波函数的统计解释

合集下载

物质波函数

物质波函数

a A2 sin2 x dx A2a 1

0
a
2
A
2 a
0

2

2 a
sin2 x
a
(x 0, x a) (0 x a)
15-8 量子力学简介
薛定谔(Erwin Schrodinger, 1887—1961)奥地利物理学家.
1926年建立了以薛定谔方 程为基础的波动力学,并建立 了量子力学的近似方法 .
t时刻在(x,y,z)附近小体积dV中出现微观粒子的概率为
2 dV dV dV dxdydz
2 dxdydz 1 波函数归一化条件 V
如果波函数不是归一化函数, 2 仍然和几率 成比例,称为相对几率密度
3 、波函数的标准条件:单值、有限和连续
Ⅰ.波函数的单值性
dV

1
归一化条件


A r 2d3r A

1 A
Ar2d Nhomakorabea3
r

1
( 全空间)
Ⅳ.波函数的连续性
1 归一化因子
A
势场性质和边界条件要求波函数及其一阶导数 是连续的
以上要求称为波函数的标准化条件
物质波与经典波的本质区别
1、物质波是复函数,本身无具体的物理意义, 一般是不可测量的。 2 可测量,具有物理意义
波函数物理意义
1、物质波是复函数,本身无具体的物理意义,一般 是不可测量的。
波函数模的平方 2 可测量,具有物理意义
经典波的波函数是实数,具有物理意义,可测量。
(2)归一化波函数模的平方表征了t 时刻,空间 (x,y,z)处出现的概率(几率)密度

波函数及其统计解释

波函数及其统计解释

§1、 波函数及其统计解释 1. de Broglie 假说(1923)先回忆Planck 的“光量子假说”: E h p h νλ=⎧⎨=⎩ 换写一下:E ω= 2ωπν=是圆频率p k =k 是波矢量, 2k πλ=是由波动性决定粒子性。

在Planck-Einstein 的光量子论以及Bohr 的原子的量子论的成功与失败的启发下,de Broglie 提出物质波假设。

de Broglie 假说:微观粒子也有波动性,满足关系式:ω=E /,k p =/,注意到: 2ωπν=及2k πλ=时,上面二式变形为:E h ν= h p λ=称为de Broglie 关系。

是由粒子性决定波动性。

它适用于自由粒子和平面波之间的关系。

平面波是()(){},exp r t A i t k r ψω=--⋅,将de Broglie 关系代入得:()(){},exp r t A i Et p r ψ=--⋅,这称为de Broglie 波(是复数波)。

对质量为μ的非相对论粒子:22 E p p μ=⇒=所以h p λ==≈≈近似适用于电子,E 的单位是电子伏特(eV ),λ的单位是埃(Å,即1010-m )。

数量级:E =150 eV 时,λ=1 Å(晶格常数的量级)。

2. 电子衍射实验波动性的体现就是衍射、干涉等等。

通过观察这些现象还可以测量波长。

戴维逊--革末 (Davisson and Germer, P.R. 30(27) 707)当可变电子束(30-600eV )照射到抛光的镍单晶上,发现在某角度ϕ(或πϕ-)方向有强的反射(即有较多电子被接收),而ϕ满足sin a nh p ϕ=。

若取h p λ=,则上式与Bragg 光栅衍射公式相同(sin a n ϕλ=)。

它证明了电子入射到晶体表面,发生散射,具有波动性而相应波长为h p λ=。

Davidsson-Germer 电子衍射实验(1927)的结果证实了电子确实有波动性,而且波长与de Broglie 的预言完全一致。

量子力学 第1章-1-2(第3讲)

量子力学 第1章-1-2(第3讲)

越来越多的实验事实证明,波函数的位相是非常重要的物理 概念,只限于统计解释还不能完全穷尽对波函数的认识。
量子波函数的概率解释有不足
玻恩的概率解释:“波函数的振幅的平方是粒 子被发现的概率” 。不是完整诠释,只关注 所谓的可观察量(振幅),忽略了相位(因为 不属于可观察量)。
杨振宁说,规范场论就是相位场。相位是其根 本。振幅与相位合起来用复数表示。
x=0
dx
由于
d 2(x,t)
dx2
0
x0
故 x 0 处,粒子出现概率最大。
注意
(1)归一化后的波函数
(r , t
)
仍有一个模为一的因
子 ei 不定性( δ为实函数)。
若 r,t 是归一化波函数,那末, r,tei 也是
归一化波函数,与前者描述同一概率波。
(2)只有当概率密度 (r,t) 对空间绝对可积时,才
2
(r,t) dx
A2
ea2x2 dx
A2
1
a2
归一化常数
1/ 2
A a/
归一化的波函数1/ 2Fra bibliotek1a2x2 i t
(r,t) a / e 2 2
(2)概率分布: (x, t) (x, t) 2 a ea2x2
(3)由概率密度的极值条件
d(x, t) a 2a2 xea2x2 0
相位是复杂性之源,相位导致纠缠,纠缠导致 记忆与电子相干。自由度的纠缠和相干,往往 会造就许多意想不到的结果。
作业题
1. 下列一组波函数共描写粒子的几个不同状态? 并指出每
个状态由哪几个波函数描写。
1 ei2x / , 4 ei3x / ,
2 ei2x/ , 5 ei2x / ,

§16.2 物质波的波函数,玻恩的统计解释

§16.2  物质波的波函数,玻恩的统计解释

§16.2 物质波的波函数,玻恩的统计解释(一)物质波的波函数ψ(r ,t )在第三篇§10.1(四)已谈过,一个频率为ν、波长为λ,沿x 轴传播的平面简谐机械波,其中各个质点的振动位移函数y (x ,t )可表示如下:()λ-νπ=⎥⎦⎤⎢⎣⎡x t 2cos A )t ,x (y 机械波的位移函数单频率平面简谐 (16.2.1) 此式的y 表示:t 时刻、在x 位置的质点,离开平衡位置的位移.A 为质点的振幅.我们曾经用此式计算机械波的能量和干涉现象等. 在第三篇§11.1(一)描述电磁波时,将上式的y 改为电场强度E y 和磁场强度H z :⎥⎦⎤⎢⎣⎡电磁波的表式单频率平面 ()()λ-νπ=λ-νπ=x t 2cos H H x t 2cos E E 0z z 0y y利用复数的欧拉公式,可将上述余弦函数与指数函数联系起来❶:〔欧拉公式:〕 (16.2.4)根据上式可把上述机械波和电磁波表式写成复数形式,例如:〔单频率平面机械波的复数表式〕)/x t (2i Ae )t ,x (y λ-νπ-=(16.2.5)表式(16.2.1)就是(16.2.5)复数表式的实数部分.可以设想,物质波的波函数ψ(x ,t )也可仿照上式写出:⎥⎦⎤⎢⎣⎡其物质波的波函数轴运动的自由粒子沿,x (16.2.6)这里所说自由粒子,指的是没受外力作用的微观粒子,它的总能ε和动量p 都是不变量,与它缔合的物质波的频率ν和波长λ也是不变量.按波粒二象性的关系式(16.1.4)和(16.1.5),可用ε和p 代替(16.2.6)式中的ν和λ:⎥⎦⎤⎢⎣⎡其物质波的波函数轴运动的自由粒子沿,x 16.2.7)物质波的波函数要用复数表式,其原因请看(16.3.3)式后面的说明.如果自由粒子在三维空间中运动,则上式的px 应改为p ·r ,波函数应写为ψ(x,y,z,t )或ψ(r ,t ):⎥⎦⎤⎢⎣⎡自由粒子的波函数在三维空间中运动的 (16.2.8)❶ 同济大学数学教研室主编《高等数学》下册223—224页,1978年版.(16.2.2) (16.2.3)(16.2.12) (16.2.13)(二)物质波波函数的统计解释物质波波函数ψ(r ,t )的物理意义如何?这在当时有过不少争论.后来,多数物理学家逐渐接受了玻恩于1926年提出的统计解释.在第三篇§11.1介绍光波时,曾经说过光波的强度与它的振幅平方成正比.现在按光子的观点,光的强度与它的光子数成正比,如(15.2.7)式所示.因此,光子数应与它的光波的振幅平方成正比.对于物质波,应与光波有相似的结论:在某一时刻,入射于空间某处的实物粒子数,应与该处的物质波波函数的模的平方成正比.也就是说,在某一时刻,在空间某一地点,粒子出现的几率,正比于该时刻、该地点的波函数的模的平方.用关系式表示如下:在t 时刻,粒子出现在(x,y,z )处的体积元dV=dxdydz 内的几率∝|ψ(r ,t)|2dxdydz=|ψ(r ,t)|2dV .在t 时刻,粒出现在(x,y,z )处的几率密度∝|ψ(r ,t)|2. (16.2.9)虚数不能表示实际的物理量,含有虚数的复数也不能表示物理量.但是,如〔附录16A 〕所示,复数的模是实数,可以表示现实的物理量.如(16.2.9)式所示,用波函数的模的平方可以表示微观实物粒子出现的几率密度(即单位体积内,粒子出现的几率),其表式如下: 〔微观粒子的几率密度〕 (16.2.10)这就是1926年玻恩提出的波函数ψ的统计解释.因此,物质波也称为几率波.用几率来表示微观粒子的运动,包括量子物理的创始人普朗克、爱因斯坦、德布罗意等所迟迟未予确认.因此,延迟20多年,玻恩才于1954年获得诺贝尔奖金.(三)物质波波函数ψ的条件(1)波函数的标准条件在某一时刻t ,在空间某一定点(x,y,z ),微观粒子出现的几率应是唯一的、有限的数值,随着时间和位置的变化,上述几率应是连续变化的.这就要求波函数ψ必须是一个单值、有限和连续的函数.这称为波函数的标准条件.(2)波函数的归一化条件在时刻t ,粒子出现在(x,y,z )处的几率为|ψ|2dV .在整个运动空间V 内,粒子出现的几率总和应为1.其表式如下:〔波函数的归一化条件〕 (16.2.11) (四)非相对论的波函数本教材只讨论非相对论的波函数,也就是只讨论粒子速度v <<c 的情况.对此情况,粒子的总能ε与能量E 和动量p 的关系,可用经典力学的关系式来表示.对于自由粒子,由于没受外力作用,其势能E p =0,其能量E 就等于其动能E k .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡ε<<总能自由粒子的时,c v m 2/p mc 2/m mc E E m 2/p 2/m E E E E .m m ,0E 2222022k p k 0p+=+=+=ε===+===v v 如〔附录16B 〕所示,计算v <<c 的粒子的几率密度|ψ|2时,静能E 0=m 0c 2不起作用.因❶ 杨建邺,止戈编著《杰出物理学家的失误》137、140页,华中师范大学出版社1986年版.、 此,可用能量E 代替(16.2.7)式中的总能ε,以表示自由粒子的波函数ψ❶.⎥⎦⎤⎢⎣⎡<<时的波函数子轴运动的自由粒沿c x v(16.2.14)此式亦可推广于(16.2.8)式:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡<<波函数时的自由粒子c v (16.2.15)❶〔美〕E ·H ·威切曼著,复旦大学物理系译《量子物理学》《伯克利物理学教程》第四卷340—341页,1978年版.。

波函数及其统计解释.ppt

波函数及其统计解释.ppt

x)
0
0a
k12
2mE 2
k22
2m(U0 2
E)
k12
2mE 2
三个区域的波函数分别为
Ⅰ区 Ψ1(x) A1eik1x B1eik1x
U0 ⅠⅡ Ⅲ
Ⅱ区 Ψ2 (x) A2eik2x B2eik2x E
Ⅲ区 Ψ3(x) A3eik1x B3eik1x
B3 = 0
波函数在 x = 0 ,x = a 处连续
波函数的物理意义:
|Ψ(r,t) |2 —— t 时刻,粒子在空间 r 处
的单位体积中出现的概率,又称为概率密度
1. 时刻 t , 粒子在空间 r 处 dV 体积内出现的概率
dW
|
Ψ(r ,
t
)
|2
dV
Ψ(r ,
t
)Ψ*
(r ,
t
)dV
2. 归一化条件 (粒子在整个空间出现的概率为1)
|Ψ(r,t) |2dxdydz 1
0a
x = 0 处:
Ψ1(0) Ψ2(0)
dΨ1 dΨ2 dx x0 dx x0
x = a 处:
Ψ2 (a) Ψ3(a)
dΨ2 dΨ3 dx xa dx xa
得到4个方程,求出常数 A1 、B1 、 A2 、B2 和 A3 间关系,从
而得到反射系数 R | B1 |2 / | A1 |2和透射系数 T | A3 |2 / | A1 |2
t
定态薛定谔方程
粒子能量


2 x2
2 y2
2 z 2
Ψ(r)
2m 2
E
V
Ψ(r)
0
外 力 场
说明

量子力学第2章-周世勋

量子力学第2章-周世勋

必须注意
(1)“微观粒子的运动状态用波函数描述,描写粒 子的波是几率波”,这是量子力学的一个基本假设 (基本原理)。
知道了描述微观粒子状态的波函数,就可知道粒 子在空间各点处出现的几率,以后的讨论进一步知道, 波函数给出体系的一切性质,因此说波函数描写体系 的量子状态(简称状态或态) (2)波函数一般用复函数表示。
这就要求在描述微观粒子的运动时,要有创新 的概念和思想来统一波和粒子这样两个在经典物理 中截然不同的物理图像。
德布罗意指出:微观粒子的运动状态可用一个复 函数 (r,t)来描述,函数 (r,t) — 称为波函数。
★ 描述自由粒子的波是具有确定能量和动量的平面波
i(PrEt)
P(r,t)Ae
de Broglie 波
p (r ) r ,td r cp ,tp p d p cp ,t
因此
C (P ,t) 1 (r,t)eiP ,rd3r
(2 )3/2
(r ,t) C (P )P (r ,t)d 3 P

(r,t)(21)3/2
C (P ,t)eiP rd3P
显然,二式互为Fourer变换式,所以
做替换:
E i t
即得Schrödinger方程
p i
i (tr ,t) 2 2 2 U (r ,t) (r ,t)
(6)
i (tr ,t) 2 2 2 U (r ,t) (r ,t)
一(、1微)观含粒有波子函运数动对方时程间应的具一阶有导的数特点(r,t)
t
(2)方程必为线性的
(3)质量为 的非相对性粒子(即低速运动的粒
子), 其总能为
EP2
U(r,t)
2
二、自由粒子的运动方程 P (r,t)(21 )3/2e i(P ,rE)t

1 波函数的统计解释习题解答

1 波函数的统计解释习题解答

(r )∇ψ
*(r) −ψ
*(r)∇ψ (r)).

t
无关。
17. 判断正误:(1) 定态 S 方程的解 ψ(r) 是定态波函数。 (2) 根据态叠加原理定态 S 方
3
程的的两个解 ψ1(r), ψ2(r) 的线性叠加仍然是该方程的解。 [解] (1) 是错误的,定态波函数应该有时间因子。(2) 一般也是错的,除非ψ1(r), ψ2(r)
∫ 求? [解]
|ψ (r,t) |2 dτ
r→0

|ψ (r, t) |r2→0
4 π r3 3
→ 有限,则 r→0 时,要求波函数
ψ (r, t) → ∞ 的速度不快于 1/r 3/2 。
8. 平面波复习
如果某一自由粒子,其波函数为平面波 ψ = Aei(kir−ω⋅t) 指出其传播方向,求其相速度。
[解] 对自由的低速运动粒子E = p2 / 2m = mv2 / 2 ,而 λ = h / p = h / 2mE ,所以 微尘 λ = 6.6 ×10−17 A,子弹 λ = 6.6 ×10−25 A, 即波长非常小,波动性可忽略不计。
2. 为什么在量子力学中要放弃粒子轨道的概念? 首先,由于波函数 |ψ(r, t)| 2 给出了 t 时刻,在空间任意点 r 附近单位体积元内找到粒
子的概率,所以从逻辑上说,就必须废弃粒子运动轨道的概念。这是因为如果微观粒子沿
轨道运动,则只能在轨道上找到粒子,而不可能在“任意点” 附近找到粒子。 其次,微观粒子的轨道是不可观测的,而量子理论的一个特点就是只研究可观测物理量
(Heisenberg),对于在微观上没有实验根据的经典概念,在量子力学中是没有其地位的,“粒 子轨道”就是其中之一。

第一章1.2波函数的统计解释

第一章1.2波函数的统计解释

( )
∫V
则可令,
C =

ϕ x , t dτ = C
( )
2
2
1 ψ x, t = ϕ x, t 得 C
1
( )
2
( )
∫V

ϕ x , t dτ
( )
(1.2.4 )
[例1.2.1] 已知电子的波函数为ψ x = N e a,试求: 例
-R
0
()
(1) 归一化常数N; (2) 在球壳 R → R + dR 内找到电子的概率ω (R )dR;
1.2 波函数的统计解释
本节首先引入自由粒子的波函数, 随后通过对电子双缝衍射实验的讨 论提出波函数的统计解释,最后提 出波函数的归一化条件。
1.2 波函数的统计解释
“初等量子论”步入 “量子力学”的开端。 两种介 绍形式 波函数的 统计解释 读者观 念的转化
前人探索和创新的历程, 以及他们提出这些基本假 设的想法和方式是怎样的。
;
(3)电子的位置径向概率密度于何处取最大值。
解 (1)由波函数归一化条件及
∫ xe
n 0
∞ 2 −∞

− ax
dx =
n!aຫໍສະໝຸດ n +1( a > 0),可得
2R
1 = ∫ ψ ( x ) dτ = N 4π ∫
2

0
e a R dR = N
2
0

2

(2 a )
0
2!
3
= N π a0
2 3
由此的归一化常数
N =
(π )
3 a0
-1 2
(2)在球壳 R → R + dR内找到电子的概率为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

波函数的统计解释
波函数是量子力学中描述粒子状态的数学函数。

它包含了粒子的可能位置、动量等信息,但并不直接表示物理实体。

波函数的统计解释是指通过波函数计算出的统计规律,用来预测大量粒子的行为。

1.概率解释:波函数的模的平方表示在一些空间点找到粒子的概率。

例如,对于一维运动的粒子,在其中一时刻,波函数的模的平方在一些位置上的积分就给出了粒子在该位置出现的概率。

这一概率解释使得波函数的统计解释与经典物理中的概率概念有了相似之处。

2.叠加解释:波函数的叠加原理使得多个波函数之间可以相互叠加。

这意味着多个波函数所代表的可能状态同时存在,并以一定的概率进行叠加。

这种叠加解释可以用来解释干涉和衍射等现象,这些现象是波粒二象性的体现。

3.线性解释:波函数的时间演化可以通过薛定谔方程进行描述。

根据薛定谔方程,波函数的演化是线性的,即满足叠加率和线性性质。

这一线性解释意味着多个波函数之间可以相互干涉和叠加,形成新的波函数。

4.统计解释:波函数可以用来确定粒子的期望值和方差等统计量。

例如,位置算符对应的期望值可以表示粒子的平均位置,动量算符对应的期望值可以表示粒子的平均动量。

通过对波函数进行数学计算,可以得到这些统计量,并与实验结果进行比较。

5.状态解释:波函数可以表示粒子的状态,包括其位置、动量和自旋等特征。

通过对波函数进行适当的测量,可以得到特定的物理量。

测量过程会导致波函数的坍缩,从而使得粒子的状态变为测量得到的特定值。

这一解释与量子力学的测量原理密切相关。

需要注意的是,波函数的统计解释并不是完美的,它依赖于量子力学
中的一些基本假设和数学工具。

例如,波函数的坍缩是一个不可逆的过程,且测量结果具有一定的不确定性。

波函数的统计解释只能给出概率分布等
统计规律,而无法提供关于单个粒子行为的具体预测。

总而言之,波函数的统计解释通过描述波函数的数学属性,从而预测
大量粒子的行为。

它包括概率解释、叠加解释、线性解释、统计解释和状
态解释等多个方面,为我们理解量子力学中的粒子行为提供了重要的物理
和数学工具。

相关文档
最新文档