备战2022年高考数学(理)一轮复习考点10 函数模型及其应用

合集下载

高考数学 3-10《函数模型及其应用》课件 理

高考数学 3-10《函数模型及其应用》课件 理

大,最大值约为3 333辆/小时.
对于分段函数模型的最值问题,应该先求出每一段上的最 值,然后再比较大小.另外在利用均值不等式求解最值时,一 定要检验等号成立的条件,也可通过函数的单调性求解最值.
经市场调查,某种商品在过去50天的销售量和价格均为销 售时间t(天)的函数,且销售量近似地满足f(t)=-2t+ 1 200(1≤t≤50,t∈N).前30天价格为g(t)= t+30(1≤t≤30,t 2 ∈N),后20天价格为g(t)=45(31≤t≤50,t∈N). (1)写出该种商品的日销售额S与时间t的函数关系; (2)求日销售额S的最大值.
(2)依题意并由(1)可得 60x,0≤x≤20, f(x)=1 x200-x,20<x≤200. 3 当0≤x≤20时,f(x)为增函数, 故当x=20时,其最大值为60×20=1200;
1 1 x+200-x 2 当20<x≤200时,f(x)= x(200-x)≤ = 3 3 2
3.构造分段函数时,要力求准确简捷,做到分段合理, 不重不漏.
分段函数是一个函数,一般应用分类讨论的思想求解.
提高过江大桥的车辆通行能力可改善整个城市的交通状 况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是 车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200 辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过 20辆/千米时,车流速度为60千米/小时.研究表明:当 20≤x≤200时,车流速度v是车流密度x的一次函数.
(1)当0≤x≤200时,求函数v(x)的表达式; (2)当车流密度x为多大时,车流量(单位时间内通过桥上某 观测点的车辆数,单位:辆/小时)f(x)=x· v(x)可以达到最大, 并求出最大值.(精确到1辆/小时)

人教B版高考总复习一轮数学精品课件 第3章函数与基本初等函数 第10节函数模型及其应用

人教B版高考总复习一轮数学精品课件 第3章函数与基本初等函数 第10节函数模型及其应用
假设某商人持有资金120万元,他可以在t1至t4的任意时刻买卖这两种商品,
且买卖能够立即成交(其他费用忽略不计).如果他在t4时刻卖出所有商品,
那么他将获得的最大利润是( C )
A.40万元
B.60万元
C.120万元
D.140万元
解析 甲商品6元时该商人全部买入甲商品,可以买120÷6=20(万份),商人在
考向1构建函数模型解决实际问题
例3(2024·北京顺义模拟)诺贝尔奖发放方式为:每年一发,把奖金总额平均
分成6份,奖励给分别在6项(物理、化学、文学、经济学、生理学和医学、
和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度
所获利息的一半,另一半利息作基金总额,以保证奖金数逐年增加.假设基
位置,如下图所示:
图1中,因为OM≤OP,不符合①,因此排除选项A;图4中,由OM≤OP,不符合①,
并且OP的距离不是对称变化的,因此排除选项D;另外,在图2中,当点P在线
段OA上运动时,此时y=x,其图象是一条线段,不符合②,因此排除选项B,故
选C.
[对点训练1]已知甲、乙两种商品在过去一段时间内的价格走势如图所示.
,即

10

等号成立.
因此,当年产量为100时,平均成本最小,且最小值为60.
Q=100 时,上述
题组三连线高考
7.(2020·全国Ⅰ,文5)某校一个课外学习小组为研究某作物种子的发芽率y
和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由
实验数据(xi,yi)(i=1,2,…,20)得到下面的散点图:
由此散点图,在10 ℃至40 ℃之间,下面四个回归方程类型中最适宜作为发

高三 一轮复习 函数模型及其应用 教案

高三 一轮复习 函数模型及其应用 教案

函数模型及其应用1.几种常见的函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a,b为常数,a≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)指数函数模型f(x)=ba x+c(a,b,c为常数,a>0且a≠1,b≠0)对数函数模型f(x)=b log a x+c(a,b,c为常数,a>0且a≠1,b≠0)幂函数模型f(x)=ax n+b(a,b,n为常数,a≠0,n≠0)2.三种函数模型性质比较y=a x(a>1)y=log a x(a>1)y=x n(n>0) 在(0,+∞)上的单调性增函数增函数增函数增长速度越来越快越来越慢相对平稳图像的变化随x值增大,图像与y轴接近平行随x值增大,图像与x轴接近平行随n值变化而不同1.易忽视实际问题的自变量的取值范围,合理确定函数的定义域.2.注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性.[试一试]据调查,苹果园地铁的自行车存车处在某星期日的存车量为4 000辆次,其中变速车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元,若普通车存车数为x辆次,存车费总收入为y元,则y关于x 的函数关系是____________.解决实际应用问题的一般步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)求模:求解数学模型,得出数学结论; (4)还原:将数学问题还原为实际问题. 以上过程用框图表示如下:[练一练]如图,已知正方形ABCD 的边长为1,过正方形中心O 的直线MN 分别交正方形的边AB ,CD 于点M ,N ,则当MNBN 取最小值时,CN =________.考点一一次函数与二次函数模型1.某电信公司推出两种手机收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内通话时间t (分钟)与电话费s (元)的函数关系如图所示,当通话150分钟时,这两种方式电话费相差________元.2.将进货单价为80元的商品按90元出售时,能卖出400个.若该商品每个涨价1元,其销售量就减(1)二次函数的最值一般利用配方法与函数的单调性解决,但一定要密切注意函数的定义域,否则极易出错;(2)确定一次函数模型时,一般是借助两个点来确定,常用待定系数法;(3)解决函数应用问题时,最后要还原到实际问题.考点二分段函数模型[典例]提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(1)当0≤x≤200时,求函数v(x)的表达式.(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x·v(x)可以达到最大,并求出最大值(精确到1辆/小时).[类题通法]应用分段函数模型的关注点(1)实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,如出租车票价与路程之间的关系,应构建分段函数模型求解.(2)构造分段函数时,要力求准确、简洁,做到分段合理、不重不漏.(3)分段函数的最值是各段的最大(最小)者的最大者(最小者).[针对训练]某公司研制出了一种新产品,试制了一批样品分别在国内和国外上市销售,并且价格根据销售情况不断进行调整,结果40天内全部销完.公司对销售及销售利润进行了调研,结果如图所示,其中图①(一条折线)、图②(一条抛物线段)分别是国外和国内市场的日销售量与上市时间的关系,图③是每件样品的销售利润与上市时间的关系.(1)分别写出国外市场的日销售量f(t)与上市时间t的关系及国内市场的日销售量g(t)与上市时间t的关系;(2)国外和国内的日销售利润之和有没有可能恰好等于6 300万元?若有,请说明是上市后的第几天;若没有,请说明理由.考点三指数函数模型[典例] 一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22. (1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年? (3)今后最多还能砍伐多少年?[类题通法]应用指数函数模型应注意的问题(1)指数函数模型,常与增长率相结合进行考查,在实际问题中有人口增长、银行利率、细胞分裂等增长问题可以利用指数函数模型来解决.[课堂练通考点]1.(2014·南昌质检)往外埠投寄平信,每封信不超过20 g,付邮费0.80元,超过20 g而不超过40 g,付邮费1.60元,依此类推,每增加20 g需增加邮费0.80元(信的质量在100 g以内).如果某人所寄一封信的质量为72.5 g,则他应付邮费________元.2.(2013·南通调研)甲地与乙地相距250 km.某天小袁从上午7:50由甲地开车前往乙地办事.在上午9:00,10:00,11:00三个时刻,车上的导航仪都提示“如果按出发到现在的平均速度继续行驶,那么还有 1 h到达乙地”.假设导航仪提示语都是正确的,那么在上午11:00时,小袁距乙地还有________km.3.一种产品的成本原为a元,在今后的m年内,计划使成本平均每年比上一年降低p%,成本y是关于经过年数x(0<x≤m)的函数,其关系式y=f(x)可写成_____________________.[课下提升考能]第Ⅰ卷:夯基保分卷1.(2014·苏锡常镇一调)某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km按起步价付费);超过3 km但不超过8 km时,超过部分按每千米2.15元收费;超过8 km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________ km.2.某大楼共有12层,有11人在第1层上了电梯,他们分别要去第2至第12层,每层1人.因特殊原因,电梯只允许停1次,只可使1人如愿到达,其余10人都要步行到达所去的楼层.假设乘客每向下步行1层的“不满意度”增量为1,每向上步行1层的“不满意度”增量为2,10人的“不满意度”之和记为S.则S最小时,电梯所停的楼层是________层.3.一高为H,满缸水量为V的鱼缸截面如图所示,其底部破了一个小洞,满缸水从洞中流出.若鱼缸水深为h时的水的体积为v,则函数v=f(h)的大致图像可能是图中的________.4.如图,书的一页的面积为600 cm2,设计要求书面上方空出2 cm的边,下、左、右方都空出1 cm的边,为使中间文字部分的面积最大,这页书的长、宽应分别为________.5.某商家一月份至五月份累计销售额达3 860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等.若一月份至十月份销售总额至少达7 000万元,则x的最小值是________.6.(2014·连云港模拟)某单位决定对本单位职工实行年医疗费用报销制度,拟制定年医疗总费用在2万元至10万元(包括2万元和10万元)的报销方案,该方案要求同时具备下列三个条件:①报销的医疗费用y(万元)随医疗总费用x(万元)增加而增加;②报销的医疗费用不得低于医疗总费用的50%;③报销的医疗费用不得超过8万元.(1)请你分析该单位能否采用函数模型y=0.05(x2+4x+8)作为报销方案;(2)若该单位决定采用函数模型y=x-2ln x+a(a为常数)作为报销方案,请你确定整数a的值(参考数据:ln 2≈0.69,ln 10≈2.3).2.(2014·苏州一调)如图,有一块边长为1(百米)的正方形区域ABCD.在点A处有一个可转动的探照灯,其照射角∠P AQ始终为45°(其中点P,Q分别在边BC,CD上),设∠P AB=θ,tan θ=t.(1)用t表示出PQ的长度,并探求△CPQ的周长l是否为定值;(2)问探照灯照射在正方形ABCD内部区域的面积S至多为多少平方百米?3.(2013·徐州调研)徐州、苏州两地相距500 km,一辆货车从徐州匀速行驶到苏州,规定速度不得超过在海岸线上建一度假村P,不考虑风向等因素影响,油井对度假村废气污染程度与排出废气的浓度成正比(比例系数都为k1),与距离的平方成反比(比例系数都为k2),又知甲油井排出的废气浓度是乙油井的8倍.(1)设乙油井排出的废气浓度为a(a为常数),度假村P距离甲油井x km,度假村P受到甲、乙两油井的污染程度和记为f(x),求f(x)的解析式并求其定义域;(2)度假村P距离甲油井多少时,甲、乙两油井对度假村的废气污染程度和最小?。

函数模型及其应用

函数模型及其应用

研 动 向 考 纲 考 向
【答案】 B
切 脉 搏 核 心 突 破
菜单
高三总复习·数学(理)
提 素 养 满 分 指 导
演 实 战 沙 场 点 兵
课 时 提 升 练
高三总复习·数学(理)


[命题规律预测]
养 满


从近几年高考试题分析,对函数的实际应用问题的考 指


向 考
命题 查多以社会实际生活为背景,涉及一次函数、二次函

考 向
规律 数、分段函数等模型及其最值;题型以解答题为主,
演 实

难度中档偏上.
沙 场



预测2016年高考对函数应用题的考查仍会以二次函

搏 核 心
考向 数、分段函数、指数函数模型为主,将与不等式、导
突 预测

数知识交汇命题.
课 时



菜单
高三总复习·数学(理)


考向一 一次函数与二次函数模型的应用


向 利润分别为f(x),g(x)万元,由题意可知f(x)=k1x,g(x)=
实 战
k2 x,其中k1,k2为常数.

沙 场 点
脉 搏
∴根据图象可得f(x)=0.25x(x≥0),g(x)=2 x(x≥0). 兵









菜单
高三总复习·数学(理)
(2)①由(1)得f(9)=2.25,g(9)=2 9=6,
解得ab==-1.50,.2, c=-2.0.
实 战 沙 场 点 兵

高三理科数学第一轮复习§2.9:函数模型及其应用

高三理科数学第一轮复习§2.9:函数模型及其应用

第二章:函数、导数及其应用 §2.9:函数模型及其应用
第二章:函数、导数及其应用 §2.9:函数模型及其应用
解析
第二章:函数、导数及其应用 §2.9:函数模型及其应用
第二章:函数、导数及其:函数、导数及其应用 §2.9:函数模型及其应用
第二章:函数、导数及其应用 §2.9:函数模型及其应用
第二章:函数、导数及其应用 §2.9:函数模型及其应用
解析
第二章:函数、导数及其应用 §2.9:函数模型及其应用
解析
第二章:函数、导数及其应用 §2.9:函数模型及其应用
第二章:函数、导数及其应用 §2.9:函数模型及其应用
第二章:函数、导数及其应用 §2.9:函数模型及其应用
第二章:函数、导数及其应用 §2.9:函数模型及其应用
解析
第二章:函数、导数及其应用 §2.9:函数模型及其应用
第二章:函数、导数及其应用 §2.9:函数模型及其应用
第二章:函数、导数及其应用 §2.9:函数模型及其应用
解析
第二章:函数、导数及其应用 §2.9:函数模型及其应用
第二章:函数、导数及其应用 §2.9:函数模型及其应用
第二章:函数、导数及其应用 §2.9:函数模型及其应用
第二章:函数、导数及其应用 §2.9:函数模型及其应用
解析
第二章:函数、导数及其应用 §2.9:函数模型及其应用
解析
第二章:函数、导数及其应用 §2.9:函数模型及其应用
解析
第二章:函数、导数及其应用 §2.9:函数模型及其应用
解析
第二章:函数、导数及其应用 §2.9:函数模型及其应用
解析
第二章:函数、导数及其应用 §2.9:函数模型及其应用

高考一轮复习第2章函数导数及其应用第10讲函数模型及其应用

高考一轮复习第2章函数导数及其应用第10讲函数模型及其应用

第十讲 函数模型及其应用知识梳理·双基自测ZHI SHI SHU LI SHUANG JI ZI CE 知识梳理知识点 函数模型及其应用 1.几类常见的函数模型函数模型 函数解析式一次函数模型f(x)=ax +b(a ,b 为常数,a≠0)反比例函数模型 f(x)=kx +b(k ,b 为常数且k≠0)二次函数模型 f(x)=ax 2+bx +c(a ,b ,c 为常数,a≠0)指数函数模型 f(x)=ba x+c(a ,b ,c 为常数,b≠0,a >0且a≠1) 对数函数模型 f(x)=blog a x +c(a ,b ,c 为常数,b≠0,a >0且a≠1) 幂函数模型f(x)=ax n +b(a ,b 为常数,a≠0)2.三种函数模型的性质函数性质y =a x(a>1)y =log a x(a>1) y =x n(n>0)在(0,+∞) 上的增减性 单调递增 单调递增 单调递增 增长速度 越来越快越来越慢相对平稳 图象的变化 随x 的增大逐渐表现为与y 轴平行随x 的增大逐渐表现为与x 轴平行随n 值变化而各有不同值的比较存在一个x 0,当x>x 0时,有log a x<x n<a x3.解函数应用问题的步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识建立相应的数学模型;(3)解模:求解数学模型,得出数学结论; (4)还原:将数学问题还原为实际问题. 以上过程用框图表示如下:重要结论1.函数f(x)=x a +bx (a>0,b>0,x>0)在区间(0,ab]内单调递减,在区间[ab ,+∞)内单调递增.2.直线上升、对数缓慢、指数爆炸双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数y =2x的函数值比y =x 2的函数值大.( × )(2)“指数爆炸”是指数型函数y =a·b x+c(a≠0,b>0,b≠1)增长速度越来越快的形象比喻.( × ) (3)幂函数增长比直线增长更快.( × ) (4)不存在x 0,使ax 0<x a0<log a x 0.( × ) [解析] (1)当x =-1时,2-1<(-1)2.(2)“指数爆炸”是针对b>1,a>0的指数型函数g(x)=a ·b x+c.(3)幂函数增长速度是逐渐加快的,当变量较小时,其增长很缓慢,题目说的太绝对,也没有任何条件限制.(4)当a∈(0,1)时存在x 0,使ax 0<x a0<log a x 0. 题组二 走进教材2.(必修1P 107BT1改编)某工厂一年中各月份的收入、支出情况的统计图如图所示,则下列说法中错误的是( D )A .收入最高值与收入最低值的比是3∶1B .结余最高的月份是7月C .1至2月份的收入的变化率与4至5月份的收入的变化率相同D .前6个月的平均收入为40万元3.(必修1P 107A 组T1改编)在某个物理实验中,测量得变量x 和变量y 的几组数据,如下表:x 0.50 0.99 2.01 3.98 y-0.990.010.982.00则对x ,y 最适合的拟合函数是( D ) A .y =2x B .y =x 2-1 C .y =2x -2D .y =log 2x[解析] 根据x =0.50,y =-0.99,代入计算,可以排除A ;根据x =2.01,y =0.98,代入计算,可以排除B 、C ;将各数据代入函数y =log 2x ,可知满足题意,故选D .4.(必修1P 104例5改编)某种动物繁殖量y 只与时间x 年的关系为y =alog 3(x +1),设这种动物第2年有100只,到第8年它们将发展到( A )A .200只B .300只C .400只D .500只[解析] ∵繁殖数量y 只与时间x 年的关系为y =alog 3(x +1),这种动物第2年有100只, ∴100=alog 3(2+1),∴a=100,∴y=100log 3(x +1), ∴当x =8时,y =100log 3(8+1)=100×2=200.故选A .5.(必修1P 107AT2改编)生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x 万件时的生产成本为C(x)=12x 2+2x +20(万元).一万件售价为20万元,为获取更大利润,该企业一个月应生产该商品数量为18万件.[解析] 利润L(x)=20x -C(x)=-12(x -18)2+142,当x =18时,L(x)有最大值. 题组三 走向高考6.(2020·全国Ⅲ,4)Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t 的单位:天)的Logistic 模型:I(t)=K1+e -0.23(t -53),其中K 为最大确诊病例数.当I(t *)=0.95K 时,标志着已初步遏制疫情,则t *约为(ln 19≈3)( C )A .60B .63C .66D .69[解析] 本题以Logistic 模型和新冠肺炎为背景考查指数、对数的运算.由题意可得I(t *)=K 1+e -0.23(t *-53)=0.95K ,化简得e -0.23(t *-53)=119,即0.23(t *-53)=ln 19,所以t *=ln 190.23+53≈30.23+53≈66.故选C .考点突破·互动探究KAO DIAN TU PO HU DONG TAN JIU 考点 函数模型及应用考向1 利用函数图象刻画实际问题的变化过程——自主练透例1 (1)(2017·全国卷Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( A )A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳(2)(多选题)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5 ℃.下面叙述正确的是( ABC )A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个(3)有一个盛水的容器,由悬在它的上空的一条水管均匀地注水,最后把容器注满,在注水过程中时间t与水面高度y之间的关系如图所示.若图中PQ为一线段,则与之对应的容器的形状是( B )[解析] (1)通过题图可知A 不正确,并不是逐月增加,但是每一年是递增的,所以B 正确.从图观察C 是正确的,D 也正确,1月至6月比较平稳,7月至12月波动比较大.故选A .(2)由图形可得各月的平均最低气温都在0 ℃以上,A 正确;七月的平均温差约为10 ℃,而一月的平均温差约为5 ℃,故B 正确;三月和十一月的平均最高气温都在10 ℃左右,基本相同,C 正确;平均最高气温高于20 ℃的月份只有2个,D 错误.故选A 、B 、C .(3)由函数图象可判断出该容器必定有不同规则的形状,且函数图象的变化先慢后快,所以容器下边粗,上边细.再由PQ 为线段,知这一段是均匀变化的,所以容器上端必是直的一段,故排除A 、C 、D ,选B .名师点拨 MING SHI DIAN BO 1.用函数图象刻画实际问题的解题思路将实际问题中两个变量间变化的规律(如增长的快慢、最大、最小等)与函数的性质(如单调性、最值等)、图象(增加、减少的缓急等)相吻合即可.2.判断函数图象与实际问题变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象. (2)验证法:当根据题意不易建立函数模型时,则根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.考向2 已知函数模型解决实际问题——师生共研例2 (2020·北京十一中月考)已知14C 的半衰期为5 730年(是指经过5 730年后,14C 的残余量占原始量的一半).设14C 的原始量为a ,经过x 年后的残余量为b ,残余量b 与原始量a 的关系为b =ae-kx,其中x 表示经过的时间,k 为一个常数.现测得湖南长沙马王堆汉墓女尸出土时14C 的残余量约占原始量的76.7%.请你推断一下马王堆汉墓修建距今约2_292年.(参考数据:log 20.767≈-0.4).[解析] 由题意可知,当x =5 730时,ae -5 730k=12a ,解得k =ln 25 730.现测得湖南长沙马王堆汉墓女尸出土时14C 的残余量约占原始量的76.7%.所以76.7%=e -ln 25 730x ,得ln 0.767=-ln 25 730x ,x =-5 730×ln 0.767ln 2=-5 730×log 2 0.767≈2 292.〔变式训练1〕(2020·山西太原模拟)某公司为了业务发展,制定了一项激励销售人员的奖励方案:销售额为8万元时,奖励1万元;销售额为64万元时,奖励4万元,若公司拟定的奖励模型为y =alog 4x +b(其中x 为销售额,y 为相应的奖金).某业务员要得到8万元奖励,则他的销售额应为1_024万元.[解析] 依题意得⎩⎪⎨⎪⎧alog 48+b =1,alog 464+b =4,即⎩⎪⎨⎪⎧32a +b =1,3a +b =4,解得⎩⎪⎨⎪⎧a =2,b =-2.所以y =2log 4x -2,当y =8时,有2log 4x -2=8,解得x =1 024. 考向3 构建函数模型解决实际问题——多维探究 角度1 一次函数、二次函数分段函数模型例3 某校学生研究学习小组发现,学生上课的注意力指标随着听课时间的变化而变化,老师讲课开始时,学生的兴趣激增;接下来学生的兴趣将保持较理想的状态一段时间,随后学生的注意力开始分散,设f(t)表示学生注意力指标.该小组发现f(t)随时间t(分钟)的变化规律(f(t)越大,表明学生的注意力越集中)如下: f(t)=⎩⎪⎨⎪⎧100a t10-60(0≤t≤10),340(10<t≤20),-15t +640(20<t≤40)(a>0且a≠1).若上课后第5分钟时的注意力指标为140,回答下列问题: (1)求a 的值;(2)上课后第5分钟和下课前第5分钟比较,哪个时间注意力更集中?并请说明理由; (3)在一节课中,学生的注意力指标至少达到140的时间能保持多长? [解析] (1)由题意得,当t =5时,f(t) =140, 即100·a 510-60=140,解得a =4.(2)因为f(5)=140,f(35)=-15×35+640=115,所以f(5)>f(35),故上课后第5分钟时比下课前第5分钟时注意力更集中.(3)①当0<t≤10时,由(1)知,f(t)=100·4t10-60≥140,解得5≤t≤10; ②当10<t≤20时,f(t) =340>140恒成立;③当20<t≤40时,f(t)=-15t +640≥140,解得20<t≤1003.综上所述,5≤t≤1003.故学生的注意力指标至少达到140的时间能保持1003-5=853分钟.名师点拨 MING SHI DIAN BO (1)分段函数主要是每一段自变量变化所遵循的规律不同,可以先将其当作几个问题,将各段的变化规律分别找出来,再将其合到一起,要注意各段自变量的范围,特别是端点值.(2)构造分段函数时,要力求准确、简洁,做到分段合理,不重不漏. (3)分段函数的最大(小)值是各段最大(小)值中的最大(小)值. 角度2 指数函数与对数函数模型例4 候鸟每年都要随季节的变化进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v(单位:m/s)与其耗氧量Q 之间的关系为:v =a +blog 3Q10(其中a ,b 是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1 m/s.(1)求出a ,b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要多少个单位? [分析](1)根据已知列出方程组→解方程组求a ,b 的值 (2)由(1)列出不等式→解不等式求Q 的最小值[解析] (1)由题意可知,当这种鸟类静止时,它的速度为0 m/s ,此时耗氧量为30个单位,则a +blog 33010=0,即a +b =0;当耗氧量为90个单位时,速度为1 m/s , 则a +blog 39010=1,整理得a +2b =1.解方程组⎩⎪⎨⎪⎧a +b =0,a +2b =1,得⎩⎪⎨⎪⎧a =-1,b =1. (2)由(1)知,v =a +blog 3Q 10=-1+log 3Q10.所以要使飞行速度不低于2 m/s ,则v ≥2,所以-1+log 3Q 10≥2,即log 3Q 10≥3,解得Q10≥27,即Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要270个单位.名师点拨 MING SHI DIAN BO指数函数与对数函数模型的应用技巧(1)与指数函数、对数函数两类函数模型有关的实际问题,在求解时,要先学会合理选择模型,在两类模型中,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.(2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再借助函数的图象求解最值问题.〔变式训练2〕(1)(角度1)某城市对一种售价为每件160元的商品征收附加税,税率为R%(即每销售100元征税R 元),若每年销售量为⎝⎛⎭⎪⎫30-52R 万件,要使附加税不少于128万元,则R 的取值范围是( A )A .[4,8]B .[6.10]C .[4%,8%]D .[6%,10%](2)(角度2)一个容器装有细沙a cm 3,细沙从容器底部一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =ae-bt(cm 3),经过8 min 后发现容器内还有一半的沙子,则再经过16min ,容器中的沙子只有开始时的八分之一.[解析] (1)根据题意,要使附加税不少于128万元,需⎝ ⎛⎭⎪⎫30-52R ×160×R%≥128,整理得R 2-12R +32≤0,解得4≤R≤8,即R∈[4,8]. (2)当t =0时,y =a ,当t =8时,y =ae -8b=12a ,∴e -8b =12.令y =18a ,即ae -bt =18a ,e -bt =18=(e -8b )3=e-24b,则t =24,∴再经过16 min ,容器中的沙子只有开始时的八分之一.名师讲坛·素养提升MING SHI JIANG TAN SU YANG TI SHENG函数y =x +ax(a>0)模型及应用例5 (2021·烟台模拟)小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x 万件,需另投入流动成本为W(x)万元.在年产量不足8万件时,W(x)=13x 2+x(万元);在年产量不小于8万件时,W(x)=6x +100x -38(万元).每件产品售价为5元.通过市场分析,小王生产的商品当年能全部售完.(1)写出年利润L(x)(万元)关于年产量x(万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少? [解析] (1)因为每件产品售价为5元,则x 万件产品的销售收入为5x 万元,依题意得: 当0<x<8时,L(x)=5x -⎝ ⎛⎭⎪⎫13x 2+x -3=-13x 2+4x -3.当x≥8时,L(x)=5x -⎝ ⎛⎭⎪⎫6x +100x -38-3=35-⎝ ⎛⎭⎪⎫x +100x .所以L(x)=⎩⎪⎨⎪⎧-13x 2+4x -3,0<x<8,35-⎝ ⎛⎭⎪⎫x +100x ,x≥8.(2)当0<x<8时,L(x)=-13(x -6)2+9,此时,当x =6时,L(x)取得最大值L(6)=9(万元).当x≥8时,L(x)=35-⎝⎛⎭⎪⎫x +100x ≤35-2x ·100x=35-20=15(万元).此时,当且仅当x =100x,即x =10时,L(x)取得最大值15万元.因为9<15,所以当年产量为10万件时,小王在这一商品的生产中所获利润最大,最大利润为15万元. 名师点拨 MING SHI DIAN BO (1)解决此类问题时一定要关注函数的定义域.(2)利用模型f(x)=ax +bx 求解最值时,注意取得最值时等号成立的条件.〔变式训练3〕某村计划建造一个室内面积为800 m 2的矩形蔬菜温室、在矩形温室内,沿左、右两侧与后侧内墙各保留1 m 宽的通道,沿前侧内墙保留3 m 宽的空地.当矩形温室的边长各为40_m ,20_m 时,蔬菜的种植面积最大?最大面积是648_m 2.[解析] 设矩形温室的左侧边长为x m ,则后侧边长为800x m ,所以蔬菜种植面积y =(x -4)·⎝ ⎛⎭⎪⎫800x -2=808-2⎝⎛⎭⎪⎫x +1 600x (4<x<400). 因为x +1 600x≥2x ·1 600x=80,所以y≤808-2×80=648.当且仅当x =1 600x ,即x =40时取等号,此时800x=20,y max =648.即当矩形温室的相邻边长分别为40 m ,20 m 时,蔬菜的种植面积最大,最大面积是648 m 2.。

导与练普通班届高三数学一轮复习第二篇函数及其应用第节函数模型及其应用理

导与练普通班届高三数学一轮复习第二篇函数及其应用第节函数模型及其应用理

考点二 指数函数、对数函数与幂函数模型
【例2】 某医药研究所开发的一种新药,如果成年人按规定的剂量服用,
据监测:服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满
足如图所示的曲线.
(1)写出第一次服药后y与t之间的函数关系式y=f(t);
kt,0 t 1,
解:(1)由图象,设
y=
,
当且仅当 x=200-x,即 x=100 时,等号成立.所以,当 x=100 时,f(x)在区间(20,200]上取得 最大值 10000 .
3 综上,当 x=100 时,f(x)在区间[0,200]上取得最大值 10000 ≈3 333,
3 即当车流密度为 100 辆/千米时,车流量可以达到最大,最大值约为 3 333 辆/时.
考点专项突破 在讲练中理解知识
考点一 一次函数、二次函数模型
【例1】 某跳水运动员在一次跳水训练时的跳水曲线为如图所示抛物线
的一段.已知跳水板AB长为2 m,跳水板距水面CD的高BC为3 m.为安全和
空中姿态优美,训练时跳水曲线应在离起跳点A处水平距h m(h≥1)时达
到距水面最大高度4 m,规定:以CD为横轴,BC为纵轴建立直角坐标系.

5 17 2
≤x≤2,
4 2
x x
1, 4

2<x≤3.综上,得
5 17 2
≤x≤3.
即若只投放 1 个单位的固体碱,则能够维持有效抑制作用的时间为
3- 5 17 = 1 17 .
2
2
(2)当河中的碱浓度开始下降时,即刻第二次投放1个单位的固体碱,此后, 每一时刻河中的碱浓度认为是各次投放的碱在该时刻相应的碱浓度的和, 求河中时碱浓度可能取得的最大值. 解:(2)当 0≤x≤2 时,y=- 16 -x+8 单调递增,

《2.10第十节 函数模型及其应用》 教案

《2.10第十节 函数模型及其应用》  教案

教学过程一、课堂导入有一大群喝水、嬉戏的兔子,但是这群兔子曾使澳大利亚伤透了脑筋.1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们占领了整个澳大利亚,数量达到75亿只.可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气二、复习预习1.方程的根与函数零点有什么关系,函数零点的如何判断?2.用二分法求函数零点时需要注意些什么?3.涵数与方程的关系三、知识讲解考点1 几种常见的函数模型考点2 三种函数模型性质比较[探究] 1.直线上升、指数增长、对数增长的增长特点是什么?提示:直线上升:匀速增长,其增长量固定不变;指数增长:先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;对数增长:先快后慢,其增长速度缓慢.四、例题精析【例题1】【题干】一水池有两个进水口,一个出水口,每个水口的进、出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水,则一定正确的是()A.①B.①②C.①③D.①②③【答案】A【解析】由甲、乙两图知,进水速度是出水速度的12,所以0点到3点不出水,3点到4点也可能一个进水口进水,一个出水口出水,但总蓄水量降低,4点到6点也可能两个进水口进水,一个出水口出水,一定正确的是①.【例题2】【题干】某商品在近30天内每件的销售价格p (元)与时间t (天)的函数关系式是p =⎩⎨⎧t +20,0<t <25,t ∈N ,-t +100,25≤t ≤30,t ∈N *,且该商品的日销售量Q (件)与时间t (天)的函数关系式是Q =-t +40(0<t ≤30,t ∈N ).求这种商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?【解析】设日销售金额为y (元),则y =p ·Q ,即y =⎩⎨⎧-t 2+20t +800,0<t <25,t ∈N ,t 2-140t +4 000,25≤t ≤30,t ∈N ,=⎩⎨⎧-(t -10)2+900,0<t <25,t ∈N , ①(t -70)2-900,25≤t ≤30,t ∈N . ②由①知,当t =10时,y max =900; 由②知,当t =25时,y max =1 125. 由1 125>900,知y max =1 125, 即在第25天日销售额最大,为1 125元.【例题3】【题干】某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元.某月甲、乙两户共交水费y元,已知甲、乙两户该月用水量分别为5x,3x(吨).(1)求y关于x的函数;(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费.【解析】(1)当甲的用水量不超过4吨时,即5x ≤4,乙的用水量也不超过4吨,y =1.8(5x +3x )=14.4x ;当甲的用水量超过4吨,乙的用水量不超过4吨,即3x ≤4,且5x >4时,y =4×1.8+3x ×1.8+3(5x -4)=20.4x -4.8. 当乙的用水量超过4吨,即3x >4时,y =2×4×1.8+3×[(3x -4)+(5x -4)]=24x -9.6.所以y =⎩⎪⎨⎪⎧ 14.4x , 0≤x ≤45,20.4x -4.8, 45<x ≤43,24x -9.6, x >43.(2)由于y =f (x )在各段区间上均单调递增,当x ∈⎣⎢⎡⎦⎥⎤0,45时,y ≤f ⎝ ⎛⎭⎪⎫45<26.4;当x ∈⎝ ⎛⎦⎥⎤45,43时,y ≤f ⎝ ⎛⎭⎪⎫43<26.4;当x ∈⎝ ⎛⎭⎪⎫43,+∞时,令24x -9.6=26.4,解得x =1.5. 所以甲户用水量为5x =5×1.5=7.5吨,付费S 1=4×1.8+3.5×3=17.70(元);乙户用水量为3x =4.5吨,付费S 2=4×1.8+0.5×3=8.70(元).【例题4】【题干】(2011·山东高考)(本小题满分12分)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为80π3立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y千元.(1)写出y关于r的函数表达式,并求该函数的定义域;(2)求该容器的建造费用最小时的r.【解析】(1)设容器的容积为V ,由题意知V =4πr 33+πr 2l ,又V =80π3,⇨(1分) 所以4πr 33+πr 2l =80π3,解得l =803r 2-4r 3,⇨(2分)由于l ≥2r ,因此0<r ≤2.⇨(3分),所以圆柱的侧面积为2πrl =2πr ⎝ ⎛⎭⎪⎫803r 2-4r 3=160π3r -8πr 23, 两端两个半球的表面积之和为4πr 2,所以建造费用y =160πr -8πr 2+4πcr 2,定义域为(0,2].⇨(4分)(2)由(1),得y ′=-160πr 2-16πr +8πcr =c -r 2·⎝ ⎛⎭⎪⎫r 3-20c -2,0<r ≤2,⇨(5分) 由于c >3,所以c -2>0.当r 3-20c -2=0时,r = 320c -2.令 320c -2=m ,则m >0. 所以y ′=8π(c -2)r2 (r -m )(r 2+rm +m 2).⇨(7分) ①当0<m <2,即c >92时,当r =m 时,y ′=0;当r ∈(0,m )时,y ′<0;当r ∈(m,2)时,y ′>0,所以r =m 是函数y 的极小值点,也是最小值点.⇨(9分)②当m≥2,即3<c≤92时,当r∈(0,2)时,y′<0,函数单调递减,所以r=2是函数y的最小值点.⇨(11分)综上,当3<c≤92时,建造费用最小时r=2;当c>92时,建造费最小时r=320c-2.⇨(12分)五、课堂运用【基础】1.如图是张大爷晨练时所走的离家距离(y)与行走时间(x)之间的函数关系图,若用黑点表示张大爷家的位置,则张大爷散步行走的路线可能是()解析:选C由于中间一段时间,张大爷离家的距离不变,故应选C.2.某地2011年底人口为500万,人均住房面积为6 m2,如果该城市人口平均每年增长率为1%.问为使2021年底该城市人均住房面积增加到7 m2,平均每年新增住房面积至少为(1.0110≈1.104 6)()A.90万m2B.87万m2C.85万m2D.80万m2500×(1+1%)10×7-500×610≈86.6(万m 2)≈87(万m2).解析:选B由题意3.如图所示,点P在边长为1的正方形的边上运动,设M是CD边的中点,则当点P沿着A-B-C-M运动时,以点P经过的路程x为自变量,将三角形APM的面积y看作路程x的函数,则其函数图象大致是()解析:选A 当0≤x ≤1时,y =12·x ·1=12x ; 当1<x ≤2时,y =1-12(x -1)-14(2-x )-14=-14x +34; 当2<x ≤2.5时,y =12⎝ ⎛⎭⎪⎫52-x ×1=54-12x . 则y =⎩⎪⎨⎪⎧ 12x ,0≤x ≤1,-14x +34,1<x ≤2,-12x +54,2<x ≤2.5.根据函数可以画出其大致图象,故选A.【巩固】4.一高为H,满缸水量为V的鱼缸截面如图所示,其底部破了一个小洞,满缸水从洞中流出.若鱼缸水深为h时的水的体积为v,则函数v=f(h)的大致图象可能是图中的________.解析:当h=0时,v=0可排除①、③;由于鱼缸中间粗两头细,∴当h在H2附近时,体积变化较快;h小于H2时,增加越来越快;h大于H2时,增加越来越慢.答案:②5.某商场宣传在节假日对顾客购物实行一定的优惠,商场规定:①如一次购物不超过200元,不予以折扣;②如一次购物超过200元,但不超过500元,按标价予以九折优惠;③如一次购物超过500元的,其中500元给予九折优惠,超过500元的给予八五折优惠;某人两次去购物,分别付款176元和432元,如果他只去一次购买同样的商品,则应付款________元.解析:由题意知付款432元,实际标价为432×109=480元,如果一次购买标价176+480=656元的商品应付款500×0.9+156×0.85=582.6元.答案:582.6【拔高】6.A,B两城相距100 km,在两城之间距A城x(km)处建一核电站给A,B两城供电,为保证城市安全,核电站距城市距离不得小于10 km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A城供电量为每月20亿度,B城为每月10亿度.(1)求x的取值范围;(2)把月供电总费用y表示成x的函数;(3)核电站建在距A城多远,才能使供电总费用y最少?解:(1)x的取值范围为[10,90].(2)y=5x2+52(100-x)2(10≤x≤90).(3)由y=5x2+52(100-x)2=152x2-500x+25 000=152⎝⎛⎭⎪⎫x-10032+50 0003,得x=1003时,y min=50 0003,即核电站建在距A城1003km处,能使供电总费用y最少.7.目前某县有100万人,经过x年后为y万人.如果年平均增长率是1.2%,请回答下列问题:(1)写出y关于x的函数解析式;(2)计算10年后该县的人口总数(精确到0.1万人);(3)计算大约多少年后该县的人口总数将达到120万(精确到1年).解:(1)当x =1时,y =100+100×1.2%=100(1+1.2%);当x =2时,y =100(1+1.2%)+100(1+1.2%)×1.2%=100(1+1.2%)2;当x =3时,y =100(1+1.2%)2+100(1+1.2%)2×1.2%=100(1+1.2%)3;…故y 关于x 的函数解析式为y =100(1+1.2%)x (x ∈N *).(2)当x =10时,y =100×(1+1.2%)10=100×1.01210≈112.7.故10年后该县约有112.7万人.(3)设x 年后该县的人口总数为120万,即100×(1+1.2%)x =120,解得x =log 1.012120100≈15.3故大约16年后该县的人口总数将达到120万.8.据气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示,过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即为t(h)内沙尘暴所经过的路程s(km).(1)当t=4时,求s的值;(2)将s随t变化的规律用数学关系式表示出来;(3)若N城位于M地正南方向,且距M地650 km,试判断这场沙尘暴是否会侵袭到N城.如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.解:(1)由图象可知:当t =4时,v =3×4=12,∴s =12×4×12=24.(2)当0≤t ≤10时,s =12·t ·3t =32t 2;当10<t ≤20时,s =12×10×30+30(t -10)=30t -150;当20<t ≤35时,s =12×10×30+10×30+(t -20)×30-12×(t -20)×2(t -20)=-t 2+70t -550. 综上可知,s =⎩⎪⎨⎪⎧ 32t 2, t ∈[0,10],30t -150, t ∈(10,20],-t 2+70t -550, t ∈(20,35].(3)∵t ∈[0,10]时,s max =32×102=150<650,t ∈(10,20]时,s max =30×20-150=450<650,∴当t ∈(20,35]时,令-t 2+70t -550=650,解得t 1=30,t 2=40.∵20<t ≤35,∴t =30,即沙尘暴发生30 h 后将侵袭到N 城.课程小结常见函数模型的理解(1)直线模型:即一次函数模型,其增长特点是直线上升(x的系数k>0),通过图像可以很直观地认识它.(2)指数函数模型:能用指数型函数表达的函数模型,其增长特点是随着自变量的增大,函数值增大的速度越来越快(a>1),常形象地称为“指数爆炸”.注意:指数函数y=a x(a>1),从图像上看,在开始过程中增长缓慢,但随着x的逐渐增大,当x增加一个非常小的增量Δx,其函数值变化Δy会大得惊人,因此常称之为“指数爆炸”.(3)对数函数模型:能用对数函数表达式表达的函数模型,其增长的特点是开始阶段增长的较快(a>1),但随着x的逐渐增大,其函数值变化越来越慢,常称之为“蜗牛式增长”.(4)幂函数型函数模型:能用幂函数表达的函数模型,其增长情况随x n中n的取值变化而定,常用的有二次函数模型.(5)“对勾”函数模型,形如f(x)=x+ax(a>0,x>0)的函数模型,在现实生活中也有着广泛的应用,常利用“基本不等式”解决,有时利用函数的单调性求解最值.31 / 31。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点10函数模型及其应用【命题趋势】从近几年高考可以看出,越来越注重对应用问题的理解以及阅读能力的考查,而对函数模型的考查可以涉及此部分知识点,所以我们要引起重视,具体掌握以下几点:(1)了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义.(2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.【重要考向】一、二次函数模型的应用二、指数函数、对数函数模型的应用三、分段函数模型的应用四、函数模型的比较二次函数模型的应用解函数应用题的一般步骤,可分以下四步进行:(1)认真审题:弄清题意,分清条件和结论,理顺数量关系,初步选择模型;(2)建立模型:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型;(3)求解模型:求解数学模型,得出数学结论;(4)还原解答:将利用数学知识和方法得出的结论,还原到实际问题中.用框图表示如下:建模审题、转化、抽象问题 解决 解模 运算还原 结合实际意义【巧学妙记】在函数模型中,二次函数模型占有重要的地位.根据实际问题建立二次函数解析式后,可以利用配方法、判别式法、换元法、函数的单调性等来求函数的最值, 从而解决实际问题中的利润最大、用料最省等问题.【典例】1.某电动小汽车生产企业,年利润=(出厂价-投入成本)⨯年销售量.已知上年度生产电动小汽车的投入成本为1万元/辆,出厂价为1.2万/辆,年销售量为10000辆,本年度为打造绿色环保电动小汽车,提高产品档次,计划增加投入成本,若每辆电动小汽车投入成本增加的比例为x (01x <<),则出厂价相应提高的比例为0.75x .同时年销售量增加的比例为0.6x .(1)写出本年度预计的年利润y (万元)与投入成本增加的比例x 的函数关系式; (2)为了使本年度的年利润最大,每辆车投入成本增加的比例应为多少?最大年利润是多少?【答案】(1)26002002000y x x =-++(01x <<);每辆车投入成本增加的比例为16时,本年度的年利润最大,且最大年利润是60503万元. 【解析】(1)由题意,得()()()1.210.75111000010.6y x x x ⎡⎤=⨯+-⨯+⨯⨯+⎣⎦实际问题数学问题数学问题答案实际问题结论(01x <<),即26002002000y x x =-++(01x <<).(2)2216050600200200060063y x x x ⎛⎫=-++=--+ ⎪⎝⎭.∴当16x =时,y 取得最大值,为60503, ∴每辆车投入成本增加的比例为16时,本年度的年利润最大,且最大年利润是60503万元.2.因新冠肺炎疫情影响,呼吸机成为紧缺商品,某呼吸机生产企业为了提高产品的产量,投入90万元安装了一台新设备,并立即进行生产,预计使用该设备前()n n ∈*N 年的材料费、维修费、人工工资等共为(2552n n +)万元,每年的销售收入55万元.设使用该设备前n 年的总盈利额为()f n 万元.(1)写出()f n 关于n 的函数关系式,并估计该设备从第几年开始盈利;(2)使用若干年后,对该设备处理的方案有两种:案一:当总盈利额达到最大值时,该设备以10万元的价格处理;方案二:当年平均盈利额达到最大值时,该设备以50万元的价格处理;问哪种方案处理较为合理?并说明理由. 【解析】(1)由题意得:2255()5590(5)509022f n n n n n n =--+=-+-由()0f n >得25509002n n -+->即220360n n -+<,解得218n <<由n ∈*N ,设备企业从第3年开始盈利. (2)方案一总盈利额25()(10)1602f n n =--+,当10n =时,max ()160f n =故方案一共总利润16010170+=,此时10n = 方案二:每年平均利润()536550()502022f n n n n =-+-⨯≤,当且仅当6n =时等号成立 故方案二总利润62050170⨯+=,此时6n =比较两种方案,获利都是170万元,但由于第一种方案只需要10年,而第二种方案需要6年,故选择第二种方案更合适.【名师点睛】本小题主要考查一元二次不等式的解法,考查基本不等式求最值,属于中档题. (1)利用n 年的销售收入减去成本,求得()f n 的表达式,由()0f n >,解一元二次不等式求得从第3年开始盈利.(2)方案一:利用配方法求得总盈利额的最大值,进而求得总利润;方案二:利用基本不等式求得6n =时年平均利润额达到最大值,进而求得总利润. 比较两个方案获利情况,作出合理的处理方案.指数函数、对数函数模型的应用(1)在实际问题中,有关人口增长、银行利率、细胞分裂等增长率问题常用指数函数模型表示.通常可以表示为()1xy N p =+(其中N 为基础数,p 为增长率,x 为时间)的形式.求解时可利用指数运算与对数运算的关系.(2)已知对数函数模型解题是常见题型,准确进行对数运算及指数与对数的互化即可.3.国家规定某行业征税如下:年收入在280万元及以下的税率为p %,超过280万元的部分按(p +2)%征税,有一公司的实际缴税比例为(p +0.25)%,则该公司的年收入是( ) A .560万元 B .420万元 C .350万元 D .320万元【答案】 D【解析】 设该公司的年收入为x 万元(x >280),则有 280×p %+(x -280)(p +2)%x =(p +0.25)%,解得x =320.故该公司的年收入为320万元.4.某大型民企为激励创新,计划逐年加大研发资金投入.若该民企2016年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该民企全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)( ) A .2017年 B .2018年 C .2019年 D .2020年 【答案】 D【解析】 设从2016年起,过了n (n ∈N *)年该民企全年投入的研发资金超过200万元,则130×(1+12%)n ≥200,则n ≥lg2013lg 1.12≈0.30-0.110.05=3.8,由题意取n =4,则n +2 016=2 020.故选D.5.一片森林原来面积为a ,计划每年砍伐一些树,且使森林面积每年比上一年减少p %,10年后森林面积变为2a .为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林面积为2a . (1)求p %的值;(2)到今年为止,该森林已砍伐了多少年? (3)今后最多还能砍伐多少年? 【解析】(1)由题意得()101%2a a p -=,即()1011%2p -=, 解得1101%1()2p =- .(2)设经过m a ,则()1%ma p -=,即1102111())2210,2(m m ==,解得m =5,故到今年为止,已砍伐了5年.(3)设从今年开始,以后还可砍伐n 年,则n 年后的森林面积为()1%2na p -,令()11%24n a p a -≥,即()1%4np -≥,3102(11())22n≥,3102n ≤,解得n ≤15,故今后最多还能砍伐15年.分段函数模型的应用分段函数模型的应用(1)在现实生活中,很多问题的两变量之间的关系,不能用同一个关系式给出,而是由几个不同的关系式构成分段函数.如出租车票价与路程之间的关系,就是分段函数. (2)分段函数主要是每一段上自变量变化所遵循的规律不同,可以先将其作为几个不同问题,将各段的规律找出来,再将其合在一起.要注意各段变量的范围,特别是端点. (3)构造分段函数时,要力求准确、简洁,做到分段合理,不重不漏. 【巧学妙记】数学建模是高中数学六大核心素养之一,在高中数学中,应用题是常见考查形式:(1)求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型;(2)求解应用性问题时,不仅要考虑函数本身的定义域,还要结合实际问题理解自变量的取值范围;【典例】6.已知某公司生产某款手机的年固定成本为40万美元,每生产1万只还需另投入16万美元.设该公司一年内共生产该款手机x 万只并全部销售完,每万只的销售收入为R (x )万美元,且R (x )=⎩⎪⎨⎪⎧400-6x ,0<x ≤40,7 400x-40 000x 2,x >40.(1)写出年利润W (万美元)关于年产量x (万只)的函数解析式;(2)当年产量为多少万只时,该公司在该款手机的生产中所获得的年利润最大?并求出最大年利润.【解析】 (1)当0<x ≤40时,W =xR (x )-(16x +40)=-6x 2+384x -40,当x >40时,W =xR (x )-(16x +40)=-40 000x -16x +7 360.所以W =⎩⎪⎨⎪⎧-6x 2+384x -40,0<x ≤40,-40 000x -16x +7 360,x >40.(2)①当0<x ≤40时,W =-6(x -32)2+6 104, 所以W max =W (32)=6 104;②当x >40时,W =-40 000x -16x +7 360,由于40 000x+16x ≥240 000x×16x =1 600, 当且仅当40 000x =16x ,即x =50∈(40,+∞)时,取等号,所以W 取最大值5 760.综合①②,当年产量为32万只时,W 取最大值6 104万美元.7.某公司利用APP 线上、实体店线下销售产品A ,产品A 在上市20天内全部售完.据统计,线上日销售量f (t )、线下日销售量g (t )(单位:件)与上市时间t (t ∈ N ∗)天的关系满足:f (t )={ 10t, 1≤t ≤10,−10t +200, 10<t ≤20,g(t)=−t 2+20t(1≤t ≤20),产品A 每件的销售利润为ℎ(t)={40, 1≤t ≤15,20, 15<t ≤20 (单位:元)(日销售量=线上日销售量+线下日销售量).(1)设该公司产品A 的日销售利润为F(t),写出F(t)的函数解析式; (2)产品A 上市的哪几天给该公司带来的日销售利润不低于5000元? 【解析】(1(由题意可得:当1≤t ≤10时,日销售量为10t +(−t 2+20t )=−t 2+30t ,日销售利润为:40(−t 2+30t )(当10<t ≤15时,日销售量为−10t +200+(−t 2+20t )=−t 2+10t +200,日销售利润为:40(−t 2+10t +200)(当15<t ≤20时,日销售量为−10t +200+(−t 2+20t )=−t 2+10t +200,日销售利润为:20(−t 2+10t +200).综上可得:F(t)={40⋅(−t 2+30t), 1≤t ≤10,40⋅(−t 2+10t +200), 10<t ≤15,20⋅(−t 2+10t +200),15<t ≤20.(2)当1≤t ≤10时,由40(−t 2+30t)≥5000,解得5≤t ≤10( 当10<t ≤15时,由40(−t 2+10t +200)≥5000,解得10<t ≤15( 当15<t ≤20时,20(−t 2+10t +200)≥5000,无解. 故第5天至第15天给该公司带来的日销售利润不低于5000元.函数模型的比较几类函数模型的增长差异函数性质 ()1x y a a => ()log 1a y x a => ()0n y x n =>在(0,+∞)上的增减性单调递增 单调递增 单调递增增长速度先慢后快,指数爆炸先快后慢,增长平缓介于指数函数与对数函数之间,相对平稳图象的变化随x 的增大,图象与y 轴接近平行随x 的增大,图象与x 轴接近平行随n 值变化而各有不同值的比较 存在一个0x ,当0x x >时,有log n x a x x a <<【巧学妙记】根据几组数据,从所给的几种函数模型中选择较好的函数模型时, 通常是先根据所给的数据确定各个函数模型中的各个参数, 即确定解析式,然后再分别验证、估计,选出较好的函数模型.【典例】10.某工厂第一季度某产品月生产量依次为10万件,12万件,13万件,为了预测以后每个月的产量,以这3个月的产量为依据,用一个函数模拟该产品的月产量y (单位:万件)与月份x 的关系. 模拟函数1:by ax c x=++;模拟函数2:x y m n s =⋅+. (1)已知4月份的产量为13.7万件,问选用哪个函数作为模拟函数较好?(2)受工厂设备的影响,全年的每月产量都不超过15万件,请选用合适的模拟函数预测6月份的产量.【解析】(1)若用模拟函数1:by ax c x=++, 则有1012221333a b c b a c b a c ⎧⎪=++⎪⎪=++⎨⎪⎪=++⎪⎩,解得125,3,22a b c ==-=,即32522x y x =-+, 当4x =时,13.75y =. 若用模拟函数2:x y m n s =⋅+,则有23101213mn smn s mn s=+⎧⎪=+⎨⎪=+⎩,解得18,,142m n s =-==,即3142xy -=-,当4x =时,13.5y =. 所以选用模拟函数1较好. (2)因为模拟函数1:32522x y x =-+是单调增函数,所以当12x =时,生产量远大于他的最高限量;模拟函数2:3142xy -=-也是单调增函数,但生产量14y <,所以不会超过15万件,所以应该选用模拟函数2:3142xy -=-好.当6x =时,3614213.875y -=-=,所以预测6月份的产量为13.875万件.一、单选题1.下列四个图象中,与所给三个事件吻合最好的顺序为( )①我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; ②我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; ③我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.其中y 表示离开家的距离,t 表示所用时间.A .④①②B .③①②C .②①④D .③②①2.某地区植被破坏,土地沙化越来越严重,最近三年测得沙漠增加值分别为0.2万公顷、0.4万公顷和0.76万公顷,则沙漠增加值y (万公顷)关于年数x (年)的函数关系较为近似的是( )A .y =0.2xB .210=xy C .y =110x 2+2x D .160.2log y x =+ 3.2021年初我国脱贫攻坚战取得了全面胜利,现行标准下区域性整体贫困得到解决,完成了消除绝对贫困的艰巨任务.经过数据分析得到某山区贫困户年总收入与各项投入之间的关系是:贫困户年总收入y (元)=1200+4.1⨯年扶贫资金(元)+4.3⨯年自投资金(元)900+⨯自投劳力(个).若一个贫困户家中只有两个劳力,2016年自投资金5000元,以后每年的自投资金均比上一年增长10%,2016年获得的扶贫资金为30000元,以后每年获得的扶贫资金均比上一年减少5000元,则该贫困户在2021年的年总收入约为()51.1 1.6≈( ) A .48100元 B .57900元 C .58100元 D .64800元 4.“喊泉”是一种地下水的毛细现象,人们在泉口吼叫或发出其他声音时,声波传入泉洞内的储水池,进而产生“共鸣”等作用,激起水波,形成涌泉,声音越大,涌起的泉水越高.已知听到的声强I 与标准声强0I (0I 约为1210-,单位:2W /m )之比的常用对数称作声强的声强级,记作L (贝尔),即0lg I L I =.取贝尔的10倍作为响度的常用单位,简称为分贝,已知某处“喊泉”的声音强度y (分贝)与喷出的泉水高度x (m )之间满足关系式2y x =,甲、乙两名同学大喝一声激起的涌泉的最高高度分别为70m ,60m .若甲同学大喝一声的声强大约相当于n 个乙同学同时大喝一声的声强,则n 的值约为( )A .10B .100C .200D .10005.已知声音强弱的等级()f x (单位:dB)由声音强度x (单位:2W/m )决定.科学研究发现,()f x 与lg x 成线性关系,如喷气式飞机起飞时,声音强度为2100W/m 声音强弱的等级为140dB ;某动物发出的鸣叫,声音强度为21W/m ,声音强弱的等级为120dB .若某声音强弱等级为90dB ,则声音强度为( )2W/mA .0.001B .0.01C .0.1D .16.单位时间内通过道路上指定断面的车辆数被称为“道路容量”,与道路设施、交通服务、环境、气候等诸多条件相关.假设某条道路一小时通过的车辆数N 满足关系2010000.70.3v N v v d =++,其中0d 为安全距离,v 为车速()m /s .当安全距离0d 取30m 时,该道路一小时“道路容量”的最大值约为( )A .135B .149C .165D .1957.当x 越来越大时,下列函数中增长速度最快的是( )A .100y x =B .e 2x y ⎛⎫= ⎪⎝⎭C .2log y x =D .100y x =二、解答题8.某企业为努力实现“碳中和”目标,计划从明年开始,通过替换清洁能源减少碳排放量,每年减少的碳排放量占上一年的碳排放量的比例均为(01)<<x x ,并预计8年后碳排放量恰好减少为今年碳排放量的一半.(1)求x 的值;(2)若某一年的碳排放量为今年碳排放量的2,按照计划至少再过多少年,碳排放量不超过今年碳排放量的116? 9.上海市某地铁项目正在紧张建设中,通车后将给更多市民出行带来便利,已知该线路通车后,地铁的发车时间间隔t (单位:分钟)满足220t ≤≤,*t N ∈,经测算,在某一时段,地铁载客量与发车时间间隔t 相关,当1020t ≤≤时地铁可达到满载状态,载客量为1200人,当210t ≤<时,载客量会减少,减少的人数与(10)t -的平方成正比,且发车时间间隔为2分钟时载客量为560人,记地铁载客量为()p t .(1)求()p t 的解析式;(2)若该时段这条线路每分钟的净收益为6()3360360p t Q t-=-(元),问当发车时间间隔为多少时,该时段这条线路每分钟的净收益最大?10.新冠肺炎疫情发生以后,口罩供不应求,某口罩厂日夜加班生产,为抗击疫情做贡献.生产口罩的固定成本为200万元,每生产x 万箱,需另投入成本()p x 万元,当产量不大于90万箱时,()991708p x x =--;当产量超过90万箱时,()1001002000p x x x =+--,若每箱口罩售价100元,通过市场分析,该口罩厂生产的口罩可以全部销售完.(()求口罩销售利润y (万元)关于产量x (万箱)的函数关系式;(()当产量为多少万箱时,该口罩生产厂在生产中所获得利润最大?11.杭州市将于2022年举办第19届亚运会,本届亚运会以“绿色、智能、节位、文明”为办赛理念,展示杭州生态之美、文化之韵,充分发挥国际重大赛事对城市发展的牵引作用,从而促进经济快速发展,筹备期间,某公司带来了一种智能设备供采购商洽谈采购,并决定大量投放当地市场,已知该种设备年固定研发成本为50万元,每生产一台需另投入80元,设该公司一年内生产该设备x 万台且全部售完,每万台的销售收入()G x (万元)与年产量x(万台)满足如下关系式:()()()()1802,0202000900070,201x x G x x x x x ⎧-<≤⎪=⎨+->⎪+⎩(1)写出年利润()W x (万元)关于年产量x (万台)的函数解析式:(利润=销售收入-成本)(2)当年产量为多少万台时,该公司获得的年利润最大?并求最大利润.12.某公司生产某种电子产品的固定成本为2万元,每生产一台该产品需增加投入100元,已知总收入R (单位:元)关于月产量x (单位:台)满足函数:21400,0400280000,400x x x R x ⎧-≤≤⎪=⎨⎪>⎩(1)将利润()f x (单位:元)表示成月产量x 的函数(2)当月产量x 为何值时,公司所获利润最大,最大利润是多少?(利润+总成本=总收入)一、单选题1.(2020·全国高考真题(理))在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( )A .10名B .18名C .24名D .32名2.(2011·湖北高考真题(理))放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M (t )=M 0,其中M 0为t=0时铯137的含量.已知t=30时,铯137含量的变化率是﹣10In2(太贝克/年),则M (60)=( )A .5太贝克B .75In2太贝克C .150In2太贝克D .150太贝克 3.(2014·湖南高考真题(理))某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为A .2p q + B .(1)(1)12p q ++-C D 14.(2020·海南高考真题)基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rt I t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) ( )A .1.2天B .1.8天C .2.5天D .3.5天二、双空题5.(2019·北京高考真题(理))李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.三、填空题6.(2011·陕西高考真题(理))植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为_____(米).7.(2015·四川高考真题(理))某食品的保鲜时间y (单位:小时)与储存温度x (单位:)满足函数关系(为自然对数的底数,k 、b 为常数).若该食品在0的保鲜时间设计192小时,在22的保鲜时间是48小时,则该食品在33的保鲜时间是______小时.四、解答题8.(2012·全国高考真题(理))某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n N ∈)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100天记录的各需求量的频率作为各需求量发生的概率.(i )若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列,数学期望及方差;(ii )若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.9.(2015·上海高考真题(理))如图,A , B ,C 三地有直道相通, 5AB =千米,C 3A =千米, C 4B =千米.现甲、乙两警员同时从A 地出发匀速前往 B 地,经过t 小时,他们之间的距离为 f t (单位:千米).甲的路线是AB ,速度为5千米/小时,乙的路线是C A B ,速度为8千米/小时.乙到达B 地后原地等待.设1t t =时乙到达C 地.(1)求1t 与 ()1f t 的值;(2)已知警员的对讲机的有效通话距离是3千米.当 11t t ≤≤时,求f t 的表达式,并判断 f t 在[]1,1t 上得最大值是否超过3?说明理由.10.(2018·上海高考真题)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S 中的成员仅以自驾或公交方式通勤.分析显示:当S 中%x(0100x <<)的成员自驾时,自驾群体的人均通勤时间为()30030180029030100x f x x x x <≤⎧⎪=⎨+-<<⎪⎩,,(单位:分钟),而公交群体的人均通勤时间不受x 影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x 在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间? (2)求该地上班族S 的人均通勤时间()g x 的表达式;讨论()g x 的单调性,并说明其实际意义.11.(2012·江苏高考真题)如图,建立平面直角坐标系xoy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程221(1)(0)20y kx k x k =-+>表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.12.(2015·江苏高考真题)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为12l l ,,山区边界曲线为C ,计划修建的公路为l ,如图所示,M ,N 为C 的两个端点,测得点M 到12l l ,的距离分别为5千米和40千米,点N 到12l l ,的距离分别为20千米和2.5千米,以12l l ,所在的直线分别为x ,y 轴,建立平面直角坐标系xOy ,假设曲线C 符合函数2a y x b=+(其中a ,b 为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f t,并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.13.(2019·江苏高考真题)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P、Q,并修建两段直线型道路PB、QA.规划要求:线段PB、QA上的所有点到点O的距离均不小于圆....O的半径.已知点A、B到直线l的距离分别为AC和BD(C、D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)对规划要求下,若道路PB和QA的长度均为d(单位:百米).求当d最小时,P、Q 两点间的距离.一、单选题1.(2021·山东泰安市·高三三模)某化工厂对产生的废气进行过滤后排放,过滤过程中废气的污染物含量P (单位:mg/L )与时间(单位:h )间的关系为:0kt P Pe -=,其中0,P k 是正的常数.如果在前5h 消除了10%的污染物,则污染物减少50%需要花费的时间为( )(精确到1h ,参考数据0.9log 0.5 6.579≈)A .30B .31C .32D .332.(2021·浙江高一期末)为了保护水资源,提倡节约用水,某城市对居民实行“阶梯水价”,计费方法如下表:若某户居民本月交纳的水费为54元,则此户居民的用水量为( )A .36mB .39mC .315mD .318m3.(2021·山东聊城市·高三三模)声强级I L (单位:dB )由公式1210lg 10I I L -⎛⎫= ⎪⎝⎭给出,其中I 为声强(单位:W /m 2)一般正常人听觉能忍受的最高声强级为120dB ,平时常人交谈时声强级约为60dB ,那么一般正常人能忍受的最高声强是平时常人交谈时声强的( ) A .104倍 B .105倍 C .106倍 D .107倍4.(2021·湖南长沙市·雅礼中学高三月考)某公司为激励创新,计划逐年加大研发资金投入,若该公司2020年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据(lg1.12≈0.05,lg1.3≈0.11,lg2≈0.30)A .2021年B .2022年C .2023年D .2024年5.(2021·河北沧州市·高三三模)生物入侵指生物由原生存地侵入到另一个新的环境,从而对入侵地的生态系统造成危害的现象.若某人侵物种的个体平均繁殖数量为Q ,一年四季均可繁殖,繁殖间隔T 为相邻两代间繁殖所需的平均时间.在物种入侵初期,可用对数模型()ln K n n λ=来描述该物种累计繁殖数量n 与入侵时间K (单位:天)之间的对应关系,且1TQ λ=+,在物种入侵初期,基于现有数据得出9Q =,80T =.据此,累计繁殖数量比现有数据增加3倍所需要的时间约为(ln 20.69≈,ln 3 1.10≈)( )A .6.9天B .11.0天C .13.8天D .22.0天二、多选题6.(2021·浙江高一期末)如图,某池塘里浮萍的面积y (单位:2m )与时间t (单位:月)的关系为t y a =,关于下列说法正确的是( )A .浮萍每月的增长率为2B .浮萍每月增加的面积都相等C .第4个月时,浮萍面积超过280mD .若浮萍蔓延到2224m 2m 8m 、、所经过的时间分别是123t t t 、、,则2132t t t =+ 7.(2021·浙江高一期末)某市出租车收费标准如下:起步价为8元,起步里程为3km (不超过3km 按起步价付费);超过3km 但不超过8km 时,超过部分按每千米2.15元收费;超过8km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元,下列结论正确的是( )A .出租车行驶2km ,乘客需付费8元。

相关文档
最新文档