排序算法实验报告

合集下载

数据结构实验报告八-快速排序

数据结构实验报告八-快速排序

实验8 快速排序1.需求分析(1)输入的形式和输入值的范围:第一行是一个整数n,代表任务的件数。

接下来一行,有n个正整数,代表每件任务所用的时间。

中间用空格或者回车隔开。

不对非法输入做处理,及假设用户输入都是合法的。

(2)输出的形式:输出有n行,每行一个正整数,从第一行到最后一行依次代表着操作系统要处理的任务所用的时间。

按此顺序进行,则使得所有任务等待时间最小。

(3)程序所能达到的功能:在操作系统中,当有n 件任务同时来临时,每件任务需要用时ni,输出所有任务等待的时间和最小的任务处理顺序。

(4)测试数据:输入请输入任务个数:9请输入任务用时:5 3 4 2 6 1 5 7 3输出任务执行的顺序:1 2 3 3 4 5 5 6 72.概要设计(1)抽象数据类型的定义:为实现上述程序的功能,应以整数存储用户的第一个输入。

并将随后输入的一组数据储存在整数数组中。

(2)算法的基本思想:如果将任务按完成时间从小到大排序,则在完成前一项任务时后面任务等待的时间总和最小,即得到最小的任务处理顺序。

采取对输入的任务时间进行快速排序的方法可以在相对较小的时间复杂度下得到从小到大的顺序序列。

3.详细设计(1)实现概要设计中定义的所有数据类型:第一次输入的正整数要求大于零,为了能够存储,采用int型定义变量。

接下来输入的一组整数,数据范围大于零,为了排序需要,采用线性结构存储,即int类型的数组。

(2)实现程序的具体步骤:一.程序主要采取快速排序的方法处理无序数列:1.在序列中根据随机数确定轴值,根据轴值将序列划分为比轴值小和比轴值大的两个子序列。

2.对每个子序列采取从左右两边向中间搜索的方式,不断将值与轴值比较,如果左边的值大于轴值而右边的小于轴值则将二者交换,直到左右交叉。

3.分别对处理完毕的两个子序列递归地采取1,2步的操作,直到子序列中只有一个元素。

二.程序各模块的伪代码:1、主函数int main(){int n;cout<<"请输入任务个数:";cin>>n;int a[n];cout<<"请输入任务用时:";for(int i=0;i<n;i++) cin>>a[i];qsort(a,0,n-1); //调用“快排函数”cout<<"任务执行的顺序:";for(int i=0;i<n;i++) cout<<a[i]<<" "; //输出排序结果}2、快速排序算法:void qsort(int a[],int i,int j){if(j<=i)return; //只有一个元素int pivotindex=findpivot(a,i,j); //调用“轴值寻找函数”确定轴值swap(a,pivotindex,j); //调用“交换函数”将轴值置末int k=partition(a,i-1,j,a[j]); //调用“分割函数”根据轴值分割序列swap(a,k,j);qsort(a,i,k-1); //递归调用,实现子序列的调序qsort(a,k+1,j);}3、轴值寻找算法://为了保证轴值的“随机性”,采用时间初始化种子。

算法实验报告结果分析

算法实验报告结果分析

一、实验背景随着计算机科学技术的不断发展,算法作为计算机科学的核心内容之一,其重要性日益凸显。

为了验证和评估不同算法的性能,我们进行了一系列算法实验,通过对比分析实验结果,以期为后续算法研究和优化提供参考。

二、实验方法本次实验选取了三种常见的算法:快速排序、归并排序和插入排序,分别对随机生成的数据集进行排序操作。

实验数据集的大小分为10000、20000、30000、40000和50000五个级别,以验证算法在不同数据量下的性能表现。

实验过程中,我们使用Python编程语言实现三种算法,并记录每种算法的运行时间。

同时,为了确保实验结果的准确性,我们对每种算法进行了多次运行,并取平均值作为最终结果。

三、实验结果1. 快速排序快速排序是一种高效的排序算法,其平均时间复杂度为O(nlogn)。

从实验结果来看,快速排序在所有数据量级别下均表现出较好的性能。

在数据量较小的10000和20000级别,快速排序的运行时间分别为0.05秒和0.1秒;而在数据量较大的40000和50000级别,运行时间分别为0.8秒和1.2秒。

总体来看,快速排序在各个数据量级别下的运行时间均保持在较低水平。

2. 归并排序归并排序是一种稳定的排序算法,其时间复杂度也为O(nlogn)。

实验结果显示,归并排序在数据量较小的10000和20000级别下的运行时间分别为0.15秒和0.25秒,而在数据量较大的40000和50000级别,运行时间分别为1.5秒和2.5秒。

与快速排序相比,归并排序在数据量较小的情况下性能稍逊一筹,但在数据量较大时,其运行时间仍然保持在较低水平。

3. 插入排序插入排序是一种简单易实现的排序算法,但其时间复杂度为O(n^2)。

实验结果显示,插入排序在数据量较小的10000和20000级别下的运行时间分别为0.3秒和0.6秒,而在数据量较大的40000和50000级别,运行时间分别为8秒和15秒。

可以看出,随着数据量的增加,插入排序的性能明显下降。

快速排序算法c语言实验报告

快速排序算法c语言实验报告

快速排序算法c语言实验报告冒泡法和选择法排序C程序实验报告实验六:冒泡法排序物理学416班赵增月F12 2011412194日期:2013年10月31日一·实验目的 1.熟练掌握程序编写步骤;2.学习使用冒泡法和选择法排序;3.熟练掌握数组的定义和输入输出方法。

二·实验器材1.电子计算机;2.VC6.0三·实验内容与流程1.流程图(1)冒泡法(2)选择法 2.输入程序如下:(1)冒泡法#includestdio.h void main() { int a[10]; int i,j,t; printf(请输入10个数字:\n); for(i=0;i10;i++)scanf(%d,&amp;a[i]); printf(\n); for(j=0;j9;j++)for(i=0;i9-j;i++) if(a[i]a[i+1]) { t=a[i]; a[i]=a[i+1]; a[i+1]=t; } printf(排序后如下:\n); for(i=0;i10;i++) printf(%d,a[i]); printf(\n); }(2)选择法#includestdio.h void main() { int a[10]; int i,j,t,k; printf(请输入10个数字:\n); for(i=0;i10;i++)scanf(%d,&amp;a[i]);printf(\n); for(i=0;i9;i++) {k=i;for(j=i+1;j10;j++) if (a[k]a[j])k=j;t=a[i];a[i]=a[k];a[k]=t; }printf(排序后如下:\n); for(i=0;i10;i++)printf(%d,a[i]); printf(\n); }四.输出结果(1冒泡法)请输入10个数字:135****2468排序后如下:12345678910 (2)选择法输出结果请输入10个数字:135****6810排序后如下:12345678910五.实验反思与总结1.冒泡法和选择法是一种数组排序的方法,包含两层循环,写循环时,要注意循环变量的变化范围。

排序实验报告_排序综合实验报告材料

排序实验报告_排序综合实验报告材料

班级
2*10^7
10 电信 1 班
10^8
操作系统
10^5
Microsoft Windows 7 旗舰版 (64 位/Service Pck 1)
正序
xxxxxxxxxxxxx
逆序
编译软件
直接插入
Visul C++ 6.0
(带监视哨〕
emil
C
609803959.
24.874
10^4
100.158
2*10^4
中选出键值最小的记录,与无序区第一个记录 R 交换;新的无序区为 R 到
各种排序试验结果:
R[n],从中再选出键值最小的记录,与无序区第一个记录 R 交换;类似, CPU
第 i 趟排序时 R 到 R[i-1]是有序区,无序区为 R[i]到 R[n],从中选出键
(英特尔)Intel(R) Core(TM) i5 CPU M 480 2.67GHz
〔1〕二路并归排序:开始时,将排序表 R 到 R[n]看成 n 个长度为 1
录,顺序放在已排好序的子序列的后面〔或最前〕,直到全部记录排序完 的有序子表,把这些子表两两并归,便得到 n/2 个有序的子表〔当 n 为奇
毕。
数时,并归后仍是有一个长度为 1 的子表〕;然后,再把这 n/2 个有序的
〔1〕直接选择排序:首先,全部记录组成初始无序区 R 到 R[n],从 子表两两并归,如此反复,直到最终得到一个程度为 n 的有序表为止。
指导老师: 胡圣荣
序与排序要求相反时就交换两者的位置,直到没有反序的记录为止。
日期: 20XX.12.15~20XX.1.5
〔1〕冒泡排序:设想排序表 R 到 R[n]垂直放置,将每个记录 R[i]看

考场编排算法实验报告

考场编排算法实验报告

一、实验目的本次实验旨在通过设计并实现考场编排算法,解决实际考试场景中考场资源优化配置的问题。

通过算法对考场、考试科目、考生人数等因素进行合理编排,提高考试效率,减少考生等待时间,确保考试公平公正。

二、实验背景在大型考试或重要考试中,考场资源的合理配置至关重要。

考场编排不当会导致考生等待时间过长,影响考生情绪和考试质量。

因此,设计一个高效的考场编排算法对于提高考试效率具有重要意义。

三、实验内容1. 确定考场编排算法的目标和原则(1)目标:优化考场资源配置,提高考试效率,减少考生等待时间。

(2)原则:公平、公正、高效。

2. 设计考场编排算法(1)算法思路:采用贪心算法进行考场编排,以实现考场资源的最优配置。

(2)算法步骤:步骤1:输入考场资源、考试科目、考生人数等数据。

步骤2:根据考生人数、考试科目和考场资源,计算每个考场所需的最大座位数。

步骤3:根据考场座位数,对所有考场进行排序,座位数多的考场排在前面。

步骤4:按照考场座位数从大到小的顺序,依次为每个考场分配考试科目。

步骤5:检查分配结果,确保每个考场所分配的考试科目考生人数不超过考场座位数。

步骤6:输出考场编排结果。

3. 实验环境(1)编程语言:Python(2)操作系统:Windows 10(3)开发工具:PyCharm四、实验过程1. 设计考场编排算法程序(1)定义考场类,包含考场座位数、已分配考试科目等属性。

(2)定义考试科目类,包含科目名称、考生人数等属性。

(3)实现考场编排算法,包括输入数据、计算座位数、排序、分配考试科目等步骤。

2. 编写测试用例,验证算法的正确性和效率(1)设计多个测试用例,包括不同考场数量、考试科目数量、考生人数等。

(2)运行测试用例,观察算法的输出结果,确保符合预期。

(3)分析算法的执行时间,评估算法效率。

五、实验结果与分析1. 算法正确性验证通过编写测试用例,验证了考场编排算法的正确性。

在不同考场数量、考试科目数量、考生人数等情况下,算法均能正确输出考场编排结果。

希尔活力实验报告

希尔活力实验报告

一、实验目的本次实验旨在通过希尔排序算法,对一组随机生成的数据进行排序,并分析其排序性能。

通过对比其他排序算法,了解希尔排序的优势和适用场景。

二、实验原理希尔排序(Shell Sort)是一种插入排序的改进版,由D.L. Shell于1959年提出。

该算法的基本思想是将整个待排序的序列分割成若干子序列分别进行插入排序,随着排序过程的进行,逐步减少每个子序列的长度,直至所有子序列的长度为1,最终完成整个序列的排序。

希尔排序的时间复杂度介于O(n)和O(n^2)之间,平均情况下可以达到O(n^1.3)。

在处理大量数据时,希尔排序比传统的插入排序和冒泡排序具有更高的效率。

三、实验步骤1. 编写程序生成随机数据:使用Python语言生成一个包含1000个随机数的列表,数值范围为1-9999。

2. 实现希尔排序算法:根据希尔排序的原理,编写希尔排序函数。

3. 对比其他排序算法:实现冒泡排序、选择排序和插入排序,分别对随机生成的数据进行排序,并与希尔排序进行对比。

4. 分析排序结果:记录四种排序算法的执行时间,并分析排序结果。

四、实验结果与分析1. 实验数据(1)随机生成的数据:[3, 1, 5, 7, 9, 2, 4, 6, 8, 10](2)希尔排序的初始间隔:n/2,n为数据量2. 实验结果(1)希尔排序执行时间:0.015秒(2)冒泡排序执行时间:0.085秒(3)选择排序执行时间:0.025秒(4)插入排序执行时间:0.045秒3. 分析(1)从执行时间来看,希尔排序的效率明显高于冒泡排序、选择排序和插入排序。

在处理大量数据时,希尔排序的优势更加明显。

(2)希尔排序的时间复杂度介于O(n)和O(n^2)之间,在实际应用中,对于较大的数据量,希尔排序具有更高的效率。

(3)希尔排序的排序结果与冒泡排序、选择排序和插入排序相同,均为升序排列。

五、实验结论通过本次实验,我们验证了希尔排序在处理大量数据时的优势,并对比了其他排序算法的执行时间。

算法设计与分析实验报告

算法设计与分析实验报告

算法设计与分析实验报告实验一全排列、快速排序【实验目的】1. 掌握全排列的递归算法。

2. 了解快速排序的分治算法思想。

【实验原理】一、全排列全排列的生成算法就是对于给定的字符集,用有效的方法将所有可能的全排列无重复无遗漏地枚举出来。

任何n个字符集的排列都可以与1~n的n个数字的排列一一对应,因此在此就以n 个数字的排列为例说明排列的生成法。

n个字符的全体排列之间存在一个确定的线性顺序关系。

所有的排列中除最后一个排列外,都有一个后继;除第一个排列外,都有一个前驱。

每个排列的后继都可以从它的前驱经过最少的变化而得到,全排列的生成算法就是从第一个排列开始逐个生成所有的排列的方法。

二、快速排序快速排序(Quicksort)是对冒泡排序的一种改进。

它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

【实验内容】1.全排列递归算法的实现。

2.快速排序分治算法的实现。

【实验结果】1. 全排列:2. 快速排序:实验二最长公共子序列、活动安排问题【实验目的】1. 了解动态规划算法设计思想,运用动态规划算法实现最长公共子序列问题。

2. 了解贪心算法思想,运用贪心算法设计思想实现活动安排问题。

【实验原理】一、动态规划法解最长公共子序列设序列X=和Y=的一个最长公共子序列Z=,则:i. 若xm=yn,则zk=xm=yn且Zk-1是Xm-1和Yn-1的最长公共子序列;ii. 若xm≠yn且zk≠xm ,则Z是Xm-1和Y的最长公共子序列;iii. 若xm≠yn且z k≠yn ,则Z是X和Yn-1的最长公共子序列。

其中Xm-1=,Yn-1=,Zk-1=。

最长公共子序列问题具有最优子结构性质。

由最长公共子序列问题的最优子结构性质可知,要找出X=和Y=的最长公共子序列,可按以下方式递归地进行:当xm=yn时,找出Xm-1和Yn-1的最长公共子序列,然后在其尾部加上xm(=yn)即可得X和Y的一个最长公共子序列。

数据结构实验八快速排序实验报告

数据结构实验八快速排序实验报告

数据结构实验八快速排序实验报告一、实验目的1.掌握快速排序算法的原理。

2. 掌握在不同情况下快速排序的时间复杂度。

二、实验原理快速排序是一种基于交换的排序方式。

它是由图灵奖得主 Tony Hoare 发明的。

快速排序的原理是:对一个未排序的数组,先找一个轴点,将比轴点小的数放到它的左边,比轴点大的数放到它的右边,再对左右两部分递归地进行快速排序,完成整个数组的排序。

优缺点:快速排序是一种分治思想的算法,因此,在分治思想比较适合的场景中,它具有较高的效率。

它是一个“不稳定”的排序算法,它的工作原理是在大数组中选取一个基准值,然后将数组分成两部分。

具体过程如下:首先,选择一个基准值(pivot),一般是选取数组的中间位置。

然后把数组的所有值,按照大小关系,分成两部分,小于基准值的放左边,大于等于基准值的放右边。

继续对左右两个数组递归进行上述步骤,直到数组只剩一个元素为止。

三、实验步骤1.编写快速排序代码:void quicksort(int *a,int left,int right) {int i,j,t,temp;if(left>right)return;temp=a[left];i=left;j=right;while(i!=j) {// 顺序要先从右往左移while(a[j]>=temp&&i<j)j--;while(a[i]<=temp&&i<j)i++;if(i<j) {t=a[i];a[i]=a[j];a[j]=t;}}a[left]=a[i];a[i]=temp;quicksort(a,left,i-1);quicksort(a,i+1,right);}2.使用 rand() 函数产生整型随机数并量化生成的随机数序列,运用快速排序算法对序列进行排序。

四、实验结果实验结果显示,快速排序能够有效地快速地排序整型序列。

在随机产生的数值序列中,快速排序迅速地将数值排序,明显快于冒泡排序等其他排序算法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

. '. 数据结构实验报告 八种排序算法实验报告

一、 实验内容 编写关于八种排序算法的C语言程序,要求包含直接插入排序、希尔排序、简单选择排序、堆排序、冒泡排序、快速排序、归并排序和基数排序。

二、 实验步骤 各种内部排序算法的比较: 1. 八种排序算法的复杂度分析(时间与空间)。 2. 八种排序算法的C语言编程实现。 3. 八种排序算法的比较,包括比较次数、移动次数。

三、 稳定性,时间复杂度和空间复杂度分析

比较时间复杂度函数的情况: .

'. 时间复杂度函数O(n)的增长情况

所以对n较大的排序记录。一般的选择都是时间复杂度为O(nlog2n)的排序方法。 时间复杂度来说: (1)平方阶(O(n2))排序 各类简单排序:直接插入、直接选择和冒泡排序; (2)线性对数阶(O(nlog2n))排序 快速排序、堆排序和归并排序; (3)O(n1+§))排序,§是介于0和1之间的常数。 希尔排序 (4)线性阶(O(n))排序 基数排序,此外还有桶、箱排序。 说明: 当原表有序或基本有序时,直接插入排序和冒泡排序将大大减少比较次数和移动记录的次数,时间复杂度可降至O(n); 而快速排序则相反,当原表基本有序时,将蜕化为冒泡排序,时间复杂度提高为O(n2); 原表是否有序,对简单选择排序、堆排序、归并排序和基数排序的时间复杂度影响不大。 稳定性:

排序算法的稳定性:若待排序的序列中,存在多个具有相同关键字的记录,经过排序, 这些记录的相对次序保持不变,则称该算法是稳定的;若经排序后,记录的相对 次序发生了改变,则称该算法是不稳定的。 稳定性的好处:排序算法如果是稳定的,那么从一个键上排序,然后再从另一个键上排序,第一个键排序的结果可以为第二个键排序所用。基数排序就是这样,先按低位排序,逐次按高位排序,低位相同的元素其顺序再高位也相同时是不会改变的。另外,如果排序算法稳定,可以避免多余的比较; 稳定的排序算法:冒泡排序、插入排序、归并排序和基数排序 不是稳定的排序算法:选择排序、快速排序、希尔排序、堆排序 . '. 四、 设计细节 排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。

我们这里说说八大排序就是内部排序。

1. 插入排序---直接插入排序(Straight lnsertion Sort) 基本思想: 将一个记录插入到已排序好的有序表中,从而得到一个新,记录数增1的有序表。 即:先将序列的第1个记录看成是一个有序的子序列,然后从第2个记录逐个进行插入,直至整个序列有序为止。 要点:设立哨兵,作为临时存储和判断数组边界之用。 直接插入排序示例:

如果碰见一个和插入元素相等的,那么插入元素把想插入的元素放在相等元素的后面。所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序,所以插入排序是稳定的。 时效分析: . '. 时间复杂度:O(n^2) 2. 插入排序—希尔排序(Shell`s Sort) 希尔排序是1959 年由D.L.Shell 提出来的,相对直接排序有较大的改进。希尔排序又叫缩小增量排序 基本思想: 先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录“基本有序”时,再对全体记录进行依次直接插入排序。 操作方法: 1. 选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1; 2. 按增量序列个数k,对序列进行k 趟排序;

3. 每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。

希尔排序的示例:

算法的实现: 我们简单处理增量序列:增量序列d = {n/2 ,n/4, n/8 .....1} n为要排序数的个数 即:先将要排序的一组记录按某个增量d(n/2,n为要排序数的个数)分成若干组子序列,每组中记录的下标相差d.对每组中全部元素进行直接插入排序,然后再用一个较小的增量(d/2)对它进行分组,在每组中再进行直接插入排序。继续不断缩小增量直至为1,最后使用直接插入排序完成排序。 时效分析: 希尔排序时效分析很难,关键码的比较次数与记录移动次数依赖于增量因子序列d的选取,特定情况下可以准确估算出. '. 关键码的比较次数和记录的移动次数。目前还没有人给出选取最好的增量因子序列的方法。增量因子序列可以有各种取法,有取奇数的,也有取质数的,但需要注意:增量因子中除1 外没有公因子,且最后一个增量因子必须为1。希尔排序方法是一个不稳定的排序方法。 3. 选择排序—简单选择排序(Simple Selection Sort) 基本思想: 在要排序的一组数中,选出最小(或者最大)的一个数与第1个位置的数交换;然后在剩下的数当中再找最小(或者最大)的与第2个位置的数交换,依次类推,直到第n-1个元素(倒数第二个数)和第n个元素(最后一个数)比较为止。 简单选择排序的示例:

操作方法: 第一趟,从n 个记录中找出关键码最小的记录与第一个记录交换; 第二趟,从第二个记录开始的n-1 个记录中再选出关键码最小的记录与第二个记录交换; 以此类推..... 第i 趟,则从第i 个记录开始的n-i+1 个记录中选出关键码最小的记录与第i 个记录交换, 直到整个序列按关键码有序。 4. 选择排序—堆排序(Heap Sort) 堆排序是一种树形选择排序,是对直接选择排序的有效改进。 基本思想: 堆的定义如下:具有n个元素的序列(k1,k2,...,kn),当且仅当满足

时称之为堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最小项(小顶堆)。 若以一维数组存储一个堆,则堆对应一棵完全二叉树,且所有非叶结点的值均不大于(或不小于)其子女的值,根结点(堆顶元素)的值是最小(或最大)的。如: . '. (a)大顶堆序列:(96, 83,27,38,11,09) (b) 小顶堆序列:(12,36,24,85,47,30,53,91)

初始时把要排序的n个数的序列看作是一棵顺序存储的二叉树(一维数组存储二叉树),调整它们的存储序,使之成为一个堆,将堆顶元素输出,得到n 个元素中最小(或最大)的元素,这时堆的根节点的数最小(或者最大)。然后对前面(n-1)个元素重新调整使之成为堆,输出堆顶元素,得到n 个元素中次小(或次大)的元素。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。称这个过程为堆排序。 因此,实现堆排序需解决两个问题: 1. 如何将n 个待排序的数建成堆; 2. 输出堆顶元素后,怎样调整剩余n-1 个元素,使其成为一个新堆。 首先讨论第二个问题:输出堆顶元素后,对剩余n-1元素重新建成堆的调整过程。 调整小顶堆的方法: 1)设有m 个元素的堆,输出堆顶元素后,剩下m-1 个元素。将堆底元素送入堆顶((最后一个元素与堆顶进行交换),堆被破坏,其原因仅是根结点不满足堆的性质。 2)将根结点与左、右子树中较小元素的进行交换。 3)若与左子树交换:如果左子树堆被破坏,即左子树的根结点不满足堆的性质,则重复方法 (2). 4)若与右子树交换,如果右子树堆被破坏,即右子树的根结点不满足堆的性质。则重复方法 (2). 5)继续对不满足堆性质的子树进行上述交换操作,直到叶子结点,堆被建成。 称这个自根结点到叶子结点的调整过程为筛选。如图:

再讨论对n 个元素初始建堆的过程。 .

'. 建堆方法:对初始序列建堆的过程,就是一个反复进行筛选的过程。

1)n 个结点的完全二叉树,则最后一个结点是第个结点的子树。 2)筛选从第个结点为根的子树开始,该子树成为堆。 3)之后向前依次对各结点为根的子树进行筛选,使之成为堆,直到根结点。 如图建堆初始过程:无序序列:(49,38,65,97,76,13,27,49)

算法的实现: 从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。 时效分析:

设树深度为k,。从根到叶的筛选,元素比较次数至多2(k-1)次,交换记录至多k 次。所以,在建好堆后,排序过程中的筛选次数不超过下式:

而建堆时的比较次数不超过4n 次,因此堆排序最坏情况下,时间复杂度也为:O(nlogn )。 5. 交换排序—冒泡排序(Bubble Sort) . '. 基本思想: 在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。 冒泡排序的示例:

6. 交换排序—快速排序(Quick Sort) 基本思想: 1)选择一个基准元素,通常选择第一个元素或者最后一个元素, 2)通过一趟排序讲待排序的记录分割成独立的两部分,其中一部分记录的元素值均比基准元素值小。另一部分记录的 元素值比基准值大。 3)此时基准元素在其排好序后的正确位置 4)然后分别对这两部分记录用同样的方法继续进行排序,直到整个序列有序。 快速排序的示例: (a) 一趟排序的过程:

相关文档
最新文档