,解题要细心.5.【分析】题中有三个条件,图形为常见图形,可先由AB∥DE,∠BCE=35°,根据两直线平行,内错角相等求出∠B,然后根据三角形内角和为180°求出∠A.【解答】解:∵AB∥DE,∠BCE=35°,∴∠B=∠BCE=35°(两直线平行,内错角相等),又∵∠ACB=90°,∴∠A=90°﹣35°=55°(在直角三角形中,两个锐角互余).故选:C.【点评】两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.6.【分析】本题应分两种情况考虑:①当蜜蜂先向右爬行时;②当蜜蜂先向右上爬行时;然后将两种情况中所以可能的爬行路线一一列出,即可求出共有多少种不同的爬法.【解答】解:本题可分两种情况:①蜜蜂先向右爬,则可能的爬法有:一、1⇒2⇒4;二、1⇒3⇒4;三、1⇒3⇒2⇒4;共有3种爬法;②蜜蜂先向右上爬,则可能的爬法有:一、0⇒3⇒4;二、0⇒3⇒2⇒4;三、0⇒1⇒2⇒4;三、0⇒1⇒3⇒4;四、0⇒1⇒3⇒2⇒4;共5种爬法;因此不同的爬法共有3+5=8种.故选:C.【点评】本题应该先确立大致的解题思路,然后将有可能的爬法按序排列,以免造成头绪混乱,少解错解等情况.二、填空题(本大题共6个小题,每小题3分,共18分.)7.【分析】分别根据零指数幂,负指数幂的运算法则计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=(﹣)0+2﹣1=1+=1.故答案为1.【点评】本题主要考查了零指数幂,负指数幂的运算.负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.8.【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n 次幂.此题n>0,n=3.【解答】解:6 300=6.3×103.故答案为:6.3×103.【点评】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).9.【分析】若关于x的一元二次方程x2+2x﹣k=0没有实数根,则△=b2﹣4ac<0,列出关于k的不等式,求得k的取值范围即可.【解答】解:∵关于x的一元二次方程x2+2x﹣k=0没有实数根,∴△=b2﹣4ac<0,即22﹣4×1×(﹣k)<0,解这个不等式得:k<﹣1.故答案为:k<﹣1.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.【分析】利用圆锥侧面展开图的弧长=底面周长,可求得圆锥的底面周长以及圆锥母线长,那么圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面半径为3cm,则底面周长=6πcm,侧面展开图是半圆,则母线长=6π×2÷2π=6cm,∴圆锥的侧面积=×6π×6=18πcm2.【点评】本题利用了圆的周长公式和扇形面积公式求解.11.【分析】根据坐标图,可知B点坐标是(4,3),D点坐标是(8,6),A点坐标是(3,1),C点坐标是(6,2),那么连接BD,直线BD一定过原点O,连接AC直线AC一定过原点O,且B是OD的中点,同理A是OC的中点,于是AB是△OCD的中位线,从AB上任取一点P(a、b),则直线OP与CD的交点E的坐标是(2a,2b).【解答】解:设直线OP与线段CD的交点为E,∵AB∥CD,且O,B,D三点在一条直线上,OB=BD∴OP=PE∴若点P的坐标为(a,b),∴点E的坐标是(2a,2b).故答案为(2a,2b).【点评】正确的读图是解决本题的前提条件,由AB∥CD联想到三角形相似,或平行线分线段成比例定理,是解决这道题的关键.12.【分析】根据菱形的性质对各个结论进行验证从而得到正确的序号.【解答】解:∵点E、F分别从点B、D出发以同样的速度沿边BC、DC向点C运动,∴BE=DF,∵AB=AD,∠B=∠D,∴△ABE≌△ADF,∴AE=AF,①正确;∴CE=CF,∴∠CEF=∠CFE,②正确;∵在菱形ABCD中,∠B=60°,∴AB=BC,∴△ABC是等边三角形,∴当点E,F分别为边BC,DC的中点时,BE=AB,DF=AD,∴△ABE和△ADF是直角三角形,且∠BAE=∠DAF=30°,∴∠EAF=120°﹣30°﹣30°=60°,∴△AEF是等边三角形,③正确;∵△AEF的面积=菱形ABCD的面积﹣△ABE的面积﹣△ADF的面积﹣△CEF的面积=AB2﹣BE•AB××2﹣××(AB﹣BE)2=﹣BE2+AB2,∴△AEF的面积是BE的二次函数,∴当BE=0时,△AEF的面积最大,④错误.故正确的序号有①②③.【点评】本题考查了菱形的性质、全等三角形的判定和等边三角形的判定.三、解答题(本大题共5个小题,每小题6分,共30分.解答应写出文字说明、证明过程或演算步骤.)13.【分析】观察可得方程最简公分母为:(x+1)(1﹣2x),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:两边同乘以(x+1)(1﹣2x),得:(x﹣1)(1﹣2x)+2x(x+1)=0,整理,得5x﹣1=0,解得x=,经检验,x=是原方程的根.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.14.【分析】(1)(2)利用数形结合的思想解决问题即可.【解答】解:(1)满足条件的△ABC如图所示.(2)满足条件的△DEF如图所示.【点评】本题考查作图﹣应用与设计,无理数,勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.15.【分析】先把括号里的式子进行通分,再把后面的式子根据完全平方公式、平方差公式进行因式分解,然后约分,再求出不等式的解集,最后代入一个合适的数据代入即可.【解答】解:(1﹣)÷=×=,∵2x﹣1<6,∴2x<7,∴x<,把x=3代入上式得:原式==4.【点评】此题考查了分式的化简求值以及一元一次不等式的解法,用到的知识点是通分、完全平方公式、平方差公式以及一元一次不等式的解法,熟练掌握公式与解法是解题的关键.16.【分析】要使AC=BD,可以证明△ACB≌△BDA或者△ACO≌△BDO从而得到结论.【解答】解:添加条件例举:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC等.证明:(1)如果添加条件是AD=BC时,∵BC=AD,∠2=∠1,AB=BA,在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD;(2)如果添加条件是OC=OD时,∵∠1=∠2∴OA=OB∴OA+OD=OB+OD∴BC=AD又∵∠2=∠1,AB=BA在△ABC 与△BAD 中,,∴△ABC ≌△BAD ,∴AC =BD ; (3)如果添加条件是∠C =∠D 时,∵∠2=∠1,AB =BA ,在△ABC 与△BAD 中,,∴△ABC ≌△BAD ,∴AC =BD ;(4)如果添加条件是∠CAO =∠DBC 时,∵∠1=∠2,∴∠CAO +∠1=∠DBC +∠2,∴∠CAB =∠DBA ,又∵AB =BA ,∠2=∠1,在△ABC 与△BAD 中,,∴△ABC ≌△BAD ,∴AC =BD .故答案为:AD =BC ;OC =OD ;∠C =∠D ;∠CAO =∠DBC .【点评】本题考查了全等三角形的判定及性质;判定两个三角形全等的方法有:SSS ,SAS ,ASA ,AAS ,本题已知一边一角,所以可以寻找夹这个角的另外一边或者是另外两个角.17.【分析】因为此题需要两步完成,所以采用列表法或者采用树状图法都比较简单;解题时要注意是放回实验还是不放回实验.列举出所有情况,让芳香度之和等于4的情况数除以总情况数即为所求的概率.【解答】解:列表法:树状图:(4分)所有可能出现的结果共有9种,芳香度之和等于4的结果有两种.∴所选取两种不同添加剂的芳香度之和等于4的概率为.【点评】考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.四、(本大题共4小题,每小题8分,共32分.)18.【分析】(1)男篮门票总价+乒乓球门票总价=12000,列方程即可求解;(2)关系式为:男篮门票总价+乒乓球门票总价+足球门票总价≤12000;足球门票的费用≤男篮门票的费用.据此列不等式即可求解.【解答】解:(1)设预定男篮门票x张,则乒乓球门票(15﹣x)张,根据题意得1000x+500(15﹣x)=12000解得x=9∴15﹣x=15﹣9=6.答:这个球迷可以预订男篮门票和乒乓球门票各9张,6张;(2)设足球门票与乒乓球门票数都预定y张,则男篮门票数为(15﹣2y)张,根据题意得解得由y为正整数可得y=5,15﹣2y=5.答:预订这三种球类门票各5张.【点评】解决本题的关键是读懂题意,找到所求量的等量关系及符合题意的不等关系式组.19.【分析】(1)利用点A的坐标可求出反比例函数解析式,再把B(1,n)代入反比例函数解析式,即可求得n的值,于是得到一次函数的解析式;(2)根据图象和A,B两点的坐标即可写出一次函数的值大于反比例函数的值的x的取值范围.【解答】解:(1)∵A(﹣2,1)在反比例函数y=的图象上,∴1=,解得m=﹣2.∴反比例函数解析式为y=,∵B(1,n)在反比例函数h上,∴n=﹣2,∴B的坐标(1,﹣2),把A(﹣2,1),B(1,﹣2)代入y=kx+b得,解得:,∴一次函数的解析式为y=﹣x﹣1;(2)由图象知:当x<﹣2或0<x<1时,一次函数的值大于反比例函数.【点评】本题主要考查了反比例函数与一次函数的交点问题,解题的关键是求出反比例函数解析式和一次函数的解析式.20.【分析】(1)根据直方图可得总人数以及各小组的已知人数,进而根据其间的关系可计算C 组的人数;(2)根据中位数的概念,中位数应是第150、151人时间的平均数,分析可得答案;(3)首先计算样本中达国家规定体育活动时间的频率,再进一步估计总体达国家规定体育活动时间的人数.【解答】解:(1)根据题意有,C组的人数为300﹣20﹣100﹣60=120;(2)根据中位数的概念,中位数应是第150、151人时间的平均数,分析可得其均在C组,故调查数据的中位数落在C组;(3)达国家规定体育活动时间的人数约占×100%=60%.所以,达国家规定体育活动时间的人约有24000×60%=14400(人);故答案为:(1)120,(2)C,(3)达国家规定体育活动时间的人约有14400人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.21.【分析】(1)如果过A作AC⊥x轴,垂足为C,作BD⊥x轴垂足为D.不难得出△AOC和△BOD全等,那么B的横坐标就是A点纵坐标的绝对值,B的纵坐标就是A点的横坐标的绝对值,由此可得出B的坐标.(2)已知了A,O的坐标,根据(1)求出的B点的坐标,可用待定系数法求出抛物线的解析式.(3)根据(2)的解析式可得出对称轴的解析式,然后根据B点的坐标得出B1的坐标,那么BB1就是三角形的底边,B的纵坐标与A的纵坐标的差的绝对值就是△ABB1的高,由此可求出其面积.【解答】解:(1)作AC⊥x轴,垂足为C,作BD⊥x轴垂足为D.则∠ACO=∠ODB=90°,∴∠AOC+∠OAC=90°.又∵∠AOB=90°,∴∠AOC+∠BOD=90°∴∠OAC=∠BOD.在△ACO和△ODB中,∴△ACO≌△ODB(AAS).∴OD=AC=1,DB=OC=3.∴点B的坐标为(1,3).(2)因抛物线过原点,故可设所求抛物线的解析式为y=ax2+bx.将A(﹣3,1),B(1,3)两点代入,得,解得:a=,b=故所求抛物线的解析式为y=x2+x.(3)在抛物线y=x2+x中,对称轴l的方程是x=﹣=﹣点B1是B关于抛物线的对称轴l的对称点,故B1坐标(﹣,3)在△AB1B中,底边B1B=,高的长为2.故S△AB1B=××2=.【点评】本题主要考查了全等三角形的判定以及用待定系数法求二次函数解析式,二次函数的性质等知识点.五、(本大题共1小题,共10分).22.【分析】(1)、由同角的余角相等可得∠APB=∠PQC,故△ABP∽△PCQ,有,代入BP,AB,PC的值求得CQ的值;(2)、取BP的中点H,连接EH,由三角形的中位线的性质可得四边形EHGF是直角梯形,由,设CQ=a,有BP=2a,用含a的代数式表示出EH,FG,HP,HG,两用梯形和三角形的面积公式求得S四边形EPGF =S梯形EHGF﹣S△EHP的值.【解答】解:(1)∵四边形ABCD是矩形∴∠B=∠C=90°,∴∠CPQ+∠PQC=90°,∵AP⊥PQ,∴∠CPQ+∠APB=90°,∴∠APB=∠PQC,∴△ABP∽△PCQ,∴,即,∴CQ =3;(2)解法一:取BP 的中点H ,连接EH ,由, 设CQ =a ,则BP =2a ,∵E ,F ,G ,H 分别为AP ,PQ ,PC ,BP 的中点,∴EH ∥AB ,FG ∥CD ,又∵AB ∥CD ,∠B =∠C =90°,∴EH ∥FG ,EH ⊥BC ,FG ⊥BC ,∴四边形EHGF 是直角梯形,∴EH =AB =2,FG =CQ =a ,HP =BP =a ,HG =HP +PG =BC =4,∴S 梯形EHGF =(EH +FG )•HG =(2+a )•4=4+a ,S △EHP =HP •EH =a •2=a , ∴S 四边形EPGF =S 梯形EHGF ﹣S △EHP =4+a ﹣a =4;解法二:连接AQ ,由=2,设CQ =a ,则BP =2a ,DQ =4﹣a ,PC =8﹣2a ,S △APQ =S 矩形ABCD ﹣S △ABP ﹣S △PCQ ﹣S △ADQ=4×8﹣•2a •4﹣(8﹣2a )a ﹣×8(4﹣a )=a 2﹣4a +16∵E ,F ,G 分别是AP ,PQ ,PC 的中点∴EF ∥AQ ,EF =AQ .∴△PEF ∽△PAQ∴,S △PEF =S △APQ =(a 2﹣4a +16)同理:S △PFG =S △PCQ =a (8﹣2a )∴S 四边形EPGF =S △PEF +S △PFG=(a 2﹣4a +16)+a (8﹣2a )=4.【点评】本题利用了矩形的性质,相似三角形的判定和性质,三角形和梯形的面积公式求解.六、(本大题共1小题,共12分)23.【分析】(1)OA=AC首先三角形OAC是个等腰三角形,因为∠AOC=60°,三角形AOC是个等边三角形,因此∠OAC=60°;(2)如果PC与圆A相切,那么AC⊥PC,在直角三角形APC中,有∠PCA的度数,有A点的坐标也就有了AC的长,可根据余弦函数求出PA的长,然后由PO=PA﹣OA得出OP的值.(3)本题分两种情况:①以O为顶点,OC,OQ为腰.那么可过C作x轴的垂线,交圆于Q,此时三角形OCQ就是此类情况所说的等腰三角形;那么此时PO可在直角三角形OCP中,根据∠COA的度数,和OC 即半径的长求出PO.②以Q为顶点,QC,QD为腰,那么可做OC的垂直平分线交圆于Q,则这条线必过圆心,如果设垂直平分线交OC于D的话,可在直角三角形AOQ中根据∠QAE的度数和半径的长求出Q的坐标;然后用待定系数法求出CQ所在直线的解析式,得出这条直线与x轴的交点,也就求出了PO的值.【解答】解:(1)∵∠AOC=60°,AO=AC,∴△AOC是等边三角形,∴∠OAC=60°.(2)∵CP与⊙A相切,∴∠ACP=90°,∴∠APC=90°﹣∠OAC=30°;又∵A(4,0),∴AC=AO=4,∴PA=2AC=8,∴PO=PA﹣OA=8﹣4=4.(3)①过点C作CP1⊥OB,垂足为P1,延长CP1交⊙A于Q1;∵OA是半径,∴,∴OC=OQ1,∴△OCQ1是等腰三角形;又∵△AOC是等边三角形,∴P1O=OA=2;②过A作AD⊥OC,垂足为D,延长DA交⊙A于Q2,CQ2与x轴交于P2;∵A是圆心,∴DQ2是OC的垂直平分线,∴CQ2=OQ2,∴△OCQ2是等腰三角形;过点Q2作Q2E⊥x轴于E,在Rt△AQ2E中,∵∠Q2AE=∠OAD=∠OAC=30°,∴Q2E=AQ2=2,AE=2,∴点Q2的坐标(4+,﹣2);在Rt△COP1中,∵P1O=2,∠AOC=60°,∴,∴C点坐标(2,);设直线CQ2的关系式为y=kx+b,则,解得,∴y=﹣x+2+2;当y=0时,x=2+2,∴P2O=2+2.【点评】本题综合考查函数、圆的切线,等边三角形的判定以及垂径定理等知识点.要注意(3)中的等腰三角形要按顶点和腰的不同来分类讨论.。

2018年江西省宜春市高安市中考数学三模试卷含答案解析

2018年江西省宜春市高安市中考数学三模试卷含答案解析

2018年江西省宜春市高安市中考数学三模试卷一.选择题(共6小题,满分15分)1.(3分)﹣2的相反数是()A.2 B.C.﹣2 D.以上都不对2.如图图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(3分)下列运算中,正确的是()A.2a2﹣a2=2 B.(a3)2=a5C.a2?a4=a6 D.a﹣3÷a﹣2=a4.(3分)在一次函数y=﹣x+3的图象上取一点P,作PA⊥x轴,垂足为A,作PB⊥y轴,垂足为B,且矩形OAPB的面积为,则这样的点P共有()A.4个 B.3个 C.2个 D.1个5.(3分)如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A为对称中心作点P(0,2)的对称点P1,以B为对称中心作点P1的对称点P2,以C为对称中心作点P2的对称点P3,以D为对称中心作点P3的对称点P4,…,重复操作依次得到点P1,P2,…,则点P2010的坐标是()A.(2010,2)B.(2010,﹣2)C.(2012,﹣2)D.(0,2)6.(3分)已知一元二次方程ax2+bx+c=0(a≠0)中,下列说法:①若a+b+c=0,则b2﹣4ac>0;②若方程两根为﹣1和2,则2a+c=0;③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;④若b=2a+c,则方程有两个不相等的实根.其中正确的有()A.①②③B.①②④C.②③④D.①②③④二.填空题(共6小题,满分15分)7.(3分)分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)=.8.截止2017年6月,我国网民数量约达7.31亿人,用科学记数法表示我国网民数量约为人.9.(3分)数5,2,10,7,15,x的平均数是8,则中位数是.10.(3分)如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为.11.(3分)如图:顺次连接矩形A1B1C1D1四边的中点得到四边形A2B2C2D2,再顺次连接四边形A2B2C2D2四边的中点得四边形A3B3C3D3,…,按此规律得到四边形A n B n C n D n.若矩形A1B1C1D1的面积为24,那么四边形A n B n C n D n的面积为.12.(3分)如图,有一张长为8cm,宽为7cm的矩形纸片ABCD,现要剪下一个腰长为6cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为cm2.。

江西省高安市2018届中考数学第三次模拟考试试题

江西省高安市2018届中考数学第三次模拟考试试题

如果您喜欢这份文档,欢迎下载!祝您成绩进步,学习愉快!江西省高安市2018届中考数学第三次模拟考试试题说明:1.本卷共有六个大题,23个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题和答题卡,答案要求写在答题卡上,不得在试题卷上作答,否则不给分. 一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项) 1.﹣13的相反数是( ) A .3B .﹣3C .13D .﹣132.2018年春节期间,在网络上用“百度”搜索引擎探索“高品高安”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为( ) A .4.51×108B .4.51×107C .45.1×106D .0.451×1083.下列计算正确的是( ).A .a 3+a 2=a 5B .(3a -b )2=9a 2-b 2C .a 6b ÷a 2=a 3bD .(-ab 3)2=a 2b64.如图,直线y =x +a -2与双曲线y=x4交于A ,B 两点,则当线段AB 的长度取最小值时,a 的值为( ). A .0B .1C .2D .55.某车间5月上旬生产零件的次品数如下(单位:个):0,2,0,2,3,0,2,3,1,1.则在这10天中该车间生产零件的次品数的( ) A .众数是2 B .中位数是1.5C .平均数是2D .以上都不正确6.用直尺和圆规作Rt △ABC 斜边AB 上的高线CD ,以下四个作图中,作法错误..的是( )A B C D二、填空题(本大题共6小题,每小题3分,共18分)7.分解因式:a3b﹣ab3= .8.已知实数a,b满足a2﹣a﹣6=0,b2﹣b﹣6=0(a≠b),则a+b= .9.《九章算术》是我国东汉初年编订的一部数学经典著作,在它的“方程”一章里,一次方程组是由算筹布置而成的,如图1、图2,图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项,把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3219423x yx y+=⎧⎨+=⎩,类似地,图2所示的算筹图我们可以表述为.第9题图10.如图,左边是一个由5个棱长为1的小正方体组合成的几何体,现在增加一个小正方体,使其主视图如右,则增加后的几何体的左视图的面积为.11.把一张半径为6cm圆形纸片按如图所示方式折叠两次后展开,图中的虚线表示折痕,则»BC的长度为cm.第11题图第12题图12.已知tan3MON∠=,点P在∠MON内,PC⊥ON,PC=1,OC=3,直线l绕点P旋转,交射线OM于点A,交射线ON于点B,当△AOB为直角三角形时,线段OA的长度为.三、(本大题共5小题,每小题6分,共30分)13.(1)12322tan60+--°113-+⎛⎫⎪⎝⎭(2)解不等式组:()3221213x xxx+-≥+>-⎧⎪⎨⎪⎩,.14.先化简,再求值:12244222+-÷+-xxx x x x ,在0,1,2,三个数中选一个合适的,代入求值.15.如图,在△ABC 中,AB =AC ,D ,E ,F 分别是BC ,AB ,AC 的中点,求证:四边形AEDF 是菱形。

江西省宜春市2019年中考数学一模试卷(Word版,含答案解析)

2019年江西省宜春市高安市中考数学一模试卷一、选择题(本大题共有6小题,每小题3分,共18分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.﹣3的倒数是()A.﹣B.C.﹣3D.32.如图1放置的一个机器零件,若其主(正)视图如图2,则其俯视图是()A.B.C.D.3.已知sin a=,且a是锐角,则a=()A.75°B.60°C.45°D.30°4.学校开展为贫困地区捐书活动,以下是5名同学捐书的册数:2,2,x,4,9.已知这组数据的平均数是4,则这组数据的中位数和众数分别是()A.2和2B.4和2C.2和3D.3和25.如图,Rt△ABC中,∠ACB=90°,DE过点C且平行于AB,若∠BCE=35°,则∠A的度数为()A.35°B.45°C.55°D.65°6.假定有一排蜂房,形状如图,一只蜜蜂在左下角的蜂房中,由于受伤,只能爬,不能飞,而且只能永远向右方(包括右上、右下)爬行,从一间蜂房爬到与之相邻的右蜂房中去.则从最初位置爬到4号蜂房中,不同的爬法有()A.4种B.6种C.8种D.10种二、填空题(本大题共6个小题,每小题3分,共18分.)7.计算:+2﹣1=.8.我国最长的河流长江全长约为6300千米,用科学记数法表示为千米.9.若关于x的一元二次方程x2+2x﹣k=0没有实数根,则k的取值范围是.10.一个圆锥的底面半径为3cm,侧面展开图是半圆,则圆锥的侧面积是cm2.11.线段AB、CD在平面直角坐标系中的位置如图所示,O为坐标原点.若线段AB上一点P的坐标为(a,b),则直线OP与线段CD的交点的坐标为.12.如图,在菱形ABCD中,∠B=60°,点E、F分别从点B、D出发以同样的速度沿边BC、DC 向点C运动.给出以下四个结论:①AE=AF;②∠CEF=∠CFE;③当点E,F分别为边BC,DC的中点时,△AEF是等边三角形;④当点E,F分别为边BC,DC的中点时,△AEF的面积最大.上述结论中正确的序号有.(把你认为正确的序号都填上)三、解答题(本大题共5个小题,每小题6分,共30分.解答应写出文字说明、证明过程或演算步骤.)13.解方程:14.如图所示,在正方形网格中,每个小正方形的边长都是1,每个小格点的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)使三角形的三边长分别为3,2,.(2)使三角形为边长都为无理数的钝角三角形且面积为4.15.先化简(1﹣)÷,再从不等式2x﹣1<6的正整数解中选一个适当的数代入求值.16.如图,△ABC与△ABD中,AD与BC相交于O点,∠1=∠2,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC=BD,并给出证明.你添加的条件是:.证明:.17.在试制某种洗发液新品种时,需要选用两种不同的添加剂.现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用.根据试验设计原理,通常要先从芳香度为0,1,2的三种添加剂中随机选取一种,再从芳香度为3,4,5的三种添加剂中随机选取一种,进行搭配试验.请你利用树状图(树形图)或列表的方法,表示所选取两种不同添加剂所有可能出现的结果,并求出芳香度之和等于4的概率.四、(本大题共4小题,每小题8分,共32分.)18.2008年北京奥运会的比赛门票开始接受公众预定.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用12000元预定15张下表中球类比赛的门票:比赛项目票价(元/场)男篮1000足球800乒乓球500(1)若全部资金用来预定男篮门票和乒乓球门票,问这个球迷可以预订男篮门票和乒乓球门票各多少张?(2)若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票与乒乓球门票数相同,且足球门票的费用不超过男篮门票的费用,问可以预订这三种球类门票各多少张?19.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣2,1),B(1,n)两点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出一次函数的值大于反比例函数的值的x的取值范围.20.国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,某市就“你每天在校体育活动时间是多少?”的问题随机调查了辖区内300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5h;B组:0.5h≤t<1h;C组:1h≤t<1.5h;D组:t≥1.5h请根据上述信息解答下列问题:(1)C组的人数是;(2)本次调查数据的中位数落在组内;(3)若该辖区约有24 000名初中学生,请你估计其中达国家规定体育活动时间的人约有多少?21.在平面直角坐标系中,△AOB的位置如图所示,已知∠AOB=90°,AO=BO,点A的坐标为(﹣3,1).(1)求点B的坐标;(2)求过A,O,B三点的抛物线的解析式;(3)设点B关于抛物线的对称轴l的对称点为B1,求△AB1B的面积.五、(本大题共1小题,共10分).22.已知:如图①,②,在矩形ABCD中,AB=4,BC=8,P,Q分别是边BC,CD上的点.(1)如图①,若AP⊥PQ,BP=2,求CQ的长;(2)如图②,若,且E,F,G分别为AP,PQ,PC的中点,求四边形EPGF的面积.六、(本大题共1小题,共12分)23.如图①,②,在平面直角坐标系xOy中,点A的坐标为(4,0),以点A为圆心,4为半径的圆与x轴交于O,B两点,OC为弦,∠AOC=60°,P是x轴上的一动点,连接CP.(1)求∠OAC的度数;(2)如图①,当CP与⊙A相切时,求PO的长;(3)如图②,当点P在直径OB上时,CP的延长线与⊙A相交于点Q,问PO为何值时,△OCQ 是等腰三角形?2019年江西省宜春市高安市中考数学一模试卷参考答案与试题解析一、选择题(本大题共有6小题,每小题3分,共18分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.2.【分析】找到从上面看所到的图形即可.【解答】解:从上面看可得到左右相邻的3个矩形.故选:D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看到的视图.3.【分析】根据sin60°=得出a的值.【解答】解:∵sin a=sin60°=,a是锐角,∴a=60°.故选:B.【点评】本题考查特殊角的三角函数值.特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.4.【分析】根据平均数的定义得到关于x的方程,求x,再根据中位数和众数的定义求解.【解答】解:根据平均数的含义得:=4,所以x=3;将这组数据从小到大的顺序排列(2,2,3,4,9),处于中间位置的数是3,那么这组数据的中位数是3;在这一组数据中2是出现次数最多的,故众数是2.故选:D.【点评】本题为统计题,考查平均数、众数与中位数的意义,解题要细心.5.【分析】题中有三个条件,图形为常见图形,可先由AB∥DE,∠BCE=35°,根据两直线平行,内错角相等求出∠B,然后根据三角形内角和为180°求出∠A.【解答】解:∵AB∥DE,∠BCE=35°,∴∠B=∠BCE=35°(两直线平行,内错角相等),又∵∠ACB=90°,∴∠A=90°﹣35°=55°(在直角三角形中,两个锐角互余).故选:C.【点评】两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.6.【分析】本题应分两种情况考虑:①当蜜蜂先向右爬行时;②当蜜蜂先向右上爬行时;然后将两种情况中所以可能的爬行路线一一列出,即可求出共有多少种不同的爬法.【解答】解:本题可分两种情况:①蜜蜂先向右爬,则可能的爬法有:一、1⇒2⇒4;二、1⇒3⇒4;三、1⇒3⇒2⇒4;共有3种爬法;②蜜蜂先向右上爬,则可能的爬法有:一、0⇒3⇒4;二、0⇒3⇒2⇒4;三、0⇒1⇒2⇒4;三、0⇒1⇒3⇒4;四、0⇒1⇒3⇒2⇒4;共5种爬法;因此不同的爬法共有3+5=8种.故选:C.【点评】本题应该先确立大致的解题思路,然后将有可能的爬法按序排列,以免造成头绪混乱,少解错解等情况.二、填空题(本大题共6个小题,每小题3分,共18分.)7.【分析】分别根据零指数幂,负指数幂的运算法则计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=(﹣)0+2﹣1=1+=1.故答案为1.【点评】本题主要考查了零指数幂,负指数幂的运算.负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.8.【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n 次幂.此题n>0,n=3.【解答】解:6 300=6.3×103.故答案为:6.3×103.【点评】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).9.【分析】若关于x的一元二次方程x2+2x﹣k=0没有实数根,则△=b2﹣4ac<0,列出关于k的不等式,求得k的取值范围即可.【解答】解:∵关于x的一元二次方程x2+2x﹣k=0没有实数根,∴△=b2﹣4ac<0,即22﹣4×1×(﹣k)<0,解这个不等式得:k<﹣1.故答案为:k<﹣1.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.【分析】利用圆锥侧面展开图的弧长=底面周长,可求得圆锥的底面周长以及圆锥母线长,那么圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面半径为3cm,则底面周长=6πcm,侧面展开图是半圆,则母线长=6π×2÷2π=6cm,∴圆锥的侧面积=×6π×6=18πcm2.【点评】本题利用了圆的周长公式和扇形面积公式求解.11.【分析】根据坐标图,可知B点坐标是(4,3),D点坐标是(8,6),A点坐标是(3,1),C点坐标是(6,2),那么连接BD,直线BD一定过原点O,连接AC直线AC一定过原点O,且B是OD的中点,同理A是OC的中点,于是AB是△OCD的中位线,从AB上任取一点P(a、b),则直线OP与CD的交点E的坐标是(2a,2b).【解答】解:设直线OP与线段CD的交点为E,∵AB∥CD,且O,B,D三点在一条直线上,OB=BD∴OP=PE∴若点P的坐标为(a,b),∴点E的坐标是(2a,2b).故答案为(2a,2b).【点评】正确的读图是解决本题的前提条件,由AB∥CD联想到三角形相似,或平行线分线段成比例定理,是解决这道题的关键.12.【分析】根据菱形的性质对各个结论进行验证从而得到正确的序号.【解答】解:∵点E、F分别从点B、D出发以同样的速度沿边BC、DC向点C运动,∴BE=DF,∵AB=AD,∠B=∠D,∴△ABE≌△ADF,∴AE=AF,①正确;∴CE=CF,∴∠CEF=∠CFE,②正确;∵在菱形ABCD中,∠B=60°,∴AB=BC,∴△ABC是等边三角形,∴当点E,F分别为边BC,DC的中点时,BE=AB,DF=AD,∴△ABE和△ADF是直角三角形,且∠BAE=∠DAF=30°,∴∠EAF=120°﹣30°﹣30°=60°,∴△AEF是等边三角形,③正确;∵△AEF的面积=菱形ABCD的面积﹣△ABE的面积﹣△ADF的面积﹣△CEF的面积=AB2﹣BE•AB××2﹣××(AB﹣BE)2=﹣BE2+AB2,∴△AEF的面积是BE的二次函数,∴当BE=0时,△AEF的面积最大,④错误.故正确的序号有①②③.【点评】本题考查了菱形的性质、全等三角形的判定和等边三角形的判定.三、解答题(本大题共5个小题,每小题6分,共30分.解答应写出文字说明、证明过程或演算步骤.)13.【分析】观察可得方程最简公分母为:(x+1)(1﹣2x),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:两边同乘以(x+1)(1﹣2x),得:(x﹣1)(1﹣2x)+2x(x+1)=0,整理,得5x﹣1=0,解得x=,经检验,x=是原方程的根.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.14.【分析】(1)(2)利用数形结合的思想解决问题即可.【解答】解:(1)满足条件的△ABC如图所示.(2)满足条件的△DEF如图所示.【点评】本题考查作图﹣应用与设计,无理数,勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.15.【分析】先把括号里的式子进行通分,再把后面的式子根据完全平方公式、平方差公式进行因式分解,然后约分,再求出不等式的解集,最后代入一个合适的数据代入即可.【解答】解:(1﹣)÷=×=,∵2x﹣1<6,∴2x<7,∴x<,把x=3代入上式得:原式==4.【点评】此题考查了分式的化简求值以及一元一次不等式的解法,用到的知识点是通分、完全平方公式、平方差公式以及一元一次不等式的解法,熟练掌握公式与解法是解题的关键.16.【分析】要使AC=BD,可以证明△ACB≌△BDA或者△ACO≌△BDO从而得到结论.【解答】解:添加条件例举:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC等.证明:(1)如果添加条件是AD=BC时,∵BC=AD,∠2=∠1,AB=BA,在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD;(2)如果添加条件是OC=OD时,∵∠1=∠2∴OA=OB∴OA+OD=OB+OD∴BC=AD又∵∠2=∠1,AB=BA在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD;(3)如果添加条件是∠C=∠D时,∵∠2=∠1,AB=BA,在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD;(4)如果添加条件是∠CAO=∠DBC时,∵∠1=∠2,∴∠CAO+∠1=∠DBC+∠2,∴∠CAB=∠DBA,又∵AB=BA,∠2=∠1,在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD.故答案为:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC.【点评】本题考查了全等三角形的判定及性质;判定两个三角形全等的方法有:SSS,SAS,ASA,AAS,本题已知一边一角,所以可以寻找夹这个角的另外一边或者是另外两个角.17.【分析】因为此题需要两步完成,所以采用列表法或者采用树状图法都比较简单;解题时要注意是放回实验还是不放回实验.列举出所有情况,让芳香度之和等于4的情况数除以总情况数即为所求的概率.【解答】解:列表法:012第一次第二次334544565567树状图:(4分)所有可能出现的结果共有9种,芳香度之和等于4的结果有两种.∴所选取两种不同添加剂的芳香度之和等于4的概率为.【点评】考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.四、(本大题共4小题,每小题8分,共32分.)18.【分析】(1)男篮门票总价+乒乓球门票总价=12000,列方程即可求解;(2)关系式为:男篮门票总价+乒乓球门票总价+足球门票总价≤12000;足球门票的费用≤男篮门票的费用.据此列不等式即可求解.【解答】解:(1)设预定男篮门票x张,则乒乓球门票(15﹣x)张,根据题意得1000x+500(15﹣x)=12000解得x=9∴15﹣x=15﹣9=6.答:这个球迷可以预订男篮门票和乒乓球门票各9张,6张;(2)设足球门票与乒乓球门票数都预定y张,则男篮门票数为(15﹣2y)张,根据题意得解得由y为正整数可得y=5,15﹣2y=5.答:预订这三种球类门票各5张.【点评】解决本题的关键是读懂题意,找到所求量的等量关系及符合题意的不等关系式组.19.【分析】(1)利用点A的坐标可求出反比例函数解析式,再把B(1,n)代入反比例函数解析式,即可求得n的值,于是得到一次函数的解析式;(2)根据图象和A,B两点的坐标即可写出一次函数的值大于反比例函数的值的x的取值范围.【解答】解:(1)∵A(﹣2,1)在反比例函数y=的图象上,∴1=,解得m=﹣2.∴反比例函数解析式为y=,∵B(1,n)在反比例函数h上,∴n=﹣2,∴B的坐标(1,﹣2),把A(﹣2,1),B(1,﹣2)代入y=kx+b得,解得:,∴一次函数的解析式为y=﹣x﹣1;(2)由图象知:当x<﹣2或0<x<1时,一次函数的值大于反比例函数.【点评】本题主要考查了反比例函数与一次函数的交点问题,解题的关键是求出反比例函数解析式和一次函数的解析式.20.【分析】(1)根据直方图可得总人数以及各小组的已知人数,进而根据其间的关系可计算C 组的人数;(2)根据中位数的概念,中位数应是第150、151人时间的平均数,分析可得答案;(3)首先计算样本中达国家规定体育活动时间的频率,再进一步估计总体达国家规定体育活动时间的人数.【解答】解:(1)根据题意有,C组的人数为300﹣20﹣100﹣60=120;(2)根据中位数的概念,中位数应是第150、151人时间的平均数,分析可得其均在C组,故调查数据的中位数落在C组;(3)达国家规定体育活动时间的人数约占×100%=60%.所以,达国家规定体育活动时间的人约有24000×60%=14400(人);故答案为:(1)120,(2)C,(3)达国家规定体育活动时间的人约有14400人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.21.【分析】(1)如果过A作AC⊥x轴,垂足为C,作BD⊥x轴垂足为D.不难得出△AOC和△BOD全等,那么B的横坐标就是A点纵坐标的绝对值,B的纵坐标就是A点的横坐标的绝对值,由此可得出B的坐标.(2)已知了A,O的坐标,根据(1)求出的B点的坐标,可用待定系数法求出抛物线的解析式.(3)根据(2)的解析式可得出对称轴的解析式,然后根据B点的坐标得出B1的坐标,那么BB1就是三角形的底边,B的纵坐标与A的纵坐标的差的绝对值就是△ABB1的高,由此可求出其面积.【解答】解:(1)作AC⊥x轴,垂足为C,作BD⊥x轴垂足为D.则∠ACO=∠ODB=90°,∴∠AOC+∠OAC=90°.又∵∠AOB=90°,∴∠AOC+∠BOD=90°∴∠OAC=∠BOD.在△ACO和△ODB中,∴△ACO≌△ODB(AAS).∴OD=AC=1,DB=OC=3.∴点B的坐标为(1,3).(2)因抛物线过原点,故可设所求抛物线的解析式为y=ax2+bx.将A(﹣3,1),B(1,3)两点代入,得,解得:a=,b=故所求抛物线的解析式为y=x2+x.(3)在抛物线y=x2+x中,对称轴l的方程是x=﹣=﹣点B1是B关于抛物线的对称轴l的对称点,故B1坐标(﹣,3)在△AB1B中,底边B1B=,高的长为2.故S△AB1B=××2=.【点评】本题主要考查了全等三角形的判定以及用待定系数法求二次函数解析式,二次函数的性质等知识点.五、(本大题共1小题,共10分).22.【分析】(1)、由同角的余角相等可得∠APB=∠PQC,故△ABP∽△PCQ,有,代入BP,AB,PC的值求得CQ的值;(2)、取BP的中点H,连接EH,由三角形的中位线的性质可得四边形EHGF是直角梯形,由,设CQ=a,有BP=2a,用含a的代数式表示出EH,FG,HP,HG,两用梯形和三角形的面积公式求得S四边形EPGF =S梯形EHGF﹣S△EHP的值.【解答】解:(1)∵四边形ABCD是矩形∴∠B=∠C=90°,∴∠CPQ+∠PQC=90°,∵AP⊥PQ,∴∠CPQ+∠APB=90°,∴∠APB=∠PQC,∴△ABP∽△PCQ,∴,即,∴CQ =3;(2)解法一:取BP 的中点H ,连接EH ,由, 设CQ =a ,则BP =2a ,∵E ,F ,G ,H 分别为AP ,PQ ,PC ,BP 的中点,∴EH ∥AB ,FG ∥CD ,又∵AB ∥CD ,∠B =∠C =90°,∴EH ∥FG ,EH ⊥BC ,FG ⊥BC ,∴四边形EHGF 是直角梯形,∴EH =AB =2,FG =CQ =a ,HP =BP =a ,HG =HP +PG =BC =4,∴S 梯形EHGF =(EH +FG )•HG =(2+a )•4=4+a ,S △EHP =HP •EH =a •2=a , ∴S 四边形EPGF =S 梯形EHGF ﹣S △EHP =4+a ﹣a =4;解法二:连接AQ ,由=2,设CQ =a ,则BP =2a ,DQ =4﹣a ,PC =8﹣2a ,S △APQ =S 矩形ABCD ﹣S △ABP ﹣S △PCQ ﹣S △ADQ=4×8﹣•2a •4﹣(8﹣2a )a ﹣×8(4﹣a )=a 2﹣4a +16∵E ,F ,G 分别是AP ,PQ ,PC 的中点∴EF ∥AQ ,EF =AQ .∴△PEF ∽△PAQ∴,S △PEF =S △APQ =(a 2﹣4a +16)同理:S △PFG =S △PCQ =a (8﹣2a )∴S 四边形EPGF =S △PEF +S △PFG=(a 2﹣4a +16)+a (8﹣2a )=4.【点评】本题利用了矩形的性质,相似三角形的判定和性质,三角形和梯形的面积公式求解.六、(本大题共1小题,共12分)23.【分析】(1)OA=AC首先三角形OAC是个等腰三角形,因为∠AOC=60°,三角形AOC是个等边三角形,因此∠OAC=60°;(2)如果PC与圆A相切,那么AC⊥PC,在直角三角形APC中,有∠PCA的度数,有A点的坐标也就有了AC的长,可根据余弦函数求出PA的长,然后由PO=PA﹣OA得出OP的值.(3)本题分两种情况:①以O为顶点,OC,OQ为腰.那么可过C作x轴的垂线,交圆于Q,此时三角形OCQ就是此类情况所说的等腰三角形;那么此时PO可在直角三角形OCP中,根据∠COA的度数,和OC 即半径的长求出PO.②以Q为顶点,QC,QD为腰,那么可做OC的垂直平分线交圆于Q,则这条线必过圆心,如果设垂直平分线交OC于D的话,可在直角三角形AOQ中根据∠QAE的度数和半径的长求出Q的坐标;然后用待定系数法求出CQ所在直线的解析式,得出这条直线与x轴的交点,也就求出了PO的值.【解答】解:(1)∵∠AOC=60°,AO=AC,∴△AOC是等边三角形,∴∠OAC=60°.(2)∵CP与⊙A相切,∴∠ACP=90°,∴∠APC=90°﹣∠OAC=30°;又∵A(4,0),∴AC=AO=4,∴PA=2AC=8,∴PO=PA﹣OA=8﹣4=4.(3)①过点C作CP1⊥OB,垂足为P1,延长CP1交⊙A于Q1;∵OA是半径,∴,∴OC=OQ1,∴△OCQ1是等腰三角形;又∵△AOC是等边三角形,∴P1O=OA=2;②过A作AD⊥OC,垂足为D,延长DA交⊙A于Q2,CQ2与x轴交于P2;∵A是圆心,∴DQ2是OC的垂直平分线,∴CQ2=OQ2,∴△OCQ2是等腰三角形;过点Q2作Q2E⊥x轴于E,在Rt△AQ2E中,∵∠Q2AE=∠OAD=∠OAC=30°,∴Q2E=AQ2=2,AE=2,∴点Q2的坐标(4+,﹣2);在Rt△COP1中,∵P1O=2,∠AOC=60°,∴,∴C点坐标(2,);设直线CQ2的关系式为y=kx+b,则,解得,∴y=﹣x+2+2;当y=0时,x=2+2,∴P2O=2+2.【点评】本题综合考查函数、圆的切线,等边三角形的判定以及垂径定理等知识点.要注意(3)中的等腰三角形要按顶点和腰的不同来分类讨论.。

(完整)2018年中考数学模拟试卷及答案,推荐文档

2 2 2 2 2一、选择题(共 40 分)2018 年中考模拟卷(2018.05.31)1. 下列各式中,计算结果为 1 的是( ). A .-2-1B .1 ÷ 1⨯ 22C . -12D .1-12. 如果和互为余角,那么下列表示的补角的式子中,错误的是( ).A.0o -B . 90o +C .2+D .+ 23. 如图是五个大小相同的正方体组成的几何体,这个几何体的俯视图是( ).从正面看ABCD4. 下列式子中,可以表示为 2—3 的是( ).A .22÷25B .25÷22C .22×25D .(-2)×(-2)×(-2)5. △ABC 中,∠A ,∠B ,∠C 的度数之比为 2:1:1,则下列直线一定是△ABC 的对称轴的是( ).A. △ABC 的边 AB 的垂直平分线B .∠BAC 的角平分线所在的直线C .△ABC 的 AB 边上的中线所在的直线D .△ABC 的 AC 边上的高所在的直线6. 已知( -1)n = m ,若 m 是整数,则 n 的值可能是( ).A.B . -1C .1-D . +17. 如图,正方形网格中,每个小正方形的边长均为 1 个单位长度,A 、B 在格点上,现将线段 AB 向下平移 m 个单位长度,再向左平移 n 个单位长 度,得到线段 A ' B ',连接 A A ',B A ',若四边形 A A ' B ' B 是正方形, 则 m +n 的值是().A .3B .4C .5D .6第 7 题8. 若 A (x 1,y 1) 、B (x 2,y 2 ) 是某函数图象上的不同两点,且(x 1 - x 2 )( y 1 - y 2 ) < 0 .则该函数可能是( ).A . y = x 2 ( x > 0)B . y = 1 ( x < 0) xC . y = - 2 (x > 0) xD . y = x9. 若 x 1,x 2(x 1 <x 2)是方程(x -a )(x -b ) = 1(a < b )的两个根,则实数 x 1,x 2,a,b 的大小关系为( ).A .x 1<x 2<a <bB .x 1<a <x 2<bC .x 1<a <b <x 2D .a <x 1<b <x 210. 已知数据 x 1, x 2 , , x n 的平均数为 x ,数据 y 1, y 2 , , y m 的平均数为 y .( x ≠ y ).若数据x , x , , x , y , y , , y 的平均数 z = ax + (1- a ) y ,其中0 < a < 1.则 m ,n 的大小关系为( 1 2 n 1 2 m2). A. n = mB. n ≥ mC. n < mD. n > m二、填空题(共 24 分) 11.16 的算术平方根为.yAa212.截至 2016 年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600 亿美元。

2019年江西省宜春市高安市中考数学一模试卷(含答案解析)

2019年江西省宜春市高安市中考数学一模试卷一、选择题(本大题共有6小题,每小题3分,共18分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.﹣3的倒数是()A.﹣B.C.﹣3D.32.如图1放置的一个机器零件,若其主(正)视图如图2,则其俯视图是()A.B.C.D.3.已知sin a=,且a是锐角,则a=()A.75°B.60°C.45°D.30°4.学校开展为贫困地区捐书活动,以下是5名同学捐书的册数:2,2,x,4,9.已知这组数据的平均数是4,则这组数据的中位数和众数分别是()A.2和2B.4和2C.2和3D.3和25.如图,Rt△ABC中,∠ACB=90°,DE过点C且平行于AB,若∠BCE=35°,则∠A的度数为()A.35°B.45°C.55°D.65°6.假定有一排蜂房,形状如图,一只蜜蜂在左下角的蜂房中,由于受伤,只能爬,不能飞,而且只能永远向右方(包括右上、右下)爬行,从一间蜂房爬到与之相邻的右蜂房中去.则从最初位置爬到4号蜂房中,不同的爬法有()A.4种B.6种C.8种D.10种二、填空题(本大题共6个小题,每小题3分,共18分.)7.计算:+2﹣1=.8.我国最长的河流长江全长约为6300千米,用科学记数法表示为千米.9.若关于x的一元二次方程x2+2x﹣k=0没有实数根,则k的取值范围是.10.一个圆锥的底面半径为3cm,侧面展开图是半圆,则圆锥的侧面积是cm2.11.线段AB、CD在平面直角坐标系中的位置如图所示,O为坐标原点.若线段AB上一点P的坐标为(a,b),则直线OP与线段CD的交点的坐标为.12.如图,在菱形ABCD中,∠B=60°,点E、F分别从点B、D出发以同样的速度沿边BC、DC 向点C运动.给出以下四个结论:①AE=AF;②∠CEF=∠CFE;③当点E,F分别为边BC,DC的中点时,△AEF是等边三角形;④当点E,F分别为边BC,DC的中点时,△AEF的面积最大.上述结论中正确的序号有.(把你认为正确的序号都填上)三、解答题(本大题共5个小题,每小题6分,共30分.解答应写出文字说明、证明过程或演算步骤.)13.解方程:14.如图所示,在正方形网格中,每个小正方形的边长都是1,每个小格点的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)使三角形的三边长分别为3,2,.(2)使三角形为边长都为无理数的钝角三角形且面积为4.15.先化简(1﹣)÷,再从不等式2x﹣1<6的正整数解中选一个适当的数代入求值.16.如图,△ABC与△ABD中,AD与BC相交于O点,∠1=∠2,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC=BD,并给出证明.你添加的条件是:.证明:.17.在试制某种洗发液新品种时,需要选用两种不同的添加剂.现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用.根据试验设计原理,通常要先从芳香度为0,1,2的三种添加剂中随机选取一种,再从芳香度为3,4,5的三种添加剂中随机选取一种,进行搭配试验.请你利用树状图(树形图)或列表的方法,表示所选取两种不同添加剂所有可能出现的结果,并求出芳香度之和等于4的概率.四、(本大题共4小题,每小题8分,共32分.)18.2008年北京奥运会的比赛门票开始接受公众预定.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用12000元预定15张下表中球类比赛的门票:比赛项目票价(元/场)男篮1000足球800乒乓球500(1)若全部资金用来预定男篮门票和乒乓球门票,问这个球迷可以预订男篮门票和乒乓球门票各多少张?(2)若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票与乒乓球门票数相同,且足球门票的费用不超过男篮门票的费用,问可以预订这三种球类门票各多少张?19.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣2,1),B(1,n)两点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出一次函数的值大于反比例函数的值的x的取值范围.20.国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,某市就“你每天在校体育活动时间是多少?”的问题随机调查了辖区内300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5h;B组:0.5h≤t<1h;C组:1h≤t<1.5h;D组:t≥1.5h请根据上述信息解答下列问题:(1)C组的人数是;(2)本次调查数据的中位数落在组内;(3)若该辖区约有24 000名初中学生,请你估计其中达国家规定体育活动时间的人约有多少?21.在平面直角坐标系中,△AOB的位置如图所示,已知∠AOB=90°,AO=BO,点A的坐标为(﹣3,1).(1)求点B的坐标;(2)求过A,O,B三点的抛物线的解析式;(3)设点B关于抛物线的对称轴l的对称点为B1,求△AB1B的面积.五、(本大题共1小题,共10分).22.已知:如图①,②,在矩形ABCD中,AB=4,BC=8,P,Q分别是边BC,CD上的点.(1)如图①,若AP⊥PQ,BP=2,求CQ的长;(2)如图②,若,且E,F,G分别为AP,PQ,PC的中点,求四边形EPGF的面积.六、(本大题共1小题,共12分)23.如图①,②,在平面直角坐标系xOy中,点A的坐标为(4,0),以点A为圆心,4为半径的圆与x轴交于O,B两点,OC为弦,∠AOC=60°,P是x轴上的一动点,连接CP.(1)求∠OAC的度数;(2)如图①,当CP与⊙A相切时,求PO的长;(3)如图②,当点P在直径OB上时,CP的延长线与⊙A相交于点Q,问PO为何值时,△OCQ 是等腰三角形?2019年江西省宜春市高安市中考数学一模试卷参考答案与试题解析一、选择题(本大题共有6小题,每小题3分,共18分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.2.【分析】找到从上面看所到的图形即可.【解答】解:从上面看可得到左右相邻的3个矩形.故选:D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看到的视图.3.【分析】根据sin60°=得出a的值.【解答】解:∵sin a=sin60°=,a是锐角,∴a=60°.故选:B.【点评】本题考查特殊角的三角函数值.特殊角三角函数值计算在中考中经常出现,题型以选择题、填空题为主.4.【分析】根据平均数的定义得到关于x的方程,求x,再根据中位数和众数的定义求解.【解答】解:根据平均数的含义得:=4,所以x=3;将这组数据从小到大的顺序排列(2,2,3,4,9),处于中间位置的数是3,那么这组数据的中位数是3;在这一组数据中2是出现次数最多的,故众数是2.故选:D.【点评】本题为统计题,考查平均数、众数与中位数的意义,解题要细心.5.【分析】题中有三个条件,图形为常见图形,可先由AB∥DE,∠BCE=35°,根据两直线平行,内错角相等求出∠B,然后根据三角形内角和为180°求出∠A.【解答】解:∵AB∥DE,∠BCE=35°,∴∠B=∠BCE=35°(两直线平行,内错角相等),又∵∠ACB=90°,∴∠A=90°﹣35°=55°(在直角三角形中,两个锐角互余).故选:C.【点评】两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.6.【分析】本题应分两种情况考虑:①当蜜蜂先向右爬行时;②当蜜蜂先向右上爬行时;然后将两种情况中所以可能的爬行路线一一列出,即可求出共有多少种不同的爬法.【解答】解:本题可分两种情况:①蜜蜂先向右爬,则可能的爬法有:一、1⇒2⇒4;二、1⇒3⇒4;三、1⇒3⇒2⇒4;共有3种爬法;②蜜蜂先向右上爬,则可能的爬法有:一、0⇒3⇒4;二、0⇒3⇒2⇒4;三、0⇒1⇒2⇒4;三、0⇒1⇒3⇒4;四、0⇒1⇒3⇒2⇒4;共5种爬法;因此不同的爬法共有3+5=8种.故选:C.【点评】本题应该先确立大致的解题思路,然后将有可能的爬法按序排列,以免造成头绪混乱,少解错解等情况.二、填空题(本大题共6个小题,每小题3分,共18分.)7.【分析】分别根据零指数幂,负指数幂的运算法则计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=(﹣)0+2﹣1=1+=1.故答案为1.【点评】本题主要考查了零指数幂,负指数幂的运算.负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.8.【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n 次幂.此题n>0,n=3.【解答】解:6 300=6.3×103.故答案为:6.3×103.【点评】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).9.【分析】若关于x的一元二次方程x2+2x﹣k=0没有实数根,则△=b2﹣4ac<0,列出关于k的不等式,求得k的取值范围即可.【解答】解:∵关于x的一元二次方程x2+2x﹣k=0没有实数根,∴△=b2﹣4ac<0,即22﹣4×1×(﹣k)<0,解这个不等式得:k<﹣1.故答案为:k<﹣1.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.【分析】利用圆锥侧面展开图的弧长=底面周长,可求得圆锥的底面周长以及圆锥母线长,那么圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面半径为3cm,则底面周长=6πcm,侧面展开图是半圆,则母线长=6π×2÷2π=6cm,∴圆锥的侧面积=×6π×6=18πcm2.【点评】本题利用了圆的周长公式和扇形面积公式求解.11.【分析】根据坐标图,可知B点坐标是(4,3),D点坐标是(8,6),A点坐标是(3,1),C点坐标是(6,2),那么连接BD,直线BD一定过原点O,连接AC直线AC一定过原点O,且B是OD的中点,同理A是OC的中点,于是AB是△OCD的中位线,从AB上任取一点P(a、b),则直线OP与CD的交点E的坐标是(2a,2b).【解答】解:设直线OP与线段CD的交点为E,∵AB∥CD,且O,B,D三点在一条直线上,OB=BD∴OP=PE∴若点P的坐标为(a,b),∴点E的坐标是(2a,2b).故答案为(2a,2b).【点评】正确的读图是解决本题的前提条件,由AB∥CD联想到三角形相似,或平行线分线段成比例定理,是解决这道题的关键.12.【分析】根据菱形的性质对各个结论进行验证从而得到正确的序号.【解答】解:∵点E、F分别从点B、D出发以同样的速度沿边BC、DC向点C运动,∴BE=DF,∵AB=AD,∠B=∠D,∴△ABE≌△ADF,∴AE=AF,①正确;∴CE=CF,∴∠CEF=∠CFE,②正确;∵在菱形ABCD中,∠B=60°,∴AB=BC,∴△ABC是等边三角形,∴当点E,F分别为边BC,DC的中点时,BE=AB,DF=AD,∴△ABE和△ADF是直角三角形,且∠BAE=∠DAF=30°,∴∠EAF=120°﹣30°﹣30°=60°,∴△AEF是等边三角形,③正确;∵△AEF的面积=菱形ABCD的面积﹣△ABE的面积﹣△ADF的面积﹣△CEF的面积=AB2﹣BE•AB××2﹣××(AB﹣BE)2=﹣BE2+AB2,∴△AEF的面积是BE的二次函数,∴当BE=0时,△AEF的面积最大,④错误.故正确的序号有①②③.【点评】本题考查了菱形的性质、全等三角形的判定和等边三角形的判定.三、解答题(本大题共5个小题,每小题6分,共30分.解答应写出文字说明、证明过程或演算步骤.)13.【分析】观察可得方程最简公分母为:(x+1)(1﹣2x),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:两边同乘以(x+1)(1﹣2x),得:(x﹣1)(1﹣2x)+2x(x+1)=0,整理,得5x﹣1=0,解得x=,经检验,x=是原方程的根.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.14.【分析】(1)(2)利用数形结合的思想解决问题即可.【解答】解:(1)满足条件的△ABC如图所示.(2)满足条件的△DEF如图所示.【点评】本题考查作图﹣应用与设计,无理数,勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.15.【分析】先把括号里的式子进行通分,再把后面的式子根据完全平方公式、平方差公式进行因式分解,然后约分,再求出不等式的解集,最后代入一个合适的数据代入即可.【解答】解:(1﹣)÷=×=,∵2x﹣1<6,∴2x<7,∴x<,把x=3代入上式得:原式==4.【点评】此题考查了分式的化简求值以及一元一次不等式的解法,用到的知识点是通分、完全平方公式、平方差公式以及一元一次不等式的解法,熟练掌握公式与解法是解题的关键.16.【分析】要使AC=BD,可以证明△ACB≌△BDA或者△ACO≌△BDO从而得到结论.【解答】解:添加条件例举:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC等.证明:(1)如果添加条件是AD=BC时,∵BC=AD,∠2=∠1,AB=BA,在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD;(2)如果添加条件是OC=OD时,∵∠1=∠2∴OA=OB∴OA+OD=OB+OD∴BC=AD又∵∠2=∠1,AB=BA在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD;(3)如果添加条件是∠C=∠D时,∵∠2=∠1,AB=BA,在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD;(4)如果添加条件是∠CAO=∠DBC时,∵∠1=∠2,∴∠CAO+∠1=∠DBC+∠2,∴∠CAB=∠DBA,又∵AB=BA,∠2=∠1,在△ABC与△BAD中,,∴△ABC≌△BAD,∴AC=BD.故答案为:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC.【点评】本题考查了全等三角形的判定及性质;判定两个三角形全等的方法有:SSS,SAS,ASA,AAS,本题已知一边一角,所以可以寻找夹这个角的另外一边或者是另外两个角.17.【分析】因为此题需要两步完成,所以采用列表法或者采用树状图法都比较简单;解题时要注意是放回实验还是不放回实验.列举出所有情况,让芳香度之和等于4的情况数除以总情况数即为所求的概率.【解答】解:列表法:012第一次第二次334544565567树状图:(4分)所有可能出现的结果共有9种,芳香度之和等于4的结果有两种.∴所选取两种不同添加剂的芳香度之和等于4的概率为.【点评】考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.四、(本大题共4小题,每小题8分,共32分.)18.【分析】(1)男篮门票总价+乒乓球门票总价=12000,列方程即可求解;(2)关系式为:男篮门票总价+乒乓球门票总价+足球门票总价≤12000;足球门票的费用≤男篮门票的费用.据此列不等式即可求解.【解答】解:(1)设预定男篮门票x张,则乒乓球门票(15﹣x)张,根据题意得1000x+500(15﹣x)=12000解得x=9∴15﹣x=15﹣9=6.答:这个球迷可以预订男篮门票和乒乓球门票各9张,6张;(2)设足球门票与乒乓球门票数都预定y张,则男篮门票数为(15﹣2y)张,根据题意得解得由y为正整数可得y=5,15﹣2y=5.答:预订这三种球类门票各5张.【点评】解决本题的关键是读懂题意,找到所求量的等量关系及符合题意的不等关系式组.19.【分析】(1)利用点A的坐标可求出反比例函数解析式,再把B(1,n)代入反比例函数解析式,即可求得n的值,于是得到一次函数的解析式;(2)根据图象和A,B两点的坐标即可写出一次函数的值大于反比例函数的值的x的取值范围.【解答】解:(1)∵A(﹣2,1)在反比例函数y=的图象上,∴1=,解得m=﹣2.∴反比例函数解析式为y=,∵B(1,n)在反比例函数h上,∴n=﹣2,∴B的坐标(1,﹣2),把A(﹣2,1),B(1,﹣2)代入y=kx+b得,解得:,∴一次函数的解析式为y=﹣x﹣1;(2)由图象知:当x<﹣2或0<x<1时,一次函数的值大于反比例函数.【点评】本题主要考查了反比例函数与一次函数的交点问题,解题的关键是求出反比例函数解析式和一次函数的解析式.20.【分析】(1)根据直方图可得总人数以及各小组的已知人数,进而根据其间的关系可计算C 组的人数;(2)根据中位数的概念,中位数应是第150、151人时间的平均数,分析可得答案;(3)首先计算样本中达国家规定体育活动时间的频率,再进一步估计总体达国家规定体育活动时间的人数.【解答】解:(1)根据题意有,C组的人数为300﹣20﹣100﹣60=120;(2)根据中位数的概念,中位数应是第150、151人时间的平均数,分析可得其均在C组,故调查数据的中位数落在C组;(3)达国家规定体育活动时间的人数约占×100%=60%.所以,达国家规定体育活动时间的人约有24000×60%=14400(人);故答案为:(1)120,(2)C,(3)达国家规定体育活动时间的人约有14400人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.21.【分析】(1)如果过A作AC⊥x轴,垂足为C,作BD⊥x轴垂足为D.不难得出△AOC和△BOD全等,那么B的横坐标就是A点纵坐标的绝对值,B的纵坐标就是A点的横坐标的绝对值,由此可得出B的坐标.(2)已知了A,O的坐标,根据(1)求出的B点的坐标,可用待定系数法求出抛物线的解析式.(3)根据(2)的解析式可得出对称轴的解析式,然后根据B点的坐标得出B1的坐标,那么BB1就是三角形的底边,B的纵坐标与A的纵坐标的差的绝对值就是△ABB1的高,由此可求出其面积.【解答】解:(1)作AC⊥x轴,垂足为C,作BD⊥x轴垂足为D.则∠ACO=∠ODB=90°,∴∠AOC+∠OAC=90°.又∵∠AOB=90°,∴∠AOC+∠BOD=90°∴∠OAC=∠BOD.在△ACO和△ODB中,∴△ACO≌△ODB(AAS).∴OD=AC=1,DB=OC=3.∴点B的坐标为(1,3).(2)因抛物线过原点,故可设所求抛物线的解析式为y=ax2+bx.将A(﹣3,1),B(1,3)两点代入,得,解得:a=,b=故所求抛物线的解析式为y=x2+x.(3)在抛物线y=x2+x中,对称轴l的方程是x=﹣=﹣点B1是B关于抛物线的对称轴l的对称点,故B1坐标(﹣,3)在△AB1B中,底边B1B=,高的长为2.故S△AB1B=××2=.【点评】本题主要考查了全等三角形的判定以及用待定系数法求二次函数解析式,二次函数的性质等知识点.五、(本大题共1小题,共10分).22.【分析】(1)、由同角的余角相等可得∠APB=∠PQC,故△ABP∽△PCQ,有,代入BP,AB,PC的值求得CQ的值;(2)、取BP的中点H,连接EH,由三角形的中位线的性质可得四边形EHGF是直角梯形,由,设CQ=a,有BP=2a,用含a的代数式表示出EH,FG,HP,HG,两用梯形和三角形的面积公式求得S四边形EPGF =S梯形EHGF﹣S△EHP的值.【解答】解:(1)∵四边形ABCD是矩形∴∠B=∠C=90°,∴∠CPQ+∠PQC=90°,∵AP⊥PQ,∴∠CPQ+∠APB=90°,∴∠APB=∠PQC,∴△ABP∽△PCQ,∴,即,∴CQ =3;(2)解法一:取BP 的中点H ,连接EH ,由, 设CQ =a ,则BP =2a ,∵E ,F ,G ,H 分别为AP ,PQ ,PC ,BP 的中点,∴EH ∥AB ,FG ∥CD ,又∵AB ∥CD ,∠B =∠C =90°,∴EH ∥FG ,EH ⊥BC ,FG ⊥BC ,∴四边形EHGF 是直角梯形,∴EH =AB =2,FG =CQ =a ,HP =BP =a ,HG =HP +PG =BC =4,∴S 梯形EHGF =(EH +FG )•HG =(2+a )•4=4+a ,S △EHP =HP •EH =a •2=a , ∴S 四边形EPGF =S 梯形EHGF ﹣S △EHP =4+a ﹣a =4;解法二:连接AQ ,由=2,设CQ =a ,则BP =2a ,DQ =4﹣a ,PC =8﹣2a ,S △APQ =S 矩形ABCD ﹣S △ABP ﹣S △PCQ ﹣S △ADQ=4×8﹣•2a •4﹣(8﹣2a )a ﹣×8(4﹣a )=a 2﹣4a +16∵E ,F ,G 分别是AP ,PQ ,PC 的中点∴EF ∥AQ ,EF =AQ .∴△PEF ∽△PAQ∴,S △PEF =S △APQ =(a 2﹣4a +16)同理:S △PFG =S △PCQ =a (8﹣2a )∴S 四边形EPGF =S △PEF +S △PFG=(a 2﹣4a +16)+a (8﹣2a )=4.【点评】本题利用了矩形的性质,相似三角形的判定和性质,三角形和梯形的面积公式求解.六、(本大题共1小题,共12分)23.【分析】(1)OA=AC首先三角形OAC是个等腰三角形,因为∠AOC=60°,三角形AOC是个等边三角形,因此∠OAC=60°;(2)如果PC与圆A相切,那么AC⊥PC,在直角三角形APC中,有∠PCA的度数,有A点的坐标也就有了AC的长,可根据余弦函数求出PA的长,然后由PO=PA﹣OA得出OP的值.(3)本题分两种情况:①以O为顶点,OC,OQ为腰.那么可过C作x轴的垂线,交圆于Q,此时三角形OCQ就是此类情况所说的等腰三角形;那么此时PO可在直角三角形OCP中,根据∠COA的度数,和OC 即半径的长求出PO.②以Q为顶点,QC,QD为腰,那么可做OC的垂直平分线交圆于Q,则这条线必过圆心,如果设垂直平分线交OC于D的话,可在直角三角形AOQ中根据∠QAE的度数和半径的长求出Q的坐标;然后用待定系数法求出CQ所在直线的解析式,得出这条直线与x轴的交点,也就求出了PO的值.【解答】解:(1)∵∠AOC=60°,AO=AC,∴△AOC是等边三角形,∴∠OAC=60°.(2)∵CP与⊙A相切,∴∠ACP=90°,∴∠APC=90°﹣∠OAC=30°;又∵A(4,0),∴AC=AO=4,∴PA=2AC=8,∴PO=PA﹣OA=8﹣4=4.(3)①过点C作CP1⊥OB,垂足为P1,延长CP1交⊙A于Q1;∵OA是半径,∴,∴OC=OQ1,∴△OCQ1是等腰三角形;又∵△AOC是等边三角形,∴P1O=OA=2;②过A作AD⊥OC,垂足为D,延长DA交⊙A于Q2,CQ2与x轴交于P2;∵A是圆心,∴DQ2是OC的垂直平分线,∴CQ2=OQ2,∴△OCQ2是等腰三角形;过点Q2作Q2E⊥x轴于E,在Rt△AQ2E中,∵∠Q2AE=∠OAD=∠OAC=30°,∴Q2E=AQ2=2,AE=2,∴点Q2的坐标(4+,﹣2);在Rt△COP1中,∵P1O=2,∠AOC=60°,∴,∴C点坐标(2,);设直线CQ2的关系式为y=kx+b,则,解得,∴y=﹣x+2+2;当y=0时,x=2+2,∴P2O=2+2.【点评】本题综合考查函数、圆的切线,等边三角形的判定以及垂径定理等知识点.要注意(3)中的等腰三角形要按顶点和腰的不同来分类讨论.。

江西省宜春市高安市2024届中考一模数学试题含解析

江西省宜春市高安市2024年中考一模数学试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列运算正确的( ) A .(b 2)3=b 5B .x 3÷x 3=xC .5y 3•3y 2=15y 5D .a+a 2=a 32.如图是一个正方体的表面展开图,如果对面上所标的两个数互为相反数,那么图中x 的值是( ).A .3-B .3C .2D .83.下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为( )A .B .C .D .4.如图,ABCD 中,E 是BC 的中点,设AB a,AD b ==,那么向量AE 用向量a b 、表示为( )A .12ab B .12a b -C .12a b -+D .12a b --5.下列四个图形中,是中心对称图形的是( )A .B .C .D .6.如图,在边长为4的正方形ABCD 中,E 、F 是AD 边上的两个动点,且AE=FD ,连接BE 、CF 、BD ,CF 与BD 交于点H ,连接DH ,下列结论正确的是( )①△ABG ∽△FDG ②HD 平分∠EHG ③AG ⊥BE ④S △HDG :S △HBG =tan ∠DAG ⑤线段DH 的最小值是25﹣2A .①②⑤B .①③④⑤C .①②④⑤D .①②③④7.如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是( )A .三亚﹣﹣永兴岛B .永兴岛﹣﹣黄岩岛C .黄岩岛﹣﹣弹丸礁D .渚碧礁﹣﹣曾母暗山8.如图是二次函数2y=ax +bx+c 的部分图象,由图象可知不等式2ax +bx+c<0的解集是( )A .1<x<5-B .x>5C .x<1-且x>5D .x <-1或x >59.如图,将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变,当AB 2=,B 60∠=时,AC 等于( )A .2B .2C .6D .2210.如图,点P 是∠AOB 外的一点,点M ,N 分别是∠AOB 两边上的点,点P 关于OA 的对称点Q 恰好落在线段MN 上,点P 关于OB 的对称点R 落在MN 的延长线上,若PM =2.5cm ,PN =3cm ,MN =4cm ,则线段QR 的长为( )A .4.5cmB .5.5cmC .6.5cmD .7cm11.如图,在△ABC 中,∠ACB =90°,沿CD 折叠△CBD ,使点B 恰好落在AC 边上的点E 处.若∠A =24°,则∠BDC 的度数为( )A .42°B .66°C .69°D .77°12.关于x 的不等式组0312(1)x m x x -<⎧⎨->-⎩无解,那么m 的取值范围为( )A .m≤-1B .m<-1C .-1<m≤0D .-1≤m<0二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知关于x 的方程x 2﹣2x+n=1没有实数根,那么|2﹣n|﹣|1﹣n|的化简结果是_____.14.已知△ABC 中,AB=6,AC=BC=5,将△ABC 折叠,使点A 落在BC 边上的点D 处,折痕为EF (点E .F 分别在边AB 、AC 上).当以B .E .D 为顶点的三角形与△DEF 相似时,BE 的长为_____. 15.如图,点,A B 是反比例函数(0,0)ky k x x=>>图像上的两点(点A 在点B 左侧),过点A 作AD x ⊥轴于点D ,交OB 于点E ,延长AB 交x 轴于点C ,已知2125OAB ADC S S ∆∆=,145OAE S ∆=,则k 的值为__________.16.农科院新培育出A 、B 两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量100 200 500 1000 2000 A出芽种子数961654919841965发芽率 0.96 0.83 0.98 0.98 0.98 B出芽种子数961924869771946发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;②随着实验种子数量的增加,A 种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A 种子出芽的概率是0.98; ③在同样的地质环境下播种,A 种子的出芽率可能会高于B 种子.其中合理的是__________(只填序号). 17.如图,已知m n ∕∕,1105∠=︒,2140∠=︒则a ∠=________.18.如图,点C 在以AB 为直径的半圆上,AB =8,∠CBA =30°,点D 在线段AB 上运动,点E 与点D 关于AC 对称,DF ⊥DE 于点D ,并交EC 的延长线于点F .下列结论:①CE =CF ;②线段EF 的最小值为3AD =2时,EF 与半圆相切;④若点F 恰好落在BC 上,则AD =5D 从点A 运动到点B 时,线段EF 扫过的面积是163.其中正确结论的序号是 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:+()﹣2﹣|1﹣|﹣(π+1)0.20.(6分)甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售.某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原价为x(x>0)元,让利后的购物金额为y元.(1)分别就甲、乙两家商场写出y关于x的函数解析式;(2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由.21.(6分)如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D(4,).(1)求抛物线的表达式.(2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同时点Q由点B出发,沿BC边以1cm/s的速度向点C 运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2).①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;②当S取时,在抛物线上是否存在点R,使得以点P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.(3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.22.(8分)我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.王老师采取的调查方式是(填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共件,其中b班征集到作品件,请把图2补充完整;王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.23.(8分)如图,已知ABCD是边长为3的正方形,点P在线段BC上,点G在线段AD上,PD=PG,DF⊥PG于点H,交AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连接EF.(1)求证:DF=PG;(2)若PC=1,求四边形PEFD的面积.24.(10分)根据图中给出的信息,解答下列问题:放入一个小球水面升高,cm,放入一个大球水面升高cm;如果要使水面上升到50cm,应放入大球、小球各多少个?25.(10分)甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量(件)与时间(时)的函数图象如图所示.(1)求甲组加工零件的数量y与时间之间的函数关系式.(2)求乙组加工零件总量a的值.(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?26.(12分)如图,已知点A(﹣2,0),B(4,0),C(0,3),以D为顶点的抛物线y=ax2+bx+c过A,B,C三点.(1)求抛物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E,P为第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P的坐标.27.(12分)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m分(60≤m≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了它们的成绩,并绘制了如图不完整的两幅统计图表.征文比赛成绩频数分布表分数段频数频率60≤m<70 38 0.3870≤m<80 a 0.3280≤m<90 b c90≤m≤10010 0.1合计 1请根据以上信息,解决下列问题:(1)征文比赛成绩频数分布表中c的值是;(2)补全征文比赛成绩频数分布直方图;(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则、单项式乘以单项式和合并同类项法则.详解:A、(b2)3=b6,故此选项错误;B、x3÷x3=1,故此选项错误;C、5y3•3y2=15y5,正确;D、a+a2,无法计算,故此选项错误.故选C.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算、单项式乘以单项式和合并同类项,正确掌握相关运算法则是解题关键.2、D【解题分析】根据正方体平面展开图的特征得出每个相对面,再由相对面上的两个数互为相反数可得出x的值.【题目详解】解:“3”与“-3”相对,“y”与“-2”相对,“x”与“-8”相对, 故x=8,故选D.【题目点拨】本题主要考查了正方体相对面上的文字,解决本题的关键是要熟练掌握正方体展开图的特征.3、B【解题分析】由俯视图所标该位置上小立方块的个数可知,左侧一列有2层,右侧一列有1层.【题目详解】根据俯视图中的每个数字是该位置小立方块的个数,得出主视图有2列,从左到右的列数分别是2,1.故选B.【题目点拨】此题考查了三视图判断几何体,用到的知识点是俯视图、主视图,关键是根据三种视图之间的关系以及视图和实物之间的关系.4、A【解题分析】根据AE AB BE=+,只要求出BE即可解决问题.【题目详解】解:四边形ABCD是平行四边形,∴∥,=,AD BC AD BC∴==,BC AD b=,BE CE1∴=,BE b2=+=,AE AB BE,AB a1∴=+,AE a b2故选:A.【题目点拨】本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.5、D【解题分析】试题分析:根据中心对称图形的定义,结合选项所给图形进行判断即可.解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确;故选D.考点:中心对称图形.6、B【解题分析】首先证明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性质,等高模型、三边关系一一判断即可.【题目详解】解:∵四边形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°.∵在△ABE和△DCF中,AB=CD,∠BAD=∠ADC,AE=DF,∴△ABE≌△DCF,∴∠ABE=∠DCF.∵在△ADG和△CDG中,AD=CD,∠ADB=∠CDB,DG=DG,∴△ADG≌△CDG,∴∠DAG=∠DCF,∴∠ABE=∠DAG.∵∠DAG+∠BAH=90°,∴∠BAE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故③正确,同理可证:△AGB≌△CGB.∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故①正确.∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,∠DAG=∠FCD,∴S△HDG:S△HBG=tan∠FCD=tan∠DAG,故④正确.取AB的中点O,连接OD、OH. ∵正方形的边长为4,∴AO=OH=12×4=1,由勾股定理得,224225+=由三角形的三边关系得,O、D、H三点共线时,DH最小,DH最小5.无法证明DH平分∠EHG,故②错误,故①③④⑤正确.故选B.【题目点拨】本题考查了相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质,解直角三角形,解题的关键是掌握它们的性质进行解题.7、A【解题分析】根据两点直线距离最短可在图中看出三亚-永兴岛之间距离最短.【题目详解】由图可得,两个点之间距离最短的是三亚-永兴岛.故答案选A.【题目点拨】本题考查的知识点是两点之间直线距离最短,解题的关键是熟练的掌握两点之间直线距离最短.8、D【解题分析】利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出2ax+bx+c<0的解集:由图象得:对称轴是x=2,其中一个点的坐标为(1,0),∴图象与x轴的另一个交点坐标为(-1,0).ax+bx+c<0的解集即是y<0的解集,由图象可知:2∴x<-1或x>1.故选D.9、B【解题分析】∠=,易得△ABC是首先连接AC,由将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,AB=1,B60等边三角形,即可得到答案.【题目详解】连接AC,∵将四根长度相等的细木条首尾相连,用钉子钉成四边形ABCD,∴AB=BC,∠=,∵B60∴△ABC是等边三角形,∴AC=AB=1.故选:B.【题目点拨】本题考点:菱形的性质.10、A【解题分析】试题分析:利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用PM=2.5cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-2.5=2.5(cm),即可得出QR的长RN+NQ=3+2.5=3.5(cm).故选A.考点:轴对称图形的性质11、C【解题分析】在△ABC中,∠ACB=90°,∠A=24°,∴∠B=90°-∠A=66°.由折叠的性质可得:∠BCD=12∠ACB=45°, ∴∠BDC=180°-∠BCD-∠B=69°.故选C.12、A【解题分析】【分析】先求出每一个不等式的解集,然后再根据不等式组无解得到有关m 的不等式,就可以求出m 的取值范围了.【题目详解】()03121x m x x -<⎧⎪⎨->-⎪⎩①②, 解不等式①得:x<m ,解不等式②得:x>-1,由于原不等式组无解,所以m≤-1,故选A.【题目点拨】本题考查了一元一次不等式组无解问题,熟知一元一次不等式组解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、﹣1【解题分析】根据根与系数的关系得出b 2-4ac=(-2)2-4×1×(n-1)=-4n+8<0,求出n >2,再去绝对值符号,即可得出答案.【题目详解】解:∵关于x 的方程x 2−2x+n=1没有实数根,∴b 2-4ac=(-2)2-4×1×(n-1)=-4n+8<0,∴n >2,∴|2−n |-│1-n│=n -2-n+1=-1.故答案为-1.【题目点拨】本题考查了根的判别式,解题的关键是根据根与系数的关系求出n 的取值范围再去绝对值求解即可.14、3【解题分析】以B.E.D为顶点的三角形与△DEF相似分两种情形画图分别求解即可. 【题目详解】如图作CM⊥AB当∠FED=∠EDB时,∵∠B=∠EAF=∠EDF∴△EDF~△DBE∴EF∥CB,设EF交AD于点O∵AO=OD,OE∥BD∴AE= EB=3当∠FED=∠DEB时则∠FED=∠FEA=∠DEB=60°此时△FED~△DEB,设AE=ED=x,作DN⊥AB于N,则EN=12x,DN=32x,∵DN∥CM,∴DN BN CM BM=∴33622 43x x-=∴x(164313=∴BE=6-x=14313+故答案为3或14313+【题目点拨】本题考察学生对相似三角形性质定理的掌握和应用,熟练掌握相似三角形性质定理是解答本题的关键,本题计算量比较大,计算能力也很关键.15、203 【解题分析】 过点B 作BF ⊥OC 于点F ,易证S △OAE =S 四边形DEBF =145,S △OAB =S 四边形DABF ,因为2125OAB ADC S S ∆∆=,所以2125DABF ADC S S ∆=四边形,425BCF ADC S S ∆∆=,又因为AD ∥BF ,所以S △BCF ∽S △ACD ,可得BF:AD=2:5,因为S △OAD =S △OBF ,所以12×OD×AD =12×OF×BF ,即BF:AD=2:5= OD :OF ,易证:S △OED ∽S △OBF ,S △OED :S △OBF =4:25,S △OED :S 四边形EDFB =4:21,所以S △OED =815 ,S △OBF = S △OED + S 四边形EDFB =815+145=103, 即可得解:k=2 S △OBF =203. 【题目详解】解:过点B 作BF ⊥OC 于点F ,由反比例函数的比例系数|k|的意义可知:S △OAD =S △OBF ,∴S △OAD - S △OED =S △OBF 一S △OED ,即S △OAE =S 四边形DEBF =145,S △OA B =S 四边形DABF , ∵2125OAB ADC S S ∆∆=, ∴2125DABF ADC S S ∆=四边形,425BCF ADC S S ∆∆=, ∵AD ∥BF∴S △BCF ∽S △ACD ,又∵425BCF ADC S S ∆∆=, ∴BF:AD=2:5,∵S △OAD =S △OBF ,∴12×OD×AD =12×OF×BF∴BF:AD=2:5= OD:OF易证:S△OED∽S△OBF,∴S△OED:S△OBF=4:25,S△OED:S四边形EDFB=4:21∵S四边形EDFB=145,∴S△OED=815,S△OBF= S△OED+ S四边形EDFB=815+145=103,∴k=2 S△OBF=20 3.故答案为20 3.【题目点拨】本题考查反比例函数的比例系数|k|的几何意义,解题关键是熟练运用相似三角形的判定定理和性质定理.16、②③【解题分析】分析:根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以②中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.故答案为:②③.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键.17、65°【解题分析】根据两直线平行,同旁内角互补求出∠3,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解. 【题目详解】∵m∥n,∠1=105°,∴∠3=180°−∠1=180°−105°=75°∴∠α=∠2−∠3=140°−75°=65°故答案为:65°.【题目点拨】此题考查平行线的性质,解题关键在于利用同旁内角互补求出∠3.18、①③⑤.【解题分析】试题分析:①连接CD,如图1所示,∵点E与点D关于AC对称,∴CE=CD,∴∠E=∠CDE,∵DF⊥DE,∴∠EDF=90°,∴∠E+∠F=90°,∠CDE+∠CDF=90°,∴∠F=∠CDF,∴CD=CF,∴CE=CD=CF,∴结论“CE=CF”正确;②当CD⊥AB时,如图2所示,∵AB是半圆的直径,∴∠ACB=90°,∵AB=8,∠CBA=30°,∴∠CAB=60°,AC=4,BC=43.∵CD⊥AB,∠CBA=30°,∴CD=12BC=23.根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为23.∵CE=CD=CF,∴EF=2CD.∴线段EF的最小值为43.∴结论“线段EF的最小值为23”错误;③当AD=2时,连接OC,如图3所示,∵OA=OC,∠CAB=60°,∴△OAC是等边三角形,∴CA=CO,∠ACO=60°,∵AO=4,AD=2,∴DO=2,∴AD=DO,∴∠ACD=∠OCD=30°,∵点E与点D关于AC对称,∴∠ECA=∠DCA,∴∠ECA=30°,∴∠ECO=90°,∴OC⊥EF,∵EF经过半径OC的外端,且OC⊥EF,∴EF与半圆相切,∴结论“EF 与半圆相切”正确;④当点F恰好落在BC上时,连接FB、AF,如图4所示,∵点E与点D关于AC对称,∴ED⊥AC,∴∠AGD=90°,∴∠AGD=∠ACB,∴ED∥BC,∴△FHC∽△FDE,∴FH:FD=FC:FE,∵FC=12EF,∴FH=12FD,∴FH=DH,∵DE∥BC,∴∠FHC=∠FDE=90°,∴BF=BD,∴∠FBH=∠DBH=30°,∴∠FBD=60°,∵AB是半圆的直径,∴∠AFB=90°,∴∠FAB=30°,∴FB=12AB=4,∴DB=4,∴AD=AB﹣DB=4,∴结论“AD=25”错误;⑤∵点D与点E关于AC对称,点D与点F关于BC对称,∴当点D从点A运动到点B时,点E的运动路径AM与AB关于AC对称,点F的运动路径NB与AB关于BC对称,∴EF扫过的图形就是图5中阴影部分,∴S阴影=2S△ABC=2×12AC•BC=AC•BC=4×43=163,∴EF扫过的面积为163,∴结论“EF扫过的面积为163”正确.故答案为①③⑤.考点:1.圆的综合题;2.等边三角形的判定与性质;3.切线的判定;4.相似三角形的判定与性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、【解题分析】先算负整数指数幂、零指数幂、二次根式的化简、绝对值,再相加即可求解;【题目详解】解:原式【题目点拨】考查实数的混合运算,分别掌握负整数指数幂、零指数幂、二次根式的化简、绝对值的计算法则是解题的关键.20、(1)y1=0.85x,y2=0.75x+50 (x>200),y2=x (0≤x≤200);(2)x>500时,到乙商场购物会更省钱,x=500时,到两家商场去购物花费一样,当x<500时,到甲商场购物会更省钱.【解题分析】(1)根据单价乘以数量,可得函数解析式;(2)分类讨论,根据消费的多少,可得不等式,根据解不等式,可得答案.【题目详解】(1)甲商场写出y关于x的函数解析式y1=0.85x,乙商场写出y关于x的函数解析式y2=200+(x﹣200)×0.75=0.75x+50(x>200),即y2=x(0≤x≤200);(2)由y1>y2,得0.85x>0.75x+50,解得x>500,即当x>500时,到乙商场购物会更省钱;由y1=y2得0.85x=0.75x+50,即x=500时,到两家商场去购物花费一样;由y1<y2,得0.85x<0.75x+500,解得x<500,即当x<500时,到甲商场购物会更省钱;综上所述:x>500时,到乙商场购物会更省钱,x=500时,到两家商场去购物花费一样,当x<500时,到甲商场购物会更省钱.【题目点拨】本题考查了一次函数的应用,分类讨论是解题关键.21、(1)抛物线的解析式为:;(2)①S与运动时间t之间的函数关系式是S=5t2﹣8t+4,t的取值范围是0≤t≤1;②存在.R点的坐标是(3,﹣);(3)M的坐标为(1,﹣).【解题分析】试题分析:(1)设抛物线的解析式是y=ax2+bx+c,求出A、B、D的坐标代入即可;(2)①由勾股定理即可求出;②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形,求出P、Q的坐标,再分为两种种情况:A、B、C即可根据平行四边形的性质求出R的坐标;(3)A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M,求出直线BD的解析式,把抛物线的对称轴x=1代入即可求出M的坐标.试题解析:(1)设抛物线的解析式是y=ax2+bx+c,∵正方形的边长2,∴B的坐标(2,﹣2)A点的坐标是(0,﹣2),把A(0,﹣2),B(2,﹣2),D(4,﹣)代入得:,解得a=,b=﹣,c=﹣2,∴抛物线的解析式为:,答:抛物线的解析式为:;(2)①由图象知:PB=2﹣2t,BQ=t,∴S=PQ2=PB2+BQ2,=(2﹣2t)2+t2,即S=5t2﹣8t+4(0≤t≤1).答:S与运动时间t之间的函数关系式是S=5t2﹣8t+4,t的取值范围是0≤t≤1;②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形.∵S=5t2﹣8t+4(0≤t≤1),∴当S=时,5t2﹣8t+4=,得20t2﹣32t+11=0,解得t=,t=(不合题意,舍去),此时点P的坐标为(1,﹣2),Q点的坐标为(2,﹣),若R点存在,分情况讨论:(i)假设R在BQ的右边,如图所示,这时QR=PB,RQ∥PB,则R的横坐标为3,R的纵坐标为﹣,即R(3,﹣),代入,左右两边相等,∴这时存在R(3,﹣)满足题意;(ii)假设R在QB的左边时,这时PR=QB,PR∥QB,则R(1,﹣)代入,,左右不相等,∴R不在抛物线上.(1分)综上所述,存点一点R(3,﹣)满足题意.答:存在,R点的坐标是(3,﹣);(3)如图,M′B=M′A,∵A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M, 理由是:∵MA=MB,若M不为L与DB的交点,则三点B、M、D构成三角形,∴|MB|﹣|MD|<|DB|,即M到D、A的距离之差为|DB|时,差值最大,设直线BD 的解析式是y=kx+b,把B 、D 的坐标代入得:,解得:k=,b=﹣,∴y=x ﹣, 抛物线的对称轴是x=1,把x=1代入得:y=﹣∴M 的坐标为(1,﹣);答:M 的坐标为(1,﹣).考点:二次函数综合题.22、(1)抽样调查;12;3;(2)60;(3)25. 【解题分析】试题分析:(1)根据只抽取了4个班可知是抽样调查,根据C 在扇形图中的角度求出所占的份数,再根据C 的人数是5,列式进行计算即可求出作品的件数,然后减去A 、C 、D 的件数即为B 的件数;(2)求出平均每一个班的作品件数,然后乘以班级数14,计算即可得解;(3)画出树状图或列出图表,再根据概率公式列式进行计算即可得解.试题解析:(1)抽样调查,所调查的4个班征集到作品数为:5÷150360=12件,B 作品的件数为:12﹣2﹣5﹣2=3件,故答案为抽样调查;12;3;把图2补充完整如下:(2)王老师所调查的四个班平均每个班征集作品x =12÷4=3(件),所以,估计全年级征集到参展作品:3×14=42(件);(3)画树状图如下:列表如下:共有20种机会均等的结果,其中一男一女占12种,所以,P(一男一女)=1220=35,即恰好抽中一男一女的概率是35.考点:1.条形统计图;2.用样本估计总体;3.扇形统计图;4.列表法与树状图法;5.图表型.23、(1)证明见解析;(2)1.【解题分析】作PM⊥AD,在四边形ABCD和四边形ABPM证AD=PM;DF⊥PG,得出∠GDH+∠DGH=90°,推出∠ADF=∠MPG;还有两个直角即可证明△ADF≌△MPG,从而得出对应边相等(2)由已知得,DG=2PC=2;△ADF≌△MPG得出DF=PD;根据旋转,得出∠EPG=90°,PE=PG从而得出四边形PEFD为平行四边形;根据勾股定理和等量代换求出边长DF的值;根据相似三角形得出对应边成比例求出GH 的值,从而求出高PH 的值;最后根据面积公式得出【题目详解】解:(1)证明:∵四边形ABCD为正方形,∴AD=AB,∵四边形ABPM为矩形,∴AB=PM,∴AD=PM,∵DF⊥PG,∴∠DHG=90°,∴∠GDH+∠DGH=90°,∵∠MGP+∠MPG=90°,∴∠GDH=∠MPG,在△ADF和△MPG中,∴△ADF≌△MPG(ASA),∴DF=PG;(2)作PM⊥DG于M,如图,∵PD=PG,∴MG=MD,∵四边形ABCD为矩形,∴PCDM为矩形,∴PC=MD,∴DG=2PC=2;∵△ADF≌△MPG(ASA),∴DF=PG,而PD=PG,∴DF=PD,∵线段PG绕点P逆时针旋转90°得到线段PE,∴∠EPG=90°,PE=PG,∴PE=PD=DF,而DF⊥PG,∴DF∥PE,即DF∥PE,且DF=PE,∴四边形PEFD为平行四边形,在Rt△PCD中,PC=1,CD=3,∴PD==,∴DF=PG=PD=,∵四边形CDMP是矩形,∴PM=CD=3,MD=PC=1,∵PD=PG,PM⊥AD,∴MG =MD =1,DG =2,∵∠GDH =∠MPG ,∠DHG =∠PMG =90°,∴△DHG ∽△PMG , ∴, ∴GH ==,∴PH =PG ﹣GH =﹣=,∴四边形PEFD 的面积=DF•PH =×=1.【题目点拨】本题考查了平行四边形的面积、勾股定理、相似三角形判定、全等三角形性质,本题的关键是求边长和高的值24、详见解析【解题分析】(1)设一个小球使水面升高x 厘米,一个大球使水面升高y 厘米,根据图象提供的数据建立方程求解即可. (1)设应放入大球m 个,小球n 个,根据题意列二元一次方程组求解即可.【题目详解】解:(1)设一个小球使水面升高x 厘米,由图意,得2x=21﹣16,解得x=1.设一个大球使水面升高y 厘米,由图意,得1y=21﹣16,解得:y=2.所以,放入一个小球水面升高1cm ,放入一个大球水面升高2cm .(1)设应放入大球m 个,小球n 个,由题意,得m n 103m 2n 5026+=⎧⎨+=-⎩,解得:m 4n 6=⎧⎨=⎩. 答:如果要使水面上升到50cm ,应放入大球4个,小球6个.25、 (1)见解析(2)300(3)2小时【解题分析】解:(1)设甲组加工的零件数量y 与时间x 的函数关系式为y kx =.根据题意,得6360k =,解得60k =.所以,甲组加工的零件数量y 与时间x 的函数关系式为:60y x =.(2)当2x =时,100y =.因为更换设备后,乙组工作效率是原来的2倍, 所以,10010024.8 2.82a -=⨯-.解得300a =. (3)乙组更换设备后,乙组加工的零件的个数y 与时间x 的函数关系式为100100( 2.8)100180y x x =+-=-.当0≤x ≤2时,6050300x x +=.解得3011x =.舍去. 当2<x ≤2.8时,10060300x +=.解得103x =.舍去. 当2.8<x ≤4.8时,60100180300x x +-=.解得3x =.所以,经过3小时恰好装满第1箱.当3<x ≤4.8时,601001803002x x +-=⨯.解得398x =.舍去. 当4.8<x ≤6时.603003002x +=⨯.解得5x =. 因为5-3=2,所以,再经过2小时恰好装满第2箱.26、(1)y=﹣x 2+x+3;D (1,);(2)P (3,).【解题分析】(1)设抛物线的解析式为y=a (x+2)(x-4),将点C (0,3)代入可求得a 的值,将a 的值代入可求得抛物线的解析式,配方可得顶点D 的坐标;(2)画图,先根据点B 和C 的坐标确定直线BC 的解析式,设P (m ,-m 2+m+3),则F (m ,-m+3),表示PF 的长,根据四边形DEFP 为平行四边形,由DE=PF 列方程可得m 的值,从而得P 的坐标.【题目详解】解:(1)设抛物线的解析式为y=a (x+2)(x ﹣4),将点C (0,3)代入得:﹣8a=3,解得:a=﹣,y=﹣x 2+x+3=﹣(x ﹣1)2+,∴抛物线的解析式为y=﹣x2+x+3,且顶点D(1,);(2)∵B(4,0),C(0,3),∴BC的解析式为:y=﹣x+3,∵D(1,),当x=1时,y=﹣+3=,∴E(1,),∴DE=-=,设P(m,﹣m2+m+3),则F(m,﹣m+3),∵四边形DEFP是平行四边形,且DE∥FP,∴DE=FP,即(﹣m2+m+3)﹣(﹣m+3)=,解得:m1=1(舍),m2=3,∴P(3,).【题目点拨】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数和二次函数的解析式,利用方程思想列等式求点的坐标,难度适中.27、(1)0.2;(2)答案见解析;(3)300【解题分析】第一问,根据频率的和为1,求出c的值;第二问,先用分数段是90到100的频数和频率求出总的样本数量,然后再乘以频率分别求出a和b的值,再画出频数分布直方图;第三问用全市征文的总篇数乘以80分以上的频率得到全市80分以上的征文的篇数.【题目详解】解:(1)1﹣0.38﹣0.32﹣0.1=0.2,故答案为0.2;(2)10÷0.1=100,100×0.32=32,100×0.2=20,补全征文比赛成绩频数分布直方图:(3)全市获得一等奖征文的篇数为:1000×(0.2+0.1)=300(篇).【题目点拨】掌握有关频率和频数的相关概念和计算,是解答本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江西省宜春市高安市2018届数学中考一模试卷
一、单选题
1.﹣5的相反数是( )
A. ﹣5 B. 5 C. ﹣ D.
【答案】
B
【考点】相反数及有理数的相反数
【解析】【解答】解:﹣5的相反数是5.故选:B.
【分析】根据相反数的概念解答即可.
2.下列图案中,既是轴对称图形又是中心对称图形的是( )

A. B. C. D.
【答案】
B
【考点】轴对称图形,中心对称及中心对称图形
【解析】【解答】A. 不是轴对称图形,也不是中心对称图形,不符合题意;
B. 是轴对称图形,也是中心对称图形,符合题意;
C. 是中心对称图形,不是轴对称图形,不符合题意;
D. 是轴对称图形,不是中心对称图形,不符合题意。
故答案为:
B.
【分析】把一个图形沿着某条直线折叠,若直线两旁的部分能完全重合,则这个图形就是轴对称图形;把一个
图形绕着某点旋转180º后,能与自身重合的图形,就是中心对称图形,根据定义一一判断即可。
3.下列运算正确的是( )
A. a3+a3=2a6 B. a6÷a﹣3=a3 C. a3a3=2a3 D. (﹣2a2)3=﹣8a6
【答案】
D
【考点】同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法,合并同类项法则及应用
【解析】【解答】A.a3+a3=2a3 , 故不符合题意;
B.a6÷a﹣3=a9 , 故不符合题意;
C.a3a3=a6 , 故不符合题意;
D.(﹣2a2)3=﹣8a6 , 故符合题意;
故答案为:
D
【分析】根据合并同类项的方法,字母和字母的指数不变,只把系数相加减;同底数幂的除法,底数不变,指
数相减;同底数幂的乘法,底数不变,指数相加;积的乘方,等于把积中的每一个因式分别乘方,再把所得的
幂相乘;即可一一判断。
4.函数 的图象不经过( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
【答案】
B
【考点】一次函数图像、性质与系数的关系

相关文档
最新文档