初中数学找规律方法
初中数学规律题(全部有解析)

规律题应用知识汇总“有比较才有鉴别”。
通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律,常常包含着事物的序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。
然后再简化代数式a+(n-1)b。
例:4、10、16、22、28……,求第n位数。
分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。
(三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。
此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。
二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
找出的规律,通常包序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
中考数学专题复习——找规律

排列组合规律题
总结词
考察对排列组合原理和计数方法的掌握。
详细描述
排列组合规律题通常会给出一些排列或组合的实例,要求考生通过观察、分析找出其中的规律,并据 此推断出下一个排列或组合。常见的排列组合规律题有按照一定规律排列的物品、组合数学中的问题 等。
03
找规律题型的解题技巧
观察法
总结词
通过细致观察,发现数字、图形或序列 的变化规律。
详细描述
找规律题目中经常会有一些不易察觉的限制条件,如周期性 、递增或递减的步长等。忽略这些条件可能导致学生无法正 确识别和推导规律,从而得出错误的答案。
对规律的理解不准确
总结词
学生对找规律题目的理解不准确,导致无法正确识别和运用规律。
详细描述
在找规律题目中,学生需要准确理解题目的要求和所给数据的规律性。如果对规律的理 解有误,学生可能会误解题目的要求,或者无法正确运用规律进行推导,导致解题失败
其中的规律。
规律题型的难度通常较高,需要 考生具备较强的逻辑思维和推理
能力。
规律题型的题目形式多样,包括 数列、图形、算式等,可以考察 考生对数学知识的综合运用能力
。
考察重点
考察考生对数字、图形和算式的敏感 度和观察力,能否快速发现其中的规 律。
考察考生对逻辑推理和归纳总结的能 力。
考察考生对改进建议
加强学生对数列和图形基本特征的掌 握,培养他们的整体观察和归纳能力 。
对未来中考数学命题的展望
展望
找规律题目将继续作为中考数学的热 门题型,难度和灵活性也将逐渐增加 。
建议
学生应注重培养自己的观察、推理和 归纳能力,同时多做相关练习题,提 高解题熟练度和准确度。
THANKS
初中数学规律题方法总结

初中数学规律题方法总结嘿,咱来聊聊初中数学里那让人又爱又恨的规律题哈!这可真是个有趣的玩意儿呢。
你看啊,规律题就像是一个隐藏着无数小秘密的宝藏盒子,得靠咱去一点点挖掘。
那怎么挖呢?首先咱得有双善于发现的眼睛呀!比如说,看到一串数字,别光盯着数字看,得想想它们之间是不是有啥特别的联系。
比如说,有些数字是依次递增或递减的,那是不是每次增加或减少的量是一样的呀?这就像是上楼梯,一阶一阶很有规律嘛!要是碰到那种一会儿大一会儿小的数字,也别急,说不定它们之间的差值或者比值有规律呢。
还有啊,图形规律题也很有意思。
一个图形接着一个图形,它们的变化可能就在某个小细节里。
就好像拼图一样,得找到那关键的一块,整个画面就清晰啦!有时候是图形的数量在变,有时候是形状在变,有时候是颜色在变,嘿,多好玩呀!再说说找规律的方法。
咱可以从简单的开始尝试嘛,比如先试着加一加、减一减,看看能不能发现啥。
要是不行,那就乘一乘、除一除,说不定就有惊喜呢!这就跟咱试衣服似的,这件不合适就换一件呗,总有一件能合身。
举个例子哈,有这么一组数字:1,3,5,7,9。
很明显吧,这就是依次加 2 呀!那要是再复杂点的,像 2,4,8,16,32。
这是不是倍数关系呀,后一个是前一个的 2 倍呢。
这就好像是搭积木,一层比一层高,很有秩序呢。
对于图形规律,咱可以仔细观察每个图形的边呀、角呀、顶点呀这些地方。
比如说,第一个图形有 3 条边,第二个图形有 4 条边,那后面的是不是依次增加呀。
做规律题的时候,可别着急,得慢慢来。
就跟走迷宫似的,得一步一步找路。
要是一下子找不到,也别灰心丧气呀,再仔细瞅瞅,说不定答案就在眼前呢。
总之呢,初中数学规律题就是个充满挑战和乐趣的领域。
只要咱有耐心,有方法,就一定能把那些隐藏的规律都给找出来。
加油吧,同学们!相信自己,咱一定能行!这规律题呀,就是咱数学学习路上的一个小关卡,闯过去,咱就又进步啦!难道不是吗?。
初中数学找规律解题方法及技巧

初中数学找规律解题方法及技巧通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律,常常包含着事物的序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索: 一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n 个数可以表示为:a1+(n-1)b ,其中a 为数列的第一位数,b 为增幅,(n-1)b 为第一位数到第n 位的总增幅。
然后再简化代数式a+(n-1)b 。
例:4、10、16、22、28……,求第n 位数。
分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n 位数是:4+(n-1) 6=6n -2(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n 位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n 位的增幅;2、求出第1位到第第n 位的总增幅;3、数列的第1位数加上总增幅即是第n 位数。
此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。
(三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。
此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。
二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
找出的规律,通常包序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
初中的数学规律题的总结

初中数学规律题解题基本方法(一)数列的找规律初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。
然后再简化代数式a+(n-1)b。
例:4、10、16、22、28……,求第n位数。
分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n -2(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
举例说明:2、5、10、17……,求第n位数。
分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。
那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1所以,第n位数是:2+ n2-1= n2+1此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了。
(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。
此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。
二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
找出的规律,通常包序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
初中数学找规律解题方法及技巧.

项是100 —12(2n - 1) :。
0 3 8 初中数学找规律解题方法及技巧初中数学找规律解题方法及技巧通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律, 常常包含着事物的序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥 秘。
初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法 ——看增幅(一)如增幅相等(实为等差数列) 对每个数和它的前一个数进行比较,如增幅相等,则第 n 个数可以表示为:a1+(n-1)b ,其中 a 为数列的第一位数,b 为增幅,(n-1)b 为第一位数到第 n 位的总增幅。
然后再简化代数式 a+(n-1)b 。
例:4、10、16、22、28……,求第 n 位数。
分析:第二位数起,每位数都比前一位数增加 6,增幅都是 6,所以,第 n 位数是:4+(n-1) 6 =6n -2(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为 3、5、7、9,说明增幅以同等幅度增加。
此种数列第 n 位的数也有一种通用求法。
基本思路是:1、求出数列的第 n-1 位到第 n 位的增幅;2、求出第 1 位到第第 n 位的总增幅;3、数列的第 1 位数加上总增幅即是第 n 位数。
此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法 求出,方法就简单的多了。
(三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17 增幅为 1、 2、4、8.(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技 巧。
二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些 已知的量找出一般规律。
初中的数学规律题的总结
2、求出第1位到第第n位得总增幅;
3、数列得第1位数加上总增幅即就是第n位数、
举例说明:2、5、10、17……,求第n位数、
分析:数列得增幅分别为:3、5、7,增幅以同等幅度增加。那么,数列得第n-1位到第n位得增幅就是:3+2×(n—2)=2n—1,总增幅为:
⑴填写下表:
⑵照这样得规律搭建下去,搭n个这样得三角形需要多少根火柴棒?
★注意引导学生概括“探索规律”得一般步骤:
①寻找数量关系;
②用代数式表示规律
③验证规律。
★练习:四棱柱有几个顶点、几条棱、几个面?五棱柱呢?十棱柱呢?n棱柱呢?
活动二:探索具体情景下事物得规律
问题1。若有两张长方形得桌子,把它们拼成一张大得长方形桌子,有几种拼法?
给出得数:0,3,8,15,24,……、
序列号:1,2,3,4, 5,……。
容易发现,已知数得每一项,都等于它得序列号得平方减1。因此,第n项就是n2-1,第100项就是1002-1。
(二)公因式法:每位数分成最小公因式相乘,然后再找规律,瞧就是不就是与n2、n3,或2n、3n,或2n、3n有关。
例如:1,9,25,49,(),(),得第n为(2n-1)2
活动三:探索图表得规律
下面就是2000年八月份得日历:
⑴日历中得绿色方框中得9个数之与与该方框正中间得数有什么关系?
⑵这个关系对其它这样得方框成立吗?您能用代数式表示这个关系吗?
⑶这个关系对任何一个月得日历都成立吗?为什么?
⑷您还能发现这样得方框中9个数之间得其她关系吗?用代数式表示。
⑸您还能提出那些问题?
二、基本技巧
(一)标出序列号:找规律得题目,通常按照一定得顺序给出一系列量,要求我们根据这些已知得量找出一般规律。找出得规律,通常包序列号、所以,把变量与序列号放在一起加以比较,就比较容易发现其中得奥秘、
七年级找规律知识点
七年级找规律知识点在数学学习中,找规律是一个重要的知识点。
它是指通过发现数列中的规律,推算出下一个或多个数的值。
找规律的能力对于解决数学问题、理解抽象概念、甚至是发现新知识都具有重要的作用。
在七年级的数学学习中,找规律是一个重要的内容,下面本文将从定义、基本方法及练习中全面介绍七年级找规律知识点。
1. 找规律的定义找规律是指在一组数列中,根据已有的数值综合分析,找到它们之间的相应关系,依此推算出后续的数值。
这种方法可以应用于数学中的很多领域,从简单的数列题目到高级的几何分析中都有所用。
2. 找规律的基本方法找规律的基本方法有以下几种:(1)观察法。
仔细观察数列中的每一个数值,特别注意第一项和公差(等差数列)、公比(等比数列)等重要指标。
(2)列式法。
将数列中的每一项都用一个字母表示,如a1、a2、a3等,通过列式列举可以发现其中的规律。
(3)归纳法。
根据已知的一些数据,通过总结、归纳和猜测,找到数列中的规律。
(4)递推法。
根据已知的数列中的数据,推算出下一个数的值,以此类推,得出整个数列。
3. 找规律的练习以下是一些找规律的练习题,供七年级同学参考:(1)已知数列2 4 8 16 32 …… 的通项公式是多少?(2)一个数列的第一个数是2,从第二个数开始,每个数都比它前面的数多2,那么这个数列前6项分别是什么?(3)一个数列的第一个数是5,从第二个数开始,每个数都比它前面的数少3,那么这个数列前5项分别是什么?(4)一个数列的第一个数是3,从第二个数开始,每个数都是前一个数的一半,那么这个数列前5项分别是什么?4. 总结找规律是数学中的一项基本技能,我们通过观察法、列式法、归纳法和递推法等方法进行练习,可以在实践中逐渐掌握这种技能。
但是要注意,找规律并不是一件容易的事情,需要有耐心、细心,同时还需要严谨的逻辑思维和抽象思维能力。
希望本文对初中生的找规律知识点有所帮助,为他们打好数学基础。
七年级找规律知识点总结
七年级找规律知识点总结在七年级数学学习中,找规律是一个重要的知识点。
它不仅是数学思维训练的关键,也是后续学习代数和函数的基础。
在此,我将从什么是找规律、找规律的方法、找规律的应用等方面进行总结。
一、什么是找规律找规律是指在一组数或图形中寻找规律性、相似性和变化规律的过程,通过对这些规律进行总结、归纳和推广,进一步加深对数学规律的理解,提高分析问题的能力。
二、找规律的方法找规律并不是看起来简单,实则需要有一定的技巧。
以下是几种常用的找规律方法:1. 数列数列是较为常见的一种找规律方法,它可以用表格列出其中的数字,以便快速发现规律。
常见的数列有等差数列和等比数列,可以应用对应的公式来计算每一项。
2. 分组讨论法通过分类讨论,把一组数据分解成不同的部分,从而来看出各部分的规律、特性和联系。
例如,把一组数字按奇偶分为两部分,可以发现每个奇数与其前一个偶数之和均为奇数等规律。
3. 拆分组合法将数列拆分成若干个小部分,分析小部分与大部分之间的联系,进而得出规律。
例如,把一组数据分为前后两个部分,看它们之间有什么联系,是否有递推、递归和循环等规律。
4. 数数法计算第n项与第n-1项之间的差值,看是否为固定数值或以某种规则变化,通过推算找出每一项的值。
三、找规律的应用找规律的能力是数学学科中的一个重要基础,不仅可以应用到中考、高考中,还可以在未来的数学学习中得到广泛的应用。
1. 应用到代数学习中代数学习是找规律的延伸,通过找出规律,我们可以总结、提炼更加高级的数学规律和知识。
2. 应用到函数学习中函数学习需要有对数量关系的理解和掌握,而找规律正是我们深入剖析数量关系的一个过程。
通过找规律,我们可以逐步掌握函数的性质和运算规则。
3. 应用到计算机编程中计算机编程中也需要具有找规律能力,因为它涉及到算法设计和程序逻辑。
只有通过找规律,才能快速地设计出便捷、高效的程序。
总之,在学习数学过程中,找规律是一个重要的知识点。
中考数学找规律题型汇总及解析.doc
中考数学找规律题型扩展及解析“有比较才有鉴别”。
通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律,常常包含着事物的序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第 n 个数可以表示为: a1+(n-1)b,其中 a 为数列的第一位数, b 为增幅, (n-1)b 为第一位数到第 n 位的总增幅。
然后再简化代数式 a+(n-1)b。
例:4、10、 16、22、28,求第 n 位数。
分析:第二位数起,每位数都比前一位数增加6,增幅都是 6,所以,第 n 位数是: 4+(n-1) 6=6n- 2(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、 5、 7、 9,说明增幅以同等幅度增加。
此种数列第 n 位的数也有一种通用求法。
基本思路是: 1、求出数列的第n-1 位到第 n 位的增幅;2、求出第 1 位到第第 n 位的总增幅;3、数列的第 1 位数加上总增幅即是第n 位数。
此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。
(三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17 增幅为 1、2、 4、8.(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。
此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。
二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:
一、基本方法——看增幅
(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表
示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。然后再简化代数
式a+(n-1)b。
例:4、10、16、22、28……,求第n位数。
分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2
(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。如增幅分别
为3、5、7、9,说明增幅以同等幅度增加。此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;
2、求出第1位到第第n位的总增幅;
3、数列的第1位数加上总增幅即是第n位数。
举例说明:2、5、10、17……,求第n位数。
分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加。那么,数列的第n-1位到第n位的增幅是:3+2×
(n-2)=2n-1,总增幅为:
〔3+(2n-1)〕×(n-1)÷2=(n+1)×(n-1)=n2-1
所以,第n位数是:2+ n2-1= n2+1
此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简
单的多了。
(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.
(三)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。此类题大概没有通用解法,只用
分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。
二、基本技巧
(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般
规律。找出的规律,通常包序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
例如,观察下列各式数:0,3,8,15,24,……。试按此规律写出的第100个数是 。
解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。我们把有关的量放在一起加以比
较:
给出的数:0,3,8,15,24,……。
序列号: 1,2,3, 4, 5,……。
容易发现,已知数的每一项,都等于它的序列号的平方减1。因此,第n项是n2-1,第100项是1002-1。
(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关。
例如:1,9,25,49,(),(),的第n为(2n-1)2 (三)看例题:
A: 2、9、28、65.....增幅是7、19、37....,增幅的增幅是12、18 答案与3有关且............即:n3+1
B:2、4、8、16.......增幅是2、4、8.. .....答案与2的乘方有关即:2n
(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找
出每位数与位置的关系。再在找出的规律上加上第一位数,恢复到原来。
例:2、5、10、17、26……,同时减去2后得到新数列:
0、3、8、15、24……,
序列号:1、2、3、4、5
分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1
(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原
来。
例 : 4,16,36,64,?,144,196,… ?(第一百个数)
同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方。
(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3)。当
然,同时加、或减的可能性大一些,同时乘、或除的不太常见。
(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律。
三、基本步骤
1、 先看增幅是否相等,如相等,用基本方法(一)解题。
2、 如不相等,综合运用技巧(一)、(二)、(三)找规律
3、 如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、
(三)找出新数列的规律
4、 最后,如增幅以同等幅度增加,则用用基本方法(二)解题