史上最全的数列通项公式的求法15种
数列通项公式方法大全很经典.docx

1 ,数列通项公式的十种求法:(1) 公式法(构造公式法)例1已知数列{a n}满足a n2a n 3 2n, a1= 2 ,求数列{a n}的通项公式。
解: a n^2a n 3 2n两边除以2n 1,得⅛⅛ =肆3,则⅛1 -2 =?,故数列{*}是2 2 2 2 2 2 2以a1 =2=I为首项,以3为公差的等差数列,由等差数列的通项公式,得an =1 (n_ 1)-,212 2 2n2 3 1所以数列{a n}的通项公式为a n =( n- )2n。
2 2评注:本题解题的关键是把递推关系式a n2a n 3 2n转化为⅛∙—∙¾ =卫,说明数列2 2 2{a⅛}是等差数列,再直接利用等差数列的通项公式求出寻=1 (n-1)-3,进而求出数列{a n}的通项公式。
(2) 累加法例2已知数列{a n}满足a n ^a n■ 2n ■ 1, a1=1 ,求数列{a n}的通项公式。
解:由a n ^a n ■ 2n 1 得a.1 - a. =2n 1 则a n = (a n -a n」)(a n」-a n/) III @3 -a2)@2-厲)a1=[2(n-1) 1] [2(n-2) 1]川(2 2 1) (2 1 1) 1-2[(n -1) (n - 2)川2 1] (n -1) 1=2罗(-1) 1=(n -1)(n 1) 12二n所以数列{a n}的通项公式为a n= n2。
评注:本题解题的关键是把递推关系式a n 1 = a n• 2n • 1转化为a n 1 - a n= 2n • 1 ,进而求出(a n -a. J (a.4 P Q)川'(a3 -a2) (a? -a1) ' α ,即得数列{a.}的通项公式。
变式:已知数列{a n}满足a n a n 2 3n1, a1= 3 ,求数列{a.}的通项公式。
(3) 累乘法例3已知数列{a n }满足a n .1. =2(n ∙ 1)5n a ., a 1 =3 ,求数列{a .}的通项公式。
数列求通项公式归纳总结

数列求通项公式归纳总结数列是数学中常见的概念,在各个领域都有着广泛的应用。
通过观察数列的规律并找出通项公式,可以使我们更好地理解数列的性质,进而解决更复杂的问题。
本文将对数列求通项公式的方法进行归纳总结。
一、等差数列求通项公式等差数列是指数列中相邻两项之间的差值都相等的数列。
设等差数列的首项为a1,公差为d,第n项为an,则等差数列的通项公式可以表示为:an = a1 + (n - 1)d其中,n为正整数。
二、等比数列求通项公式等比数列是指数列中相邻两项之间的比值都相等的数列。
设等比数列的首项为a1,公比为r,第n项为an,则等比数列的通项公式可以表示为:an = a1 * r^(n-1)其中,n为正整数。
三、斐波那契数列求通项公式斐波那契数列是指数列中第一项为1,第二项为1,之后每一项都等于前两项之和的数列。
设斐波那契数列的第n项为Fn,则斐波那契数列的通项公式可以表示为:Fn = ( (1 + sqrt(5))^n - (1 - sqrt(5))^n ) / (2^n * sqrt(5))其中,sqrt(5)表示5的开平方。
四、完全平方数列求通项公式完全平方数列是指数列中每一项都是一个完全平方数的数列。
设完全平方数列的第n项为an,则完全平方数列的通项公式可以表示为:an = n^2其中,n为正整数。
五、特殊数列求通项公式除了常见的等差数列、等比数列、斐波那契数列和完全平方数列,还有许多特殊的数列。
对于这些特殊的数列,求通项公式的方法也不尽相同,需要根据具体的规律进行归纳总结。
总结:数列求通项公式是数学中的一个重要内容,有着广泛的应用价值。
通过观察数列的规律并应用相应的方法,可以找到数列的通项公式,从而解决更加复杂的问题。
本文对等差数列、等比数列、斐波那契数列、完全平方数列以及特殊数列的求通项公式进行了归纳总结。
希望读者能够通过本文的介绍,掌握数列求通项公式的方法,并能够运用于实际问题的解决中。
数列通项公式的求法(最全)

非等差等比数列通 项公式的求法
构造法
构造法是一种常用 的数列通项公式求 法
构造法通过观察数 列的规律找出通项 公式
构造法需要一定的 数学基础和逻辑思 维能力
构造法可以应用于 非等差等比数列的 通项公式求法
数学归纳法
添加标题
定义:一种证明数学命题的方法通过证明一个命题对某个初始值成立并且假设对某个值 成立时可以推出对下一个值也成立从而证明命题对所有值都成立。
. 计算数列相邻项之间的差值得到差数列。 b. 观察差数列的规律寻找通项公式。 c. 验证通项公式的正确性。
适用范围:逐差法适用于等比数列、等差数列等有规律的数列。
单击此处输入你的项正文文字是您思想的提炼言简意赅的阐述观点。
注意事项:在使用逐差法时需要注意差数列的规律避免遗漏或错误。
单击此处输入你的项正文文字是您思想的提炼言简意赅的阐述观点。
步骤: . 确定数列的通项公式的一般形式 b. 确定数列的起始项和公差或 公比 c. 代入通项公式建立方程组 d. 求解方程组得到待定系数的值
. 确定数列的通项公式的一般形式 b. 确定数列的起始项和公差或公比 c. 代入通项公式建立方程组 d. 求解方程组得到待定系数的值
应用:适用于求解非等差等比数列的通项公式 单击此处输入你的项正文文字是您思想的提炼,言简的阐述观点。
公式中的1表示首项d表示公差
公式法的适用范围:已知首项 和公差的等差数列
累加法
累加法原理:通过累加数列的前n项和得到通项公式 累加法公式:n=Sn-S(n-1)其中Sn为前n项和 累加法应用:适用于已知数列的前n项和求通项公式 累加法示例:例如已知数列{1,3,5,7,9}的前n项和为Sn=n^2则通项公式为n=2n-1
数列通项公式办法大全很经典

1,数列通项公式的十种求法:(1)公式法(构造公式法)例1已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n na a ++-=,故数列{}2nn a 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nna n =-。
评注:本题解题的关键是把递推关系式1232n n n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n na n =+-,进而求出数列{}n a 的通项公式。
(2)累加法例2已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则 所以数列{}n a 的通项公式为2n a n =。
评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+,即得数列{}n a 的通项公式。
变式:已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
(3)累乘法例3已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式。
解:因为112(1)53n n n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯评注:本题解题的关键是把递推关系12(1)5n n n a n a +=+⨯转化为12(1)5n n na n a +=+,进而求出13211221n n n n a a a a a a a a a ---⋅⋅⋅⋅⋅,即得数列{}n a 的通项公式。
数列通项公式常见求法

数列通项公式常见求法1.等差数列:等差数列是指数列中相邻两项之间的差值保持不变的数列。
对于等差数列an,其通项公式可以通过以下方法求得:- 直接法:当等差数列已知首项a1和公差d时,通项公式可以通过观察数列的特点进行直接推导。
常用的通项公式为an = a1 + (n-1)d。
-递推法:对于等差数列,可以通过递推方法得到通项公式。
具体步骤是观察数列的前几项,找到相邻两项之间的关系,然后递推得到通项公式。
- 代数法:利用等差数列的性质,可以通过代数方法求得通项公式。
例如,可以使用方程an = a1 + (n-1)d,联立已知条件求解未知数。
2.等比数列:等比数列是指数列中相邻两项之间的比值保持不变的数列。
对于等比数列an,其通项公式可以通过以下方法求得:- 直接法:当等比数列已知首项a1和公比q时,通项公式可以通过观察数列的特点进行直接推导。
常用的通项公式为an = a1 * q^(n-1)。
-递推法:对于等比数列,可以通过递推方法得到通项公式。
具体步骤是观察数列的前几项,找到相邻两项之间的关系,然后递推得到通项公式。
- 代数法:利用等比数列的性质,可以通过代数方法求得通项公式。
例如,可以使用方程an = a1 * q^(n-1),联立已知条件求解未知数。
3.斐波那契数列:斐波那契数列是指数列中每一项都是前两项的和的数列。
斐波那契数列的通项公式可以通过以下方法求得:- 通项公式法:斐波那契数列有一个特殊的通项公式,即an = φ^n - (1-φ)^n / √5,其中φ为黄金分割比(约等于1.618)。
这个公式可以通过矩阵求解、特征方程、黄金分割法等方法推导得到。
4.幂方数列:幂方数列是指数列中每一项都是公比为一个固定值k的幂函数的数列。
幂方数列的通项公式可以通过以下方法求得:-递推法:对于幂方数列,可以通过递推方法得到通项公式。
具体步骤是观察数列的前几项,找到相邻两项之间的关系,然后递推得到通项公式。
数列通项公式的十种求法(非常经典)

数列通项公式的十种求法(1)公式法(构造公式法)例1 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232nn n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2nna 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。
评注:本题解题的关键是把递推关系式1232nn n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。
(2)累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =。
评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+,即得数列{}n a 的通项公式。
数列求通项公式的9种方法

四、加法构造
型如 an1 kan b ( k、b 为常数)的数列构造{an } 为等比数列
例 7 已知数列{an} 满足 a1 2 , an1 2an 3 ,求{an}
变式训练 9 已知数列{an} 满足 a1 1 , an1 3an 2 ,求{an} 的通
解法:将原递推公式两边同除以
q
n
1
得
a q
n1 n 1
p an q qn
m q
,设
bn
an qn
,得
例 12 已知数列{an} 满足 a1 1 , an1 2an 3n ,求{an} 的
变式训练 14
已知数列{an} 满足 a1
2 , an1
1 2 an
2n ,求{an}
三、累乘法:型如 an1 an f (n) 的数列
例4
已知数列{an} 满足 a1
Байду номын сангаас
1 , an1
n
n
2
an
,求
{an
}
的
变式训练 6 已知数列{an} 满足 a1 1 , an1 2n an ,求{an} 的 变式训练 7 已知数列{an} 满足 a1 1 , an n(an1 an ) ,求{a
1 , an1
an an
2
,求{an} 的
例 10(拓展).设由 a1
1, an
2n
an1
1 an1
n
1
2,3,定义数列an ,
变式训练 11
已知数列{an} 满足 a1
求数列通项公式的十一种方法

1)n
2
1)(n
n 1
1] [2( n (n 2)
(n 1)
1) 1
所以数列
an
2) L
2) 1]
1]
{an}的通项公式为
an
例2已知数列{an}满足an1
an
解法一:由an1an23n
1得an1
an
(anan 1) (an 1(2 3n11) 2(3n13n223(1 3n1)
(2
L
an2)L3n21) 3231)
n
an1an c (a2aJ,再利用类型(1)即可求得通项公式.我们看到此方法比较复杂
例6已知数列{an}中,a11,an2an11(n
解法一:
an 12an
比数列,再用累加法的
2.若an1
a
2),
a2
a1
则La3
a2
f(1) f(2) L
an
a
两边分别相加得an1
a1
n
f (n)
例1已知数列{an}满足an 1
an2n 1, ai 1,求数列{an}的通项公式。
解:由an 1an2n 1得an 1
an
2n 1则
an(an
[2(n
2[(n (n
2—
(n
2n
an 1) (a
1)
an0且
an
\求数列{an}的通项公式.
Sn
解:由已知
i
—)S
an得
i
Sn 1
Sn
化简有
Sn
n
Sn1
又
a1得a11
S
,
,
Sn
J
an
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最全的数列通项公式的求法数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。
而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。
本文给出了求数列通项公式的常用方法。
◆一、直接法根据数列的特征,使用作差法等直接写出通项公式。
例1. 根据下列数列的前几项,说出数列的通项公式: 1、1.3.7.15.31……… 2、1,2,5,8,12………3、21212,1,,,,3253………4、1,-1,1,-1………5、1、0、1、0………◆二、公式法①利用等差数列或等比数列的定义求通项②若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n nn 求解. (注意:求完后一定要考虑合并通项)例2.①已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S nn n .求数列{}n a 的通项公式.②已知数列{}n a 的前n 项和n S 满足21nS n n =+-,求数列{}n a 的通项公式.③ 已知等比数列{}n a 的首项11=a ,公比10<<q ,设数列{}n b 的通项为21+++=n n n a a b ,求数列{}n b 的通项公式。
③解析:由题意,321++++=n n n a a b ,又{}n a 是等比数列,公比为q ∴q a a a a b b n n n n n n =++=+++++21321,故数列{}n b 是等比数列,)1(211321+=+=+=q q q a q a a a b , ∴ )1()1(1+=⋅+=-q q q q q b nn n◆三、归纳猜想法如果给出了数列的前几项或能求出数列的前几项,我们可以根据前几项的规律,归纳猜想出数列的通项公式,然后再用数学归纳法证明之。
也可以猜想出规律,然后正面证明。
例3.(2002年北京春季高考)已知点的序列*),0,(N n x A n n ∈,其中01=x ,)0(2>=a a x ,3A 是线段21A A 的中点,4A 是线段32A A 的中点,…,n A 是线段12--n n A A 的中点,…(1) 写出n x 与21,--n n x x 之间的关系式(3≥n )。
(2) 设n n n x x a -=+1,计算321,,a a a ,由此推测{}n a 的通项公式,并加以证明。
(3) 略解析:(1)∵ n A 是线段32--n n A A 的中点, ∴)3(221≥+=--n x x x n n n (2)a a x x a =-=-=0121,2122322x x x x x a -+=-==a x x 21)(2112-=--, 3233432x x x x x a -+=-==a x x 41)(2123=--, 猜想*)()21(1N n a a n n ∈-=-,下面用数学归纳法证明01 当n=1时,a a =1显然成立;02 假设n=k 时命题成立,即*)()21(1N k a a k k ∈-=-则n=k+1时,k k k k k k x x x x x a -+=-=++++21121=k k k a x x 21)(211-=--+ =a a k k )21()21)(21(1-=---∴ 当n=k+1时命题也成立, ∴ 命题对任意*N n ∈都成立。
变式:(2006,全国II,理,22,本小题满分12分)设数列{a n }的前n 项和为S n ,且方程x 2-a n x -a n =0有一根为S n -1,n =1,2,3,… (Ⅰ)求a 1,a 2; (Ⅱ){a n }的通项公式◆四、累加(乘)法对于形如)(1n f a a n n +=+型或形如n n a n f a )(1=+型的数列,我们可以根据递推公式,写出n 取1到n 时的所有的递推关系式,然后将它们分别相加(或相乘)即可得到通项公式。
例4. 若在数列{}n a 中,31=a ,n a a n n +=+1,求通项n a 。
解析:由n a a n n +=+1得n a a n n =-+1,所以11-=--n a a n n ,221-=---n a a n n ,…,112=-a a ,将以上各式相加得:1)2()1(1+⋅⋅⋅+-+-=-n n a a n ,又31=a所以 n a =32)1(+-n n 例5.在数列{}n a 中,11=a ,n n n a a 21=+(*N n ∈),求通项n a 。
解析:由已知n n n a a 21=+,112--=n n n a a ,2212---=n n n a a ,…,212=a a,又11=a , 所以n a =1-n n a a ⋅⋅--21n n a a (1)2a a 1a ⋅=⋅-12n ⋅-22n …12⋅⋅=2)1(2-n n◆五、取倒(对)数法a 、rn n pa a =+1这种类型一般是等式两边取对数后转化为q pa a n n +=+1,再利用待定系数法求解b 、数列有形如0),,(11=--n n n n a a a a f 的关系,可在等式两边同乘以,11-n n a a 先求出.,1n na a 再求得c 、)()()(1n h a n g a n f a n nn +=+解法:这种类型一般是等式两边取倒数后换元转化为q pa a n n +=+1。
例6..设数列}{n a 满足,21=a ),N (31∈+=+n a a a n nn 求.n a 解:原条件变形为.311n n n n a a a a =⋅+⋅++两边同乘以,11+⋅n n a a 得11131+=⋅+n n a a .∵113211,211)2113-+=+∴+=+n n n n a a a (∴.13221-⨯=-n n a 例7 、 设正项数列{}n a 满足11=a ,212-=n n a a (n ≥2).求数列{}n a 的通项公式.解:两边取对数得:122log 21log -+=n n a a ,)1(log 21log 122+=+-n n a a ,设1log 2+=n an b ,则12-=n n b b {}n b 是以2为公比的等比数列,11log 121=+=b .11221--=⨯=n n n b ,1221log -=+n a n,12log 12-=-n a n , ∴1212--=n n a变式:1.已知数列{a n }满足:a 1=32,且a n =n 1n 13na n 2n N 2a n 1*≥∈--(,)+-(1) 求数列{a n }的通项公式;(2) 证明:对于一切正整数n ,不等式a 1a 2……a n2n !2、若数列的递推公式为11113,2()n na n a a +==-∈,则求这个数列的通项公式。
3、已知数列{n a }满足2,11≥=n a 时,n n n n a a a a 112--=-,求通项公式。
4、已知数列{a n }满足:1,13111=+⋅=--a a a a n n n ,求数列{a n }的通项公式。
5、若数列{a n }中,a 1=1,a 1+n =22+n na a n ∈N +,求通项a n .◆六、迭代法迭代法就是根据递推式,采用循环代入计算. 例8、(2003·高考·广东)设a 0为常数,且a n =3 n -1-2 a n -1(n 为正整数)证明对任意n≥1 ,a n = [ 3 n +(-1)n -1· 2 n ]+(-1)n · 2 na 0 证明:a n =3 n -1-2 a n -1=3 n -1-2(3 n -2-2 a n -2)=3 n -1-2· 3 n -2+2 2(3 n -3-2 a n -3)=3 n -1-2 ·3 n -2+2 2 ·3 n -3-2 3(3 n -4-2 a n -4) ……… ………=3 n -1-2·3 n -2+2 2·3 n –3 -…+(-1)n -1·2 n -1+(-1)n ·2 na 0(-1)n ·2 n a 0 前面的n 项组成首项为3 n -1,公比为-的等比数列,这n 项的和为:= [ 3 n +(-1)n -1·2 n]∴ a n = [ 3 n +(-1)n -1· 2 n ]+(-1)n · 2 na 0◆七、待定系数法:求数列通项公式方法灵活多样,特别是对于给定的递推关系求通项公式,观察、分析、推理能力要求较高。
通常可对递推式变换,转化成特殊数列(等差或等比数列)来求解,该方法体现了数学中化未知为已知的化归思想,运用待定系数法变换递推式中的常数就是一种重要的转化方法。
1、通过分解常数,可转化为特殊数列{a n +k}的形式求解。
一般地,形如a 1+n =pa n +q (p ≠1,pq ≠0)型的递推式均可通过待定系数法对常数q 分解法:设a 1+n +k=p (a n +k )与原式比较系数可得pk -k=q ,即k=1-p q,从而得等比数列{a n +k}。
例9、数列{a n }满足a 1=1,a n =21a 1-n +1(n ≥2),求数列{a n }的通项公式。
解:由a n =21a 1-n +1(n ≥2)得a n -2=21(a 1-n -2),而a 1-2=1-2=-1,∴数列{ a n -2}是以21为公比,-1为首项的等比数列∴a n -2=-(21)1-n ∴a n =2-(21)1-n说明:通过对常数1的分解,进行适当组合,可得等比数列{ a n -2},从而达到解决问题的目的。
练习、1数列{a n }满足a 1=1,0731=-++n n a a ,求数列{a n }的通项公式。
解:由0731=-++n n a a 得37311+-=+n n a a 设a )(311k a k n n +-=++,比较系数得373=--k k 解得47-=k∴{47-n a }是以31-为公比,以43471471-=-=-a 为首项的等比数列∴1)31(4347--⨯-=-n n a 1)31(4347--⨯-=⇒n n a2、已知数列{}n a 满足11=a ,且132n n a a +=+,求n a .解:设)(31t a t a n n +=++,则1231=⇒+=+t t a a n n ,⇒+=++)1(311n n a a {}1+n a 是以)1(1+a 为首项,以3为公比的等比数列⇒⇒⋅=⋅+=+--111323)1(1n n n a a 1321-⋅=-n n a点评:求递推式形如q pa a n n +=+1(p 、q 为常数)的数列通项,可用迭代法或待定系数法构造新数列)1(11pqa p p q a n n -+=-++来求得,也可用“归纳—猜想—证明”法来求,这也是近年高考考得很多的一种题型.2、递推式为11+++=n n n q pa a (p 、q 为常数)时,可同除1+n q ,得111+⋅=++nnn n q a q p q a ,令n n nq a b =从而化归为q pa a n n +=+1(p 、q 为常数)型.、例10.已知数列{}n a 满足11=a ,123-+=n nn a a )2(≥n ,求n a .解:将123-+=n n n a a 两边同除n3,得n n n n a a 32131-+=⇒1133213--+=n n n n a a 设n n n a b 3=,则1321-+=n n b b .令)(321t b t b n n -=--⇒t b b n n 31321+=-⇒3=t .条件可化成)3(3231-=--n n b b ,数列{}3-n b 是以3833311-=-=-a b 为首项,32为公比的等比数列.1)32(383-⨯-=-n n b .因n n n a b 3=, )3)32(38(331+⨯-==∴-n n n n n b a ⇒2123++-=n n n a .3、形如b an pa a n n ++=+1)001(≠≠,a 、p 解法:这种类型一般利用待定系数法构造等比数列,即令)()1(1y xn a p y n x a n n ++=++++,与已知递推式比较,解出y x ,,从而转化为{}y xn a n ++是公比为p 的等比数列。