高考数学函数模型及其应用

合集下载

高考文科数学《函数模型及其应用》课件

高考文科数学《函数模型及其应用》课件
121n0≥1232,1n0≤32,解得 n≤15.
故今后最多还能砍伐 15 年.
点 拨: 此类增长率问题,在实际问题中常可以用指数型函数模型 y=N(1+p)x(其 中 N 是基础数,p 为增长率,x 为时间)和幂型函数模型 y=a(1+x)n(其中 a 为基
础数,x 为增长率,n 为时间)的形式表示.解题时,往往用到对数运算.
直到达到规定人数 75 人为止.每团乘飞机,旅行社需付给航空公司包机 费 15 000 元.
(1)写出飞机票的价格关于人数的函数; (2)每团人数为多少时,旅行社可获得最大利润?
解:(1)设旅游团人数为 x 人,由题得 0<x≤75,飞机票价格为 y 元, 则 y=990000,-010<(x≤x-303,0),30<x≤75,
某纯净水制造厂在净化水过程中,每增加一次过滤可减少水 中杂质 20%,要使水中杂质减少到原来的 10%以下,则至少需过滤的次数
为________.(参考数据:lg2≈0.301 0)
解:设过滤次数为 x(x∈N*),原有杂质为 a,则 a(1-20%)x<a·10%,
所以 x>1-13lg2≈10.3,即至少需要过滤 11 次.故填 11.
当且仅当 x=40 x000,即 x=200 时取等号.故选 A.
(教材改编题)某家具的标价为 132 元,若降价以九折出售(即优惠 10%),
仍可获利 10%(相对进货价),则该家具的进货价是( )
A.105 元
B.106 元
C.108 元
D.118 元
解:设进货价为 a 元,由题意知 132×(1-10%)-a=10%·a, 解得 a=108.故选 C.
单调____ 函数
相对平稳

高考数学总复习 第三单元 第六节 函数模型及其应用课件

高考数学总复习 第三单元 第六节 函数模型及其应用课件
(1)当一次订购量为多少个时,零件的实际出厂单价 恰降为51元?
(2)设一次订购量为x个,零件的实际出厂单价为P元, 写出函数P=f(x)的表达式.
分析 根据题意,每个零件的利润随订购量的多少而 变化,所以要按订购量的范围不同,分别确定总利润 的表达式,即分段表达,建立目标函数.依据函数解 析式,对各个问题分别求解.
次函数模型、二次函数模型、正比例函数模型、反 比例函数模型等.
(5)“对勾”函数模型:形如 f (x) x a (a>0,x
x
>0)的函数模型,在现实生活中有着广泛的应用, 常利用“基本不等式”求最值,有时也利用导数研 究其单调性来求最值. 2.解决函数应用问题的基本步骤 (1)审题:弄清题意,分析条件和结论,理顺数量 关系,恰当选择数学模型;
当 x 550 时, P 51,所以
60 , (0 x 100 ),
P
f (x)
62
x (, 100 x 550 ), 50 51(, x 550 ).
规律总结 段函数是现实生活中最为常见的
一种函数模型.譬如,话费、个人所得税、出 租车费等.分段函数是一个函数,只不过自变 量的取值不同,函数表达式不同而已.构造函 数模型时,要注意依据问题的实际意义准确分 段,每段正确表述而且注意端点的归属.
所以当生产475台时,利润最大.
y=100×(1+1.2%)+100×(1+1.2%)×1.2%
100(11.2%2,)
•1、纪律是集体的面貌,集体的声音,集体的动作,集体的表情,集体的信念。 •2、知之者不如好之者,好之者不如乐之者。 •3、反思自我时展示了勇气,自我反思是一切思想的源泉。 •4、在教师手里操着幼年人的命运,便操着民族和人类的命运。一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。 •5、诚实比一切智谋更好,而且它是智谋的基本条件。 •6、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之失败。2022年1月2022/1/302022/1/302022/1/301/30/2022 •7、凡为教者必期于达到不须教。对人以诚信,人不欺我;对事以诚信,事无不成。2022/1/302022/1/30January 30, 2022 •8、教育者,非为已往,非为现在,而专为将来。2022/1/302022/1/302022/1/302022/1/30

2023届高考数学一轮复习讲义:第15讲 函数模型及其应用

2023届高考数学一轮复习讲义:第15讲 函数模型及其应用

第15讲函数模型及其应用➢考点1 利用函数图象刻画实际问题[名师点睛]判断函数图像与实际问题变化过程是否吻合的方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图像.(2)验证法:根据实际问题中两变量的变化快慢等特点,结合图像的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择符合实际情况的答案.[典例]1.如图,一高为H且装满水的鱼缸,其底部有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为T.若鱼缸水深为h时,水流出所用时间为t,则函数h=f(t)的图象大致是()2.(2022·泰州模拟)中国茶文化博大精深,茶水的口感与茶叶类型和水的温度有关.经验表明,某种绿茶用85 ℃的水泡制,再等到茶水温度降至60 ℃时饮用,可以产生最佳口感.为分析泡制一杯最佳口感茶水所需时间,某研究人员每隔1 min测量一次茶水的温度,根据所得数据做出如图所示的散点图.观察散点图的分布情况,下列哪个函数模型可以近似地刻画茶水温度y随时间x变化的规律()A.y=mx2+n(m>0)B.y=ma x+n(m>0,0<a<1)C.y=ma x+n(m>0,a>1)D.y=m log a x+n(m>0,a>0,a≠1)[举一反三]1.(2022·武汉模拟)在用计算机处理灰度图象(即俗称的黑白照片)时,将灰度分为256个等级,最暗的黑色用0表示,最亮的白色用255表示,中间的灰度根据其明暗渐变程度用0至255之间对应的数表示,这样可以给图象上的每个像素赋予一个“灰度值”.在处理有些较黑的图象时,为了增强较黑部分的对比度,可对图象上每个像素的灰度值进行转换,扩展低灰度级,压缩高灰度级,实现如下图所示的效果:则下列可以实现该功能的一种函数图象是()2.(2022·郑州质检)水池有两个相同的进水口和一个出水口,每个口进出水的速度如图甲、乙所示,某天0时到6时该水池的蓄水量如图丙所示,给出以下3个论断:①0时到3时只进水不出水; ②3时到4时不进水只出水; ③4时到5时不进水也不出水. 则一定正确的论断是________(填序号).3.(2022·武汉调研)为研究西南高寒山区一种常见树的生长周期中前10年的生长规律,统计显示,生长4年的树高为73米,如图所示的散点图,记录了样本树的生长时间t (年)与树高y (米)之间的关系.请你据此判断,在下列函数模型:①y =2t -a ;②y =a +log 2t ;③y =12t +a ;④y=t +a 中(其中a 为正的常数),生长年数与树高的关系拟合最好的是________(填写序号),估计该树生长8年后的树高为________米.➢考点2 已知函数模型解决实际问题[名师点睛]求解已知函数模型解决实际问题的关键(1)认清所给函数模型,弄清哪些量为待定系数. (2)根据已知利用待定系数法,确定模型中的待定系数.(3)利用该函数模型,借助函数的性质、导数等求解实际问题,并进行检验. 1.(2022·江苏·高三阶段练习)新冠肺炎疫情防控中,核酸检测是新冠肺炎确诊的有效快捷手段.某医院在成为新冠肺炎核酸检测定点医院并开展检测工作的第n 天,每个检测对象从接受检测到检测报告生成平均耗时()t n (单位:小时)大致服从的关系为00()n N t n n N <=≥(0t ,0N 为常数).已知第16天检测过程平均耗时为16小时,第64天和第67天检测过程平均耗时均为8小时,那么可得到第49天检测过程平均耗时大致为__________小时. 2.(2022·浙江·高三专题练习)某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()()253,025050-,251x x W x x x ⎧+≤≤⎪=⎨<≤⎪+⎩,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x 元.已知这种水果的市场售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润为()f x (单位:元). (1)求()f x 的函数关系式;(2)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?[举一反三]1.(2022·广东茂名·二模)双碳,即碳达峰与碳中和的简称,2020年9月中国明确提出2030年实现“碳达峰”,2060年实现“碳中和”.为了实现这一目标,中国加大了电动汽车的研究与推广,到2060年,纯电动汽车在整体汽车中的渗透率有望超过70%,新型动力电池随之也迎来了蓬勃发展的机遇.Peukert 于1898年提出蓄电池的容量C (单位:A·h ),放电时间t (单位:h )与放电电流I (单位:A )之间关系的经验公式n C I t =⋅,其中32log 2n =为Peukert 常数.在电池容量不变的条件下,当放电电流10A I =时,放电时间57h t =,则当放电电流15A I =,放电时间为( )A .28hB .28.5hC .29hD .29.5h2.(2022·全国·高三专题练习)为了预防某种病毒,某商场需要通过喷洒药物对内部空间进行全面消毒.出于对顾客身体健康的考虑,相关部门规定空气中这种药物的浓度不超过0.25毫克/立方米时,顾客方可进入商场.已知从喷洒药物开始,商场内部的药物浓度y (毫克/立方米)与时间t (分钟)之间的函数关系为100.1,0101,102ta t t y t -≤≤⎧⎪=⎨⎛⎫>⎪ ⎪⎝⎭⎩,函数的图象如图所示.如果商场规定9:30顾客可以进入商场,那么开始喷洒药物的时间最迟是( )A .9:00B .8:40C .8:30D .8:003.(2022·福建福州·三模)某地在20年间经济高质量增长,GDP 的值P (单位,亿元)与时间t (单位:年)之间的关系为()()0110%tP t P =+,其中0P 为0=t 时的P 值.假定02P =,那么在10t =时,GDP 增长的速度大约是___________.(单位:亿元/年,精确到0.01亿元/年)注:101.1 2.59≈,当x 取很小的正数时,()ln 1x x +≈4.(2022·上海交大附中高三开学考试)2020年11月5日至10日,第三届中国国际进口博览会在上海举行,经过三年发展,进博会让展品变商品,让展商变投资商,交流创意和理念,联通中国和世界,国际采购、投资促进、人文交流,开放合作四大平台作用不断凸显,成为全球共享的国际公共产品.在消费品展区,某企业带来了一款新型节能环保产品参展,并决定大量投放市场.已知该产品年固定研发成本为150万元,每生产1万台需另投入380万元.设该企业一年内生产该产品x 万台且全部售完,每万台的销售收入为()R x 万元,且25002,020()21406250370,20x x R x x x x -<≤⎧⎪=⎨+->⎪⎩. (1)写出年利润S (万元)关于年产量x (万台)的函数解析式;(利润 = 销售收入—成本) (2)当年产量为多少万台时,该企业获得的年利润最大?并求出最大年利润.➢考点3 构建函数模型解决实际问题1.(2022·全国·高三专题练习)A,B两城相距100km,在两城之间距A城x(km)处建一核电站给A,B两城供电,为保证城市安全,核电站距城市距离不得小于10km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A城供电量为每月20亿度,B城供电量为每月10亿度.(1)求x的取值范围;(2)把月供电总费用y表示成x的函数;(3)核电站建在距A城多远,才能使供电总费用y最少?2.(2022·全国·高三专题练习)杭州地铁项目正在如火如荼的进行中,通车后将给市民出行带来便利,已知某条线路通车后,列车的发车时间间隔t (单位:分钟)满足220t ≤≤,经市场调研测算,列车载客量与发车时间间隔t 相关,当1020t ≤≤时列车为满载状态,载客量为500人,当210t ≤<时,载客量会减少,减少的人数与(10)t -的平方成正比,且发车时间间隔为2分钟时的载客量为372人,记列车载客量为()p t .(Ⅰ)求()p t 的表达式,并求当发车时间间隔为5分钟时,列车的载客量; (Ⅱ)若该线路每分钟的净收益为8()2656()60p t Q t t-=-(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大,并求出最大值.[举一反三]1.(2022·福建龙岩·模拟预测)进入4月份以来,为了支援上海抗击疫情,A 地组织物流企业的汽车运输队从高速公路向上海运送抗疫物资.已知A 地距离上海500km ,设车队从A 地匀速行驶到上海,高速公路限速为60km/h 110~km/h .已知车队每小时运输成本(以元为单位)由可变部分和固定部分组成,可变部分与速度v km/h 的立方成正比,比例系数为b ,固定部分为a 元.若1200b =,410a =,为了使全程运输成本最低,车队速度v 应为( ) A .80km/hB .90km/hC .100km/hD .110km/h2.(2022·福建·三模)深度学习是人工智能的一种具有代表性的实现方法,它是以神经网络为出发点的.在神经网络优化中,指数衰减的学习率模型为00G GL L D =,其中L 表示每一轮优化时使用的学习率,0L 表示初始学习率,D 表示衰减系数,G 表示训练迭代轮数,0G 表示衰减速度.已知某个指数衰减的学习率模型的初始学习率为0.5,衰减速度为22,且当训练迭代轮数为22时,学习率衰减为0.45,则学习率衰减到0.05以下(不含0.05)所需的训练迭代轮数至少为( )(参考数据:lg20.3010≈,lg30.4771≈) A .11B .22C .227D .4813.(2022·全国·高三专题练习)在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为( )m .A .400B .12C .20D .304.(2022·全国·高三专题练习)单位时间内通过道路上指定断面的车辆数被称为“道路容量”,与道路设施、交通服务、环境、气候等诸多条件相关.假设某条道路一小时通过的车辆数N 满足关系2010000.70.3vN v v d =++,其中0d 为安全距离,v 为车速()m /s .当安全距离0d 取30m 时,该道路一小时“道路容量”的最大值约为( )A.135 B.149C.165 D.1955.(2022·北京西城·一模)调查显示,垃圾分类投放可以带来约0.34元/千克的经济效益.为激励居民垃圾分类,某市准备给每个家庭发放一张积分卡,每分类投放1kg积分1分,若一个家庭一个月内垃圾分类投放总量不低于100kg,则额外奖励x分(x为正整数).月底积分会按照0.1元/分进行自动兑换.①当10x=时,若某家庭某月产生120kg生活垃圾,该家庭该月积分卡能兑换_____元;②为了保证每个家庭每月积分卡兑换的金额均不超过当月垃圾分类投放带来的收益的40%,则x的最大值为___________.6.(2022·重庆·模拟预测)我国的酒驾标准是指车辆驾驶员血液中的酒精含量大于或者等于20mg/100ml,已知一驾驶员某次饮酒后体内每100ml血液中的酒精含量y(单位:mg)与时间x(单位:h)的关系是:当113x<<时,227010801111y x x=-+;当113x≥时,110yx=,那么该驾驶员在饮酒后至少要经过__________h才可驾车.7.(2022·全国·高三专题练习)某景区套票原价300元/人,如果多名游客组团购买套票,则有如下两种优惠方案供选择:方案一:若人数不低于10,则票价打9折;若人数不低于50,则票价打8折;若人数不低于100,则票价打7折.不重复打折.方案二:按原价计算,总金额每满5000元减1000元.已知一个旅游团有47名游客,若可以两种方案搭配使用,则这个旅游团购票总费用的最小值为___________元第15讲函数模型及其应用➢考点1 利用函数图象刻画实际问题[名师点睛]判断函数图像与实际问题变化过程是否吻合的方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图像.(2)验证法:根据实际问题中两变量的变化快慢等特点,结合图像的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择符合实际情况的答案.[典例]1.如图,一高为H且装满水的鱼缸,其底部有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为T.若鱼缸水深为h时,水流出所用时间为t,则函数h=f(t)的图象大致是()答案 B解析水匀速流出,所以鱼缸水深h先降低快,中间降低缓慢,最后降低速度又越来越快.2.(2022·泰州模拟)中国茶文化博大精深,茶水的口感与茶叶类型和水的温度有关.经验表明,某种绿茶用85 ℃的水泡制,再等到茶水温度降至60 ℃时饮用,可以产生最佳口感.为分析泡制一杯最佳口感茶水所需时间,某研究人员每隔1 min测量一次茶水的温度,根据所得数据做出如图所示的散点图.观察散点图的分布情况,下列哪个函数模型可以近似地刻画茶水温度y随时间x变化的规律()A.y=mx2+n(m>0)B.y=ma x+n(m>0,0<a<1)C.y=ma x+n(m>0,a>1)D.y=m log a x+n(m>0,a>0,a≠1)答案 B解析由函数图象可知符合条件的只有指数函数模型,并且m>0,0<a<1.[举一反三]1.(2022·武汉模拟)在用计算机处理灰度图象(即俗称的黑白照片)时,将灰度分为256个等级,最暗的黑色用0表示,最亮的白色用255表示,中间的灰度根据其明暗渐变程度用0至255之间对应的数表示,这样可以给图象上的每个像素赋予一个“灰度值”.在处理有些较黑的图象时,为了增强较黑部分的对比度,可对图象上每个像素的灰度值进行转换,扩展低灰度级,压缩高灰度级,实现如下图所示的效果:则下列可以实现该功能的一种函数图象是()答案 A解析根据图片处理过程中图象上每个像素的灰度值转换的规则可知,相对于原图的灰度值,处理后的图象上每个像素的灰度值增加,所以图象在y=x上方.结合选项只有A选项能够较好的达到目的.2.(2022·郑州质检)水池有两个相同的进水口和一个出水口,每个口进出水的速度如图甲、乙所示,某天0时到6时该水池的蓄水量如图丙所示,给出以下3个论断:①0时到3时只进水不出水; ②3时到4时不进水只出水; ③4时到5时不进水也不出水. 则一定正确的论断是________(填序号). 答案 ①解析 由甲、乙、丙图可得进水速度为1,出水速度为2,结合丙图中直线的斜率可知,只进水不出水时,蓄水量增加的速度是2,故①正确; 不进只出水时,蓄水量减少的速度为2,故②不正确;两个进水,一个出水时,蓄水量减少的速度也是0,故③不正确.3.(2022·武汉调研)为研究西南高寒山区一种常见树的生长周期中前10年的生长规律,统计显示,生长4年的树高为73米,如图所示的散点图,记录了样本树的生长时间t (年)与树高y (米)之间的关系.请你据此判断,在下列函数模型:①y =2t -a ;②y =a +log 2t ;③y =12t +a ;④y=t +a 中(其中a 为正的常数),生长年数与树高的关系拟合最好的是________(填写序号),估计该树生长8年后的树高为________米.答案 ②103解析 由散点图的走势,知模型①不合适.曲线过点⎝⎛⎭⎫4,73,则后三个模型的解析式分别为②y =13+log 2t ;③y =12t +13;④y =t +13,当t =1时,代入④中,得y =43,与图不符,易知拟合最好的是②.将t =8代入②式,得y =13+log 28=103(米).➢考点2 已知函数模型解决实际问题[名师点睛]求解已知函数模型解决实际问题的关键(1)认清所给函数模型,弄清哪些量为待定系数.1.(2022·江苏·高三阶段练习)新冠肺炎疫情防控中,核酸检测是新冠肺炎确诊的有效快捷手段.某医院在成为新冠肺炎核酸检测定点医院并开展检测工作的第n 天,每个检测对象从接受检测到检测报告生成平均耗时()tn (单位:小时)大致服从的关系为00()n N t n n N <=≥(0t ,0N 为常数).已知第16天检测过程平均耗时为16小时,第64天和第67天检测过程平均耗时均为8小时,那么可得到第49天检测过程平均耗时大致为__________小时. 【答案】647【解析】由第64天和第67天检测过程平均耗时均为8小时知,016N >, 16=,解得064t =.8,解得064N =,所以64()8,64n t n n <=≥⎩,所以当49n =时,64(49)7t =. 故答案为:6472.(2022·浙江·高三专题练习)某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()()253,025050-,251x x W x x x ⎧+≤≤⎪=⎨<≤⎪+⎩,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x 元.已知这种水果的市场售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润为()f x (单位:元). (1)求()f x 的函数关系式;(2)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少? 【解】(1)由已知()()()1520101530f x W x x x W x x =--=-()22155330,02,7530225,02,75050750-30,2 5.1550-)30,2511x x x x x x x x x x x x ⎧⨯+-≤≤⎧-+≤≤⎪⎪==⎨⎨-<≤⨯-<≤⎪⎪+⎩+⎩( (2)解:由(1)得()()22175222,02,7530225,02,5=750750-30,2 5.25780301,2 5.11x x x x x f x x x x x x x ⎧⎛⎫-+≤≤⎧-+≤≤⎪⎪⎪⎪⎝⎭=⎨⎨-<≤⎡⎤⎪⎪-++<≤+⎩⎢⎥⎪+⎣⎦⎩当02x ≤≤时,()()max 2465f x f ==;当25x <≤时,()()25780301780304801f x x x ⎡⎤=-++≤-⨯=⎢⎥+⎣⎦ 当且仅当2511x x=++时,即4x =时等号成立. 因为465480<,所以当4x =时,()max 480f x =.∴当施用肥料为4千克时,种植该果树获得的最大利润是480元.[举一反三]1.(2022·广东茂名·二模)双碳,即碳达峰与碳中和的简称,2020年9月中国明确提出2030年实现“碳达峰”,2060年实现“碳中和”.为了实现这一目标,中国加大了电动汽车的研究与推广,到2060年,纯电动汽车在整体汽车中的渗透率有望超过70%,新型动力电池随之也迎来了蓬勃发展的机遇.Peukert 于1898年提出蓄电池的容量C (单位:A·h ),放电时间t (单位:h )与放电电流I (单位:A )之间关系的经验公式n C I t =⋅,其中32log 2n =为Peukert 常数.在电池容量不变的条件下,当放电电流10A I =时,放电时间57h t =,则当放电电流15A I =,放电时间为( )A .28hB .28.5hC .29hD .29.5h【答案】B【解析】解:根据题意可得5710n C =⋅,则当15A I =时,571015n n t ⋅=⋅,所以32231log 2log 222257575728.5h 333nt ⎛⎫⎛⎫⎛⎫=⋅=⋅=⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即当放电电流15A I =,放电时间为28.5h. 故选:B.2.(2022·全国·高三专题练习)为了预防某种病毒,某商场需要通过喷洒药物对内部空间进行全面消毒.出于对顾客身体健康的考虑,相关部门规定空气中这种药物的浓度不超过0.25毫克/立方米时,顾客方可进入商场.已知从喷洒药物开始,商场内部的药物浓度y (毫克/立方米)与时间t (分钟)之间的函数关系为100.1,0101,102t at t y t -≤≤⎧⎪=⎨⎛⎫>⎪ ⎪⎝⎭⎩,函数的图象如图所示.如果商场规定9:30顾客可以进入商场,那么开始喷洒药物的时间最迟是( )A .9:00B .8:40C .8:30D .8:00【答案】A【解析】根据函数的图象,可得函数的图象过点(10,1), 代入函数的解析式,可得1121a-⎛⎫⎪⎝⎭=,解得1a =,所以1100.1,0101,102tt t y t -≤≤⎧⎪=⎨⎛⎫>⎪ ⎪⎝⎭⎩, 令0.25y ≤,可得0.10.25t ≤或11020.251t -⎛⎝≤⎫ ⎪⎭,解得0 2.5t <≤或30t ≥,所以如果商场规定9:30顾客可以进入商场,那么开始喷洒药物的时间最迟是9:00. 故选:A.3.(2022·福建福州·三模)某地在20年间经济高质量增长,GDP 的值P (单位,亿元)与时间t (单位:年)之间的关系为()()0110%tP t P =+,其中0P 为0=t 时的P 值.假定02P =,那么在10t =时,GDP 增长的速度大约是___________.(单位:亿元/年,精确到0.01亿元/年)注:101.1 2.59≈,当x 取很小的正数时,()ln 1x x +≈ 【答案】0.52【解析】由题可知()()2110%2 1.1tt P t =+=⨯,所以()2 1.1ln1.1tP t '=⨯,所以()10102 1.1ln1.12 2.590.10.5180.52P '=⨯≈⨯⨯=≈,即GDP 增长的速度大约是0.52. 故答案为:0.52.4.(2022·上海交大附中高三开学考试)2020年11月5日至10日,第三届中国国际进口博览会在上海举行,经过三年发展,进博会让展品变商品,让展商变投资商,交流创意和理念,联通中国和世界,国际采购、投资促进、人文交流,开放合作四大平台作用不断凸显,成为全球共享的国际公共产品.在消费品展区,某企业带来了一款新型节能环保产品参展,并决定大量投放市场.已知该产品年固定研发成本为150万元,每生产1万台需另投入380万元.设该企业一年内生产该产品x 万台且全部售完,每万台的销售收入为()R x 万元,且25002,020()21406250370,20x x R x x x x -<≤⎧⎪=⎨+->⎪⎩. (1)写出年利润S (万元)关于年产量x (万台)的函数解析式;(利润 = 销售收入—成本) (2)当年产量为多少万台时,该企业获得的年利润最大?并求出最大年利润. 【解】(1)当020x <≤时,()(380150)S xR x x =-+ 25002380150x x x =--- 22120150x x =-+-,当20x >时,()(380150)S xR x x =-+ 62503702140380150x x x=+--- 6250101990x x=--+, 所以年利润S (万元)关于年产量x (万台)的函数解析式为22120150,0206250101990,20x x x S x x x ⎧-+-<≤⎪=⎨--+>⎪⎩(2)当020x <≤时,2221201502(30)1650S x x x =-+-=--+, 所以函数S 在(0,20]上单调递增,所以当20x 时, S 取得最大值1450,当20x >时,62506250101990(10)1990S x x x x=--+=-++199050019901490≤-=-+=, 当且仅当625010x x=,即25x =时取等号,此时S 取得最大值1490,因为14901450>,所以当年产量为25万台时,该企业获得的年利润最大,最大为1490万元➢考点3 构建函数模型解决实际问题1.(2022·全国·高三专题练习)A ,B 两城相距100km ,在两城之间距A 城x (km)处建一核电站给A ,B 两城供电,为保证城市安全,核电站距城市距离不得小于10km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A 城供电量为每月20亿度,B 城供电量为每月10亿度. (1)求x 的取值范围;(2)把月供电总费用y 表示成x 的函数;(3)核电站建在距A 城多远,才能使供电总费用y 最少? 【解】(1)由题意知x 的取值范围为[10,90].(2)222250.25200.2510(100)5(100)2y x x x x =⨯⨯+⨯⨯-=+-,∴2255(100)2y x x =+-(1090x ≤≤);(3)2255(100)2y x x =+-215500250002x x =-+21510050000()233x =-+,∴1003x =时,min 500003y =. ∴核电站建在距A 城1003km 处,供电总费最少. 2.(2022·全国·高三专题练习)杭州地铁项目正在如火如荼的进行中,通车后将给市民出行带来便利,已知某条线路通车后,列车的发车时间间隔t (单位:分钟)满足220t ≤≤,经市场调研测算,列车载客量与发车时间间隔t 相关,当1020t ≤≤时列车为满载状态,载客量为500人,当210t ≤<时,载客量会减少,减少的人数与(10)t -的平方成正比,且发车时间间隔为2分钟时的载客量为372人,记列车载客量为()p t .(Ⅰ)求()p t 的表达式,并求当发车时间间隔为5分钟时,列车的载客量; (Ⅱ)若该线路每分钟的净收益为8()2656()60p t Q t t-=-(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大,并求出最大值.【解】(Ⅰ)由题设,当210t ≤<时,令2()=500(10)p t k t --,而发车时间间隔为2分钟时的载客量为372人,∴2(2)=500(102)=372p k --,解得2k =.∴2300402,210()=500,1020t t t p t t ⎧+-≤<⎨≤≤⎩,故5t =时有2(5)=5002(105)=450p -⨯-.(Ⅱ)由(Ⅰ)知:25626016,210()134460,1020t t tQ t t t⎧--≤<⎪⎪=⎨⎪-≤≤⎪⎩,∵210t ≤<时,()260132Q t ≤-=当且仅当4t =等号成立, ∴210t ≤<上max ()(4)132Q t Q ==,而1020t ≤≤上,()Q t 单调递减,则max ()(10)74.4Q t Q ==, 综上,时间间隔为4分钟时,每分钟的净收益最大为132元. [举一反三]1.(2022·福建龙岩·模拟预测)进入4月份以来,为了支援上海抗击疫情,A 地组织物流企业的汽车运输队从高速公路向上海运送抗疫物资.已知A 地距离上海500km ,设车队从A 地匀速行驶到上海,高速公路限速为60km/h 110~km/h .已知车队每小时运输成本(以元为单位)由可变部分和固定部分组成,可变部分与速度v km/h 的立方成正比,比例系数为b ,固定部分为a 元.若1200b =,410a =,为了使全程运输成本最低,车队速度v 应为( ) A .80km/h B .90km/h C .100km/h D .110km/h【答案】C 【解析】解:设运输成本为y 元,依题意可得432150055000000102002y v v v v ⎛⎫=+⋅=+ ⎪⎝⎭, 则()()()3622243222251051010105000000550000005v v v v v y v v v v v--++-=-===' 所以当210v =时0y '=,当60100v ≤<时0y '<,当100110v <≤时0y '>,即函数在()60,100上单调递减,在()100,110上单调递增,所以当100v =时取得极小值即最小值,所以100v =km/h 时全程运输成本最低; 故选:C2.(2022·福建·三模)深度学习是人工智能的一种具有代表性的实现方法,它是以神经网络为出发点的.在神经网络优化中,指数衰减的学习率模型为00G G L L D =,其中L 表示每一轮优化时使用的学习率,0L 表示初始学习率,D 表示衰减系数,G 表示训练迭代轮数,0G 表示衰减速度.已知某个指数衰减的学习率模型的初始学习率为0.5,衰减速度为22,且当训练迭代轮数为22时,学习率衰减为0.45,则学习率衰减到0.05以下(不含0.05)所需的训练迭代轮数至少为( )(参考数据:lg20.3010≈,lg30.4771≈) A .11 B .22 C .227 D .481【答案】D【解析】由于00G GL L D =,所以220.5GL D =⨯,依题意222290.5100.45D D⇒==⨯,则229100.5GL ⎫ ⎪⎝⎭⨯⎛=, 由220.50.05190G L ⨯<⎛⎫=⎪⎝⎭得2291101G ⎛⎫⎪<⎝⎭,221lg ,1l 1099g lg 101022G G ⎛⎫ ⎭<⎝<-⎪, ()2lg9lg 021G ⋅-<-,()92222,lg10lg 9lg10lg G G ⋅>->-, 222222480.35120.4812lg 37710.045G ==≈->-⨯, 所以所需的训练迭代轮数至少为481轮.故选:D3.(2022·全国·高三专题练习)在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为( )m .A .400B .12C .20D .30【答案】C 【解析】设内接矩形另一边长为y ,则由相似三角形性质可得404040x y -=,0<x <40, 解得y =40-x ,所以面积S =x (40-x )=-x 2+40x =-(x -20)2+400(0<x <40), 当x =20时,S max =400.故选:C.4.(2022·全国·高三专题练习)单位时间内通过道路上指定断面的车辆数被称为“道路容量”,与道路设施、交通服务、环境、气候等诸多条件相关.假设某条道路一小时通过的车辆数N 满足关系2010000.70.3v N v v d =++,其中0d 为安全距离,v 为车速()m /s .当安全距离0d 取30m 时,该道路一小时“道路容量”的最大值约为( )A .135B .149C .165D .195【答案】B【解析】由题意得,2010001000149300.70.30.720.3300.70.3v N v v d v v ==≤≈+++⨯++,当且仅当300.3v v=,即10v =时取“=”, 所以该道路一小时“道路容量”的最大值约为149.故选:B5.(2022·北京西城·一模)调查显示,垃圾分类投放可以带来约0.34元/千克的经济效益.为激励居民垃圾分类,某市准备给每个家庭发放一张积分卡,每分类投放1kg 积分1分,若一个家庭一个月内垃圾分类投放总量不低于100kg ,则额外奖励x 分(x 为正整数).月底积分会按照0.1元/分进行自动兑换.①当10x =时,若某家庭某月产生120kg 生活垃圾,该家庭该月积分卡能兑换_____元; ②为了保证每个家庭每月积分卡兑换的金额均不超过当月垃圾分类投放带来的收益的40%,则x 的最大值为___________.【答案】 13 36【解析】①若某家庭某月产生120kg 生活垃圾,则该家庭月底的积分为12010130+=分, 故该家庭该月积分卡能兑换1300.113⨯=元;②设每个家庭每月产生的垃圾为kg t ,每个家庭月底月积分卡能兑换的金额为()f t 元. 若0100t ≤<时,()0.10.340.40.136f t t t t =<⨯=恒成立;若100t ≥时,()0.10.10.340.4f t t x t =+≤⨯,可得()min 0.3636x t ≤=.故x 的最大值为36.故答案为:①13;②36.6.(2022·重庆·模拟预测)我国的酒驾标准是指车辆驾驶员血液中的酒精含量大于或者等于20mg/100ml ,已知一驾驶员某次饮酒后体内每100ml 血液中的酒精含量y (单位:mg )与时间x (单位:h )的关系是:当1103x <<时,227010801111y x x =-+;当113x ≥时,110y x =,那么该驾驶员在饮酒后至少要经过__________h 才可驾车.【答案】5.5 【解析】当1103x <<时,2227010802701080(2)11111111y x x x =-+=--+, 当2x =时,函数有最大值10802011>,所以当1103x <<时,饮酒后体内每100ml 血液中的酒精含量小于20mg/100ml , 当当113x ≥时,函数110y x =单调递减,令11020 5.5y x x==⇒=,因此饮酒后5.5小时体内每100ml 血液中的酒精含量等于20mg/100ml ,故答案为:5.5。

2022年高考数学总复习:函数模型及其应用

2022年高考数学总复习:函数模型及其应用

第 1 页 共
18 页
2022年高考数学总复习:函数模型及其应用
1.几类函数模型
函数模型 函数解析式
一次函数模型 f (x )=ax +b (a ,b 为常数,a ≠0) 反比例函数模型 f (x )=k
x
+b (k ,b 为常数且k ≠0)
二次函数模型 f (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0)
指数函数模型 f (x )=ba x +c (a ,b ,c 为常数,b ≠0,a >0且a ≠1) 对数函数模型 f (x )=b log a x +c (a ,b ,c 为常数,b ≠0,a >0且a ≠1) 幂函数模型
f (x )=ax n +b (a ,b 为常数,a ≠0)
2.三种函数模型的性质
函数
性质
y =a x (a >1) y =log a x (a >1) y =x n (n >0) 在(0,+∞)上的增减性
单调递增 单调递增 单调递增 增长速度 越来越快 越来越慢 相对平稳 图象的变化 随x 的增大逐渐表现为与y 轴平行
随x 的增大逐渐表现为与x 轴平行
随n 值变化而各有不同
值的比较
存在一个x 0,当x >x 0时,有log a x <x n <a x
知识拓展
1.解函数应用题的步骤
2.“对勾”函数
形如f (x )=x +a
x
(a >0)的函数模型称为“对勾”函数模型:
(1)该函数在(-∞,-a ]和[a ,+∞)上单调递增,在[-a ,0)和(0,a ]上单调递减. (2)当x >0时,x =a 时取最小值2a ,。

2023版高考数学一轮总复习:函数模型及其应用课件文

2023版高考数学一轮总复习:函数模型及其应用课件文
10千米的部分每千米收费3.5元,不足1千米按1千米计算.以下说法正确的是 ( C )
A.方案二比方案一更优惠
B.乘客甲打车行驶4千米,他应该选择方案二
C.乘客乙打车行驶12千米,他应该选择方案二
D.乘客丙打车行驶16千米,他应该选择方案二
考向3
解析
构造函数模型求解实际问题
设乘客打车行驶x千米,f(x)为按照方案一收费的费用,g(x)为按照方案二收费
判断正误(正确的打“√”,错误的打“✕”).
(1)某种商品进价为每件100元,按进价增加10%后出售,后因库存积压降价,若按九折出
售,则每件还能获利.( ✕ )
(2)幂函数增长比一次函数增长更快.( ✕ )
(3)指数型函数模型,一般用于解决变化较快,短时间内变化量较大的实际问题( √ )
(4)在(0,+∞)上,随着x的增大,y=ax(a>1)的增长速度会超过并远远大于y=xa(a>0)的增
刻甲、乙两企业的污水排放量相同,故在[t1,t2]这段时间内,甲企业的污
水治理能力比乙企业强,故①正确;甲企业污水排放量与时间的关系图象
在t2时刻切线的斜率的绝对值大于乙企业,故②正确;在t3时刻,甲、乙两
企业的污水排放量都低于污水达标排放量,故都已达标,③正确;甲企业
在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[t1,t2]的污水治理能力最强,
A.1.5
B.1.2
C.0.8
10
10≈1.259)( C )
D.0.6
1

解析 由已知,知4.9=5+lg V⇒lg V=-0.1⇒V=10 10 =
所以该同学视力的小数记录法的数据约为0.8.故选C.

高中数学 函数模型及其应用

高中数学 函数模型及其应用

高中数学:函数模型及其应用在数学的世界里,函数是一个重要的概念,它描述了一个变量与另一个变量之间的关系。

而在高中数学中,函数模型及其应用成为了学生们必须掌握的重要内容。

一、函数模型的理解函数,对于很多人来说,可能是一个复杂的概念。

但实际上,函数却是极其普遍的存在。

在我们的日常生活中,函数无处不在。

比如,身高随着年龄的增长而增长,这就是一个函数关系。

在这个例子中,年龄是自变量,身高是因变量。

再比如,购买商品时,价格随着数量的增加而增加,这里数量是自变量,价格是因变量。

函数模型,就是用来描述这种变量之间关系的数学工具。

它将生活中的各种关系,转化为数学公式,使我们能更好地理解和分析这些关系。

二、函数模型的应用函数模型的应用广泛存在于我们的生活中。

比如,在商业领域,公司需要根据市场需求和价格来决定生产量。

这就需要使用函数模型来预测市场的趋势,从而做出最佳的决策。

在物理学中,牛顿的第二定律就是一个函数模型,它描述了力、质量和加速度之间的关系。

而在生物学中,细胞分裂的模型也是一个函数,它描述了细胞数量随时间的变化情况。

三、高中数学中的函数模型在高中数学中,我们主要学习了一些基本的函数模型,如线性函数、二次函数、指数函数和对数函数等。

这些函数模型可以帮助我们解决生活中的很多问题。

比如,线性函数可以帮助我们解决速度和时间的问题,二次函数可以帮助我们解决几何图形的问题,而指数函数和对数函数则可以帮助我们解决增长和衰减的问题。

四、总结函数模型是高中数学中的一个重要内容。

它不仅可以帮助我们解决生活中的问题,还可以帮助我们更好地理解这个世界。

因此,学生们应该积极学习函数模型及其应用,努力提高自己的数学素养。

高中数学函数的概念课件课件标题:高中数学函数的概念课件一、引言函数是高中数学的核心概念,是数学学习中不可或缺的一部分。

函数的概念是理解函数的基础,也是进一步学习函数性质和应用的前提。

本课件旨在帮助学生理解函数的基本概念,掌握函数的定义和性质,为后续的学习奠定坚实的基础。

高三数学:函数模型及其应用

高三数学:函数模型及其应用

解:设y=kx+b(k、b为常数), 由题意知当x=100时,y=0.55,即0.55=100k+b; 当x=300时,y=0.65,即0.65=300k+b. ∴kb==00..050. 0 5 , ∴y=0.000 5x+0.5(0≤x≤600). 当x=0时,y=0.5. ∴当弹簧在不受拉力作用时,其自然长度是0.5 m,而 当受力为700 N时,此弹簧已受破坏.
3.(2021·梅州模拟)某电器公司生产A种型号的家庭电 脑,2021年平均每台电脑生产本钱为5 000元,并以纯 利润20%标定出厂价.2021年开场,公司更新设备,加 强管理,逐步推行股份制,从而使生产本钱逐年降 低.预计2021 年每台A种型号的家庭电脑的出厂价仅 是2021年的出厂价的80%,实现了纯利润为50%的高 效益.
D.解f(析x):>h由(x图)>象g知(x,) 当x∈(4,+∞)时,增长速度由大到
小依次为g(x)>f(x)>h(x).
答案:B
2.在某种新型材料的研制中,实验人员获得了以下一组
实验数据.现准备用以下四个函数中的一个近似地表示
这些数据的规律,其中最接近的一个是 ( )
x 1.95 3.00 3.94 5.10 6.12 y 0.97 1.59 1.98 2.35 2.61
2.某市居民自来水收费标准如下:每户每月用水不超 过4吨时,每吨为1.80元,当用水超过4吨时,超过局 部每吨3.00元.某月甲、乙两户共交水费y元,甲、乙 两户该月用水量分别为5x,3x(吨). (1)求y关于x的函数; (2)假设甲、乙两户该月共交水费26.4元,分别求出甲、 乙两户该月的用水量和水费.
解析:设矩形的长为 x m,宽为2004-x m,则 S= x·2004-x=14(-x2+200x).当 x=100 时,Smax=2 500 m2.

函数模型及其应用高考数学复习全面版 精品优选公开课件

函数模型及其应用高考数学复习全面版 精品优选公开课件

• 1.本题在求规划实施前最大利润时,易忽视 二次函数的特性,直接把x=60代入求解,造成错 误答案.
• 2.(1)二次函数的最值一般利用配方法与函数 的单调性解决,但一定要密切注意函数的定义域, 否则极易出错.(2)解决函数应用问题时,最后要还 原到实际问题.
• 某企业生产A,B两种产品,根据市场调查与 预测,A产品的利润与投资成正比,其关系如图2- 9-1(1);B产品的利润与投资的算术平方根成正 比,其关系如图2-9-1(2)(注:利润和投资单位: 万元).
(3)今后最多还能砍伐多少年?
【解】 (1)设每年降低的百分比为x(0<x<1).
则a(1-x)10=12a,即(1-x)10=12. 解得x=1-(12)110. (2)设经过m年剩余面积为原来的 22,
则a(1-x)m= 22a, ∴(12)1m0=(12)12,1m0=12,解得m=5. 故到今年为止,已砍伐了5年. (3)设从今年开始,以后砍了n年,
企业一个月生产某种商品x万件时的生产成本为C(x)=12x2+
2x+20(万元).一万件售价是20万元,为获取更大利润,该
企业一个月应生产该商品数量为( )
A.36万件
B.18万件
C.22万件
D.9万件
【解析】 利润L(x)=20x-C(x)=-12(x-18)2+142, 当x=18时,L(x)有最大值.
令21t=x,则0<x≤1, ∴m≥2(x-x2), 由于x-x2≤14,∴m≥12 因此, 当物体的温度总不低于2摄氏度时,m的取值 范围是[12,+∞).
• 1.解答本题的关键是把所求解问题转化为一 元二次方程或二次函数问题求解.
• 2.(1)指数函数模型,常与增长率相结合进行 考查,在实际问题中有人口增长、银行利率、细胞 分裂等增长问题可以利用指数函数模型来表示.(2) 应用指数函数模型时,先设定模型将有关已知数据 代入计算验证,确定参数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

普通高中课程标准实验教科书—数学 [人教版] 高三新数学第一轮复习教案(讲座7)—函数模型及其应用 一.课标要求: 1.利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义; 2.收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。 二.命题走向 函数应用问题是高考的热点,高考对应用题的考察即考小题又考大题,而且分值呈上升的趋势。高考中重视对环境保护及数学课外的的综合性应用题等的考察。出于“立意”和创设情景的需要,函数试题设置问题的角度和方式也不断创新,重视函数思想的考察,加大函数应用题、探索题、开放题和信息题的考察力度,从而使高考考题显得新颖、生动和灵活。 预测高考,将再现其独特的考察作用,而函数类应用题,是考察的重点,因而要认真准备应用题型、探索型和综合题型,加大训练力度,重视关于函数的数学建模问题,学会用数学和方法寻求规律找出解题策略。 (1)题型多以大题出现,以实际问题为背景,通过解决数学问题的过程,解释问题; (2)题目涉及的函数多以基本初等函数为载体,通过它们的性质(单调性、极值和最值等)来解释生活现象,主要涉计经济、环保、能源、健康等社会现象。 三.要点精讲 1.解决实际问题的解题过程 (1)对实际问题进行抽象概括:研究实际问题中量与量之间的关系,确定变量之间的主、被动关系,并用x、y分别表示问题中的变量; (2)建立函数模型:将变量y表示为x的函数,在中学数学内,我们建立的函数模型一般都是函数的解析式; (3)求解函数模型:根据实际问题所需要解决的目标及函数式的结构特点正确选择函数知识求得函数模型的解,并还原为实际问题的解. 这些步骤用框图表示:

实际问题 函数模型

实际问题的解 函数模型的解

抽象概括 还原说明 运用函数性质 2.解决函数应用问题应着重培养下面一些能力: (1)阅读理解、整理数据的能力:通过分析、画图、列表、归类等方法,快速弄清数据之间的关系,数据的单位等等; (2)建立函数模型的能力:关键是正确选择自变量将问题的目标表示为这个变量的函数,建立函数的模型的过程主要是抓住某些量之间的相等关系列出函数式,注意不要忘记考察函数的定义域; (3)求解函数模型的能力:主要是研究函数的单调性,求函数的值域、最大(小)值,计算函数的特殊值等,注意发挥函数图象的作用。 四.典例解析

题型1:正比例、反比例和一次函数型 例1.某地区1995年底沙漠面积为95万公顷,为了解该地区沙漠面积的变化情况,进行了连续5年的观测,并将每年年底的观测结果记录如下表。根据此表所给的信息进行预测:(1)如果不采取任何措施,那么到2010年底,该地区的沙漠面积将大约变为多少万公顷;(2)如果从2000年底后采取植树造林等措施,每年改造0.6万公顷沙漠,那么到哪一年年底该地区沙漠面积减少到90万公顷?

观测时间 1996年底 1997年底 1998年底 1999年底 2000年底

该地区沙漠比原有面积增加数(万公顷) 0.2000 0.4000 0.6001 0.7999 1.0001

解析:(1)由表观察知,沙漠面积增加数y与年份数x之间的关系图象近似地为一次函数y=kx+b的图象。 将x=1,y=0.2与x=2,y=0.4,代入y=kx+b, 求得k=0.2,b=0, 所以y=0.2x(x∈N)。 因为原有沙漠面积为95万公顷,则到2010年底沙漠面积大约为 95+0.5×15=98(万公顷)。 (2)设从1996年算起,第x年年底该地区沙漠面积能减少到90万公顷,由题意得 95+0.2x-0.6(x-5)=90, 解得x=20(年)。 故到2015年年底,该地区沙漠面积减少到90万公顷。 点评:初中我们学习过的正比例、反比例和一元一次函数的定义和基本性质,我们要牢固掌握。特别是题目中出现的“成正比例”、“成反比例”等条件要应用好。

例2.(2006安徽理21)(已知函数fx在R上有定义,对任何实数0a和任何实数x,都有faxafx (Ⅰ)证明00f;

(Ⅱ)证明,0,0kxxfxhxx 其中k和h均为常数; 证明(Ⅰ)令0x,则00faf,∵0a,∴00f。 (Ⅱ)①令xa,∵0a,∴0x,则2fxxfx。 假设0x时,()fxkx()kR,则22fxkx,而2xfxxkxkx,∴2fxxfx,即()fxkx成立。

②令xa,∵0a,∴0x,2fxxfx 假设0x时,()fxhx()hR,则22fxhx,而2xfxxhxhx,∴2fxxfx,即()fxhx成立。∴

,0,0kxxfxhxx





成立。

点评:该题应用了正比例函数的数字特征,从而使问题得到简化。而不是一味的向函数求值方面靠拢。 题型2:二次函数型 例3.一辆中型客车的营运总利润y(单位:万元)与营运年数x(x∈N)的变化关系如表所示,则客车的运输年数为()时该客车的年平均利润最大。 (A)4 (B)5 (C)6 (D)7

x年 4 6 8 …

cbxaxy2(万元) 7 11 7 …

解析:表中已给出了二次函数模型 cbxaxy2,

由表中数据知,二次函数的图象上存在三点(4,7),(6,11),(8,7),则 



.887,6611,447222cbacbacba

。 解得a=-1,b=12,c=-25,

即25122xxy。

而取“=”的条件为xx25, 即x=5,故选(B)。 点评:一元二次函数是高中数学函数中最重要的一个模型,解决此类问题要充分利用二次函数的结论和性质,解决好实际问题。 例4.行驶中的汽车,在刹车后由于惯性的作用,要继续向前滑行一段距离后才会停下,这段距离叫刹车距离。为测定某种型号汽车的刹车性能,对这种型号的汽车在国道公路上进行测试,测试所得数据如下表。在一次由这种型号的汽车发生的交通事故中,测得刹车距离为15.13m,问汽车在刹车时的速度是多少?

刹车时车速v/km/h 15 30 40 50 60 80 刹车距离s/m 1.23 7.30 12.2 18.40 25.80 44.40

解析:所求问题就变为根据上表数据,建立描述v与s之间关系的数学模型的问题。此模型不能由表格中的数据直接看出,因此,以刹车时车速v为横轴,以刹车距离s为纵轴建立直角坐标系。根据表中的数据作散点图,可看出应选择二次函数作拟合函数。

假设变量v与s之间有如下关系式:cbvavs2,因为车速为0时,刹车距离也为0,所以二次曲线的图象应通过原点(0,0)。再在散点图中任意选取两点A(30,7.30),B(80,44.40)代入,解出a、b、c于是

vvs0563.00062.02。(代入其他数据有偏差是许可的)

将s=15.13代入得 vv0563.00062.013.152,

解得v≈45.07。 所以,汽车在刹车时的速度是45.07km/h。 例5.(2003北京春,理、文21)某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元. (1)当每辆车的月租金定为3600元时,能租出多少辆车? (2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?

解:(1)当每辆车的月租金定为3600元时,未租出的车辆数为:5030003600 =12,所以这时租出了88辆车. (2)设每辆车的月租金定为x元,则租赁公司的月收益为:f(x)=(100-503000x)

(x-150)-503000x×50,整理得:f(x)=-502x+162x-21000=-501(x-4050)2+307050.所以,当x=4050时,f(x)最大,其最大值为f(4050)=307050.即当每辆车的

月租金定为4050元时,租赁公司的月收益最大,最大收益为307050元. 点评:本题贴近生活。要求考生读懂题目,迅速准确建立数学模型,把实际问题转化为数学问题并加以解决。 题型3:分段函数型 例6.某集团公司在2000年斥巨资分三期兴建垃圾资源化处理工厂,如下表:

一期2000年投入 1亿元 兴建垃圾堆肥厂 年处理有机肥十多万吨 年综合收益 2千万元 二期2002年投入 4亿元 兴建垃圾焚烧发电一厂 年发电量1.3亿kw/h 年综合收益 4千万元 三期2004年投入 2亿元 兴建垃圾焚烧发电二厂 年发电量1.3亿kw/h 年综合收益 4千万元

相关文档
最新文档