指数与对数运算练习题

合集下载

指数式与对数式的互化 练习题【难题】-推荐下载

指数式与对数式的互化 练习题【难题】-推荐下载

指数式与对数式的互化(三)1.若log x=z,则( )A.y7=x z B.y=x7z C.y=7•x z D.x=z7y【考点】指数式与对数式的互化.【专题】计算题;函数的性质及应用.【分析】先把对数化为指数,再两边乘方,即可得出结论.【解答】解:∵log x=z,∴x z=,两边7次方,得x7z=y,即y=x7z.故选:B.【点评】本题考查了把对数化为指数的运算问题,是基础题目.2.(2014•渝中区校级三模)已知实数a、b满足等式2a=3b,下列五个关系式:①0<b<a②a<b<0③0<a<b④b<a<0⑤a=b=0,其中有可能成立的关系式有( )A.1个B.2个C.3个D.4个【考点】指数式与对数式的互化.【专题】函数的性质及应用.【分析】画出指数函数y=2x,y=3x,的图象,利用单调性即可得出.【解答】解:如图所示:画出函数y=2x,y=3x,的图象.由图象可知:(1)当x>0时,若2a=3b,则a>b;(2)当x=0时,若2a=3b,则a=b=0;(3)当x<0时,若2a=3b,则a<b.综上可知:有可能成立的关系式是①②⑤.故选C.【点评】熟练画出指数函数的图象并掌握其单调性是解题的关键.3.(2013春•浦东新区期中)将a2b=N(a>0,a≠1)转化为对数形式,其中错误的是( )A.B.C.D.【考点】指数式与对数式的互化.【专题】规律型.【分析】根据指数式和对数式之间的关系,以及对数的运算法则分别进行判断.【解答】解:根据指数式和对数式之间的关系可得,若a2b=N,则2b=log a N,即,∴A正确.若a2b=N,则(a2)b=N,则,∴B正确.若a2b=N,则(a b)2=N,则,∴C正确.∴D错误.故选D.【点评】本题主要考查指数式和对数式之间互化,要牢记转化公式:a b=N⇔b=log⁡a N. 4.(2013秋•金台区期中)一种放射性元素,每年的衰减率是8%,那么a千克的这种物质的半衰期(剩余量为原来的一半所需的时间)t等于( )A.lg B.lg C.D.【考点】指数式与对数式的互化;指数函数的实际应用.【专题】计算题.【分析】设这种物质的半衰期(剩余量为原来的一半所需的时间)t,可以得出一个方程,得两边取对数,再用换底公式变形,求出t;【解答】解:a千克的这种物质的半衰期(剩余量为原来的一半所需的时间)为t,a(1﹣8%)t=,两边取对数,lg0.92t=lg0.5,即tlg0.92=lg0.5,∴t=故选C;【点评】本题以实际问题为载体,考查指数函数模型的构建,考查解指数方程,属于基础题.5.(2014秋•大兴区期中)已知,则有( )A.a2b=cB.a2c=bC.b c=2a D.c2a=b【考点】指数式与对数式的互化.【专题】函数的性质及应用.【分析】利用指数式与对数式的互化即可得出.【解答】解:∵,∴(a2)c=b,∴a2c=b.故选B.【点评】本题考查了指数式与对数式的互化,属于基础题.6.(2013秋•武侯区校级期末)若a=b2(b>0且b≠1)则有( )A.log2a=b B.log2b=a C.log b a=2D.log a b=2【考点】指数式与对数式的互化.【专题】转化思想.【分析】由a=b2(b>0且b≠1)⇔log b a=2,可知正确答案.【解答】解:∵a=b2(b>0且b≠1),∴log b a=2.故选C.【点评】本题考查指数式与对数式的相互转化,比较简单,解题时要细心计算.。

【指数函数与对数函数】十一大题型归纳(含答案)

【指数函数与对数函数】十一大题型归纳(含答案)

【指数函数与对数函数】十一大题型归纳(含答案)一、指数函数的图像与性质题型1:判断下列函数的单调性。

(1)y = 2^x(2)y = 3^(-x)(3)y = (1/2)^x答案与解析:(1)y = 2^x 为增函数。

(2)y = 3^(-x) = (1/3)^x 为减函数。

(3)y = (1/2)^x 为减函数。

二、指数函数的运算题型2:计算下列各式的值。

(1)2^3 2^2(2)(1/2)^3 (1/2)^4(3)2^5 / 2^3答案与解析:(1)2^3 2^2 = 2^(3+2) = 2^5 = 32(2)(1/2)^3 (1/2)^4 = (1/2)^(3+4) = (1/2)^7 = 1/128(3)2^5 / 2^3 = 2^(5-3) = 2^2 = 4三、对数函数的图像与性质题型3:判断下列函数的单调性。

(1)y = log_2(x)(2)y = log_3(x)(3)y = log_1/2(x)答案与解析:(1)y = log_2(x) 为增函数。

(2)y = log_3(x) 为增函数。

(3)y = log_1/2(x) 为减函数。

四、对数函数的运算题型4:计算下列各式的值。

(1)log_2(8)(2)log_3(81)(3)log_5(1/25)答案与解析:(1)log_2(8) = 3,因为 2^3 = 8。

(2)log_3(81) = 4,因为 3^4 = 81。

(3)log_5(1/25) = -2,因为 5^(-2) = 1/25。

五、指数函数与对数函数的互化题型5:将下列指数式化为对数式。

(1)2^3 = 8(2)3^2 = 9答案与解析:(1)log_2(8) = 3(2)log_3(9) = 2六、指数函数与对数函数的方程题型6:解下列方程。

(1)2^x = 4(2)3^x = 1/27答案与解析:(1)2^x = 4 可化为 log_2(4) = x,解得 x = 2。

对数与对数运算练习题

对数与对数运算练习题

对数与对数运算练习题在数学中,对数是解决指数问题的一种重要工具。

对数运算是指对数之间的各种运算,包括加法、减法、乘法和除法等。

本文将提供一些对数与对数运算的练习题,以帮助读者更好地理解和掌握这一概念。

练习题一:基础对数运算1. 计算 log₄ 16。

2. 计算 log₂ 8 + log₄ 2。

3. 计算 log₃ 9 - log₅ 125。

4. 计算 log₁₀ 100 - log₁₀ 10。

练习题二:对数的性质运用1. 若logₓ y = 3,计算logₓ √y 的值。

2. 若logₓ y = a,logₓ z = b,求logₓ (yz) 的值。

3. 若logₐ b = x,logₓ b = y,求logₐ x 的值。

4. 若 log₂ a = m,log₂ b = n,求logₐ (ab) 的值。

练习题三:对数方程的求解1. 解方程logₓ (x - 2) = 1。

2. 解方程 log₂ (3x + 1) = log₂ (2x - 4)。

3. 解方程 log₄ (x² - 5x + 4) = 2。

练习题四:对数运算的应用1. 在化学实验中,若酸的浓度 c 可以表示为 pH = -log₁₀ c,若某酸的浓度为 10⁻⁴ mol/L,求其 pH 值。

2. 若一座大楼的高度 H 可以表示为 H = log₂ (t + 5) + 10,其中 t 为某物体从大楼顶部自由下落所需时间(单位:秒),求当 t = 2 时,大楼的高度 H。

以上是对数与对数运算的练习题,通过解题的过程,我们可以更好地理解对数的概念及其运算规律。

希望这些练习题能够帮助读者提高对数的应用能力,并在数学学习中取得更好的成绩。

100道指数和对数运算

100道指数和对数运算

指数和对数运算一、选择题1.的值为( ).A .- B.C .-D .2.A .52a -B .2a -C3.的 值为A .1B .2C .3D .44.已知,则( )A.B.C.D.5.设,则的大小系关为( ) A.B.C.D.6.设,则的大小系是()关A . B . C . D .二、填空题7.=.8.2 log 510+log 50.25=_________.9..10.若lg2 = a ,lg3 = b ,则. 11.若,则的12.化果为__________.13.计.三、解答题14.(本小分题满12分)算计(Ⅰ);(Ⅱ).15.lg(x 2+1)-2lg(x+3)+lg2=016.(1)算计(2)解方程:17. (Ⅰ)算:计715log 2043210.064(70.250.5----++⨯知用示18.算:(Ⅰ)计(Ⅱ).19.求:(值1)(2)20.(1)算计221log 3482()27--+(2)解方程:1122log (95)2log (32)x x ---=+-.21.(1)算:计(2)已知,算计的。

值20.算:(计1);(2).23. (1)求:值(2)解方程:24.算:计0.027﹣(﹣)﹣2+256﹣3﹣1+(﹣1)0;(2).25.算:计(1)(﹣﹣9.6)0﹣+(1.5)﹣2; (2)log3+lg25+lg4+7log72.26.化求:简值(1);(2).27. (1) ;(2);28.算:(Ⅰ)计; (Ⅱ).29.算:计(1);(2).30.算求:计值(1)64﹣(﹣)0++lg2+lg50+2(2)lg14﹣2lg+lg7﹣lg18.31.算下列各式:计(1)(2a b)(﹣6a b)÷(﹣3a b )(a>0,b>0)(2).32.算:计(1)(2)33.求:值(1)(2)log 25.34.算:计(1)+;(2)+0.1﹣2+﹣3π0+.35.算:计(1)()0.5+(0.1)﹣2+()﹣3π0+;(2)2log32﹣log 3+log38﹣3log55.36.(1)求:(值0.064)(﹣﹣)﹣2÷160.75+(﹣2017)0;(2)求:值.37.算下列各式:计(1)38.算下列各式:计(1);(2.39.(10分)不使用算器,算下列各:计计题(1);(2)+lg25+lg4++(﹣9.8)0.40.(1)算计81﹣()﹣1+30;(2)算计.41.(12分)算下列各式的.计值(1);(2)lg5+(lg2)2+lg5·lg2+ln+lg·lg1000.42.化求.简值(1)(2)(lg2)2+lg20×lg5+log92•log43.43.化或求:简值(1)()+(0.008)×(2)+log 3﹣3.44.化求:简值(1);(2).45.算:计(1)log232﹣log2+log26(2)8×(﹣)0+(×)6.46.算计(1)(2)﹣9.60﹣(﹣3)+(1.5)﹣2(2)log225•log32•log59.47.算:计(1)(2).48.不用算器求下列各式的计值(1)(2)49.算下列各式:计;(2).50.算:计().()化:简51.求下列各式的值(1)0.001﹣()0+16+(•)6(2)(3)设x +x=3,求x+x﹣1的.值52.算:计0.027﹣(﹣)﹣2+256﹣3﹣1+(﹣1)0;(3).53.化求:简与值(1)(x>0,y>0)(2).54.算下列各式的计值(1)(2)(﹣)0+0.25×()﹣4.55.(1)算:(计﹣)0+8+.(2)化:简log 3.56.算下列各式:计(1)(×)6+()﹣4()﹣×80.25﹣(﹣2017)0(2)log2.56.25+lg0.01+ln.57.算:(计1)0.027﹣(﹣)﹣2+256﹣3﹣1+(﹣1)0(2)(3).58.算下列各式的:计值(1)0.064﹣(﹣)0+160.75+0.01;(2).59.算:计(1);(2)lg ﹣lg +lg.60.算下列各式的:计值(1);(2).61.(1)算:计8+()(﹣﹣1)0;(2)算:计9+log68﹣2log.62.不用算器求下列各式的计值(1)(2)(﹣﹣9.6)0﹣(3)+(1.5)﹣2(2)lg5+lg2﹣(﹣)﹣2+(﹣1)0+log28.试卷答案1.D2.B略3.B4.C5.A6.A。

指数式与对数式的互化练习题含答案

指数式与对数式的互化练习题含答案

指数式与对数式的互化练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 已知2x=3y=m,且1x +1y=2,则m的值为( )A.√2B.√6C.√22D.62. 已知实数a,b满足2a=3,3b=2,则f(x)=a x+x−b的零点所在的区间是()A.(−2, −1)B.(−1, 0)C.(0, 1)D.(1, 2)3. 设=5b=m,且-=2,则m=()A. B.10 C. D.4. 设log45=2m,则4m=()A. B.25 C. D.5. 已知2m=3n=6,则等于()A.−1B.2C.3D.16. 若2a=5b=z c,且1a +1b=1c,则z的值可能为( )A.√7B.√10C.7D.107. 已知函数f(x)=x−ae x,且e a=ln b=c,则( )A.f(a)<f(b)<f(c)B.f(b)<f(c)<f(a)C.f(a)<f(c)<f(b)D.f(c)<f(b)<f(a)8. 已知4x =3y =m ,且1x +2y =2,则m =( )A.2B.4C.6D.99. 设2a =34,则(a +2)log 274=( ) A.2B.1C.23D.13 10. 当生物体死亡后,它机体内的碳14含量会按确定的比率衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.2021年3月23日四川省文物考古研究院联合北京大学对三星堆新发现K4坑的部分炭屑样品使用碳14年代检测方法进行了分析,发现碳14含量衰减为原来的67.90%,则该遗址距今约( )年.(参考数据:log 20.6790=−0.5585)A.3000B.3100C.3200D.330011. 已知2a =3b =k(k ≠1),且2a +b =ab ,则实数k 的值为( )A.6B.9C.12D.1812. 若x log 32=1,则4x −2−x =________.13. 若102x =25,则实数x 的值是________.14. 若3m =2n =6,则=________.15. 若a =log 23,则2a +2−a =________.16. 已知2x =52y =M ,且1x +1y =2,则M 的值为________.17. 若3m =4n (m,n ≠0),则log 43=________.(用m ,n 表示)18. 设2x =3y =72,则3x +2y =________.19. 若实数a ,b ,c 满足2a +2b =2a+b ,2a +2b +2c =2a+b+c ,则c 的最大值是________.20. 计算下列各式:(1)(−2018)0+1.5−2×(338)23−0.01−0.5+log 12√324;(2)log 2.56.25+lg 1100+ln √e +21+log 23.21. 计算:(1)√614−(π−1)0−(278)13;(2)lg 4+lg 25−log 28.22.(1)化简√(a 52b 2√ab −1)23√a 4b 2(a ,b >0);(2)计算(8116)−14+14⋅log √23⋅log 34−log 50.01+2log 512−e 0+7log 713. 23. 已知3a =5b =c ,且1a +1b =2 ,求c 的值.24. 已知函数f(x)=4x −a2x +b ,当x =1时,f(x)有最小值−1;(1)求a ,b 的值;(2)求满足f(x)≤0的x 的集合A .25. 设0<a <1,且log a x +3log x a −log x y =3,(1)设x =a t (t ≠0),以a ,t 表示y ;(2)若y的最大值为√2,求a,x.426. 某生物研究者于元旦在湖中放入一些凤眼莲(其覆盖面积为k),这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为24m2,三月底测得凤眼莲的覆盖面积为36m2,凤眼莲的覆盖面积y(单位:m2)与月份x(单位:月)的关系有两个函数模型y=ka x(k>0,a>1)与y=px12+k(p>0,k>0)可供选择.(1)试判断哪个函数模型更适合并求出该模型的解析式;(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份(参考数据:lg2≈0..3010,lg3≈0.4711).参考答案与试题解析指数式与对数式的互化练习题含答案一、选择题(本题共计 11 小题,每题 3 分,共计33分)1.【答案】B【考点】指数式与对数式的互化对数及其运算【解析】2x=3y=m>0,可得x=log2m,y=log3m.代入利用对数的运算法则即可得出.【解答】解:∵2x=3y=m>0,∴x=log2m,y=log3m.∴2=1x +1y=1log2m+1log3m=logm 2+logm3=logm 6,∴m2=6,解得m=√6.故选B.2.【答案】B【考点】函数的零点指数式与对数式的互化【解析】根据对数,指数的转化得出f(x)=(log23)x+x−log32单调递增,根据函数的零点判定定理得出f(0)=1−log32>0,f(−1)=log32−1−log32=−1<0,判定即可.【解答】解:∵实数a,b满足2a=3,3b=2,∴a=log23>1,0<b=log32<1,∵函数f(x)=a x+x−b,∴f(x)=(log23)x+x−log32单调递增,∵f(0)=1−log32>0,f(−1)=log32−1−log32=−1<0,∴根据函数的零点判定定理得出:函数f(x)=a x+x−b的零点所在的区间是(−1, 0). 故选B.3.【答案】D【考点】有理数指数幂的运算性质及化简求值指数式与对数式的互化【解析】此题暂无解析【解答】此题暂无解答4.【答案】D【考点】指数式与对数式的互化【解析】此题暂无解析【解答】此题暂无解答5.【答案】D【考点】指数式与对数式的互化【解析】此题暂无解析【解答】此题暂无解答6.【答案】D【考点】对数的运算性质指数式与对数式的互化【解析】设2a=5b=z c=m,得a=log2m,b=log5m,c=log z m,则log m2+log m5= log m z,根据对数的运算即可得解.【解答】解:设2a=5b=z c=m,得a=log2m,b=log5m,c=logzm,因为1a +1b=1c,所以1log2m +1log5m=1log z m,所以logm 2+logm5=logmz,所以logm 10=logmz,所以z=10. 故选D.7.A【考点】指数式、对数式的综合比较指数式与对数式的互化利用导数研究函数的单调性【解析】先利用导数研究函数的单调性可得f(x)在(1+a,+∞)上单调递减,再结合a,b,c的大小关系可得答案【解答】解:f′(x)=e x−e x(x−a)e2x =1+a−xe x,当x>1+a时,f′(x)<0,所以f(x)在(1+a,+∞)上单调递减,且当x>1+a时,f(x)恒大于0,由e a=ln b=c,可知b>0,c>0,设ℎ(x)=e x−x−1,当x>0时,则ℎ′(x)=e x−1≥0,所以当x>0时,e x≥x+1,所以c=e a≥a+1, b=e c≥c+1≥a+2,所以b>c≥a+1,所以0<f(b)<f(c),又f(a)=0,所以f(a)<f(b)<f(c).故选A.8.【答案】C【考点】指数式与对数式的互化对数与对数运算【解析】应用指数和对数运算关系,得到x=log4m,y=log3m,即可建立关于m的方程,进而求出的值.【解答】解:∵4x=3y=m,∴x=log4m,y=log3m,∴1x =logm4,1y=logm3,∴1x +2y=logm4+2logm3=logm36=2,∴m=6. 故选C. 9.【答案】C指数式与对数式的互化对数的运算性质【解析】此题暂无解析【解答】解:由2a=34,得a=log234,所以(a+2)log274=(log234+2)log274=(log234+log24)log274=log23×log274=lg3lg2×2lg23lg3=23.故选C.10.【答案】C【考点】根据实际问题选择函数类型指数式与对数式的互化【解析】无【解答】解:设生物体死亡后,碳14每年衰减为原来的p,依题意,有(1−p)5730=12,1−p=2−15730;设距今约t年,碳14衰减为原来的(1−p)t=2−t5730=67.90%,结合参考数据:−t5730=log20.6790=−0.5585,可得t≈3200.故选C.11.【答案】D【考点】对数的运算性质指数式与对数式的互化【解析】由2a=3b=k(k≠1),知a=log2k,b=log3k,故1a =logk2,1b=logk3,由2a+b=ab,知2b +1a=2logk3+logk2=logk18=1,由此能求出k.【解答】解:∵2a=3b=k(k≠1),∴a=log2k,b=log3k,∴1a =logk2,1b=logk3,∵2a+b=ab,∴2b +1a=2logk3+logk2=logk 9+logk2=logk 18=1,∴k=18.故选D.二、填空题(本题共计 8 小题,每题 3 分,共计24分)12.【答案】263【考点】指数式与对数式的互化【解析】先求出2x=3,即可求出答案.【解答】x log32=1,则log32x=1,∴2x=3,∴2−x=13,∴4x−2−x=9−13=263,13.【答案】lg5【考点】指数式与对数式的互化【解析】根据102x=25即可得出2x=lg25,然后即可求出x的值.【解答】∵102x=25,∴2x=lg25,∴4x=2lg5,x=lg2.14.【答案】1【考点】指数式与对数式的互化【解析】此题暂无解析【解答】此题暂无解答15.【答案】103【考点】指数式与对数式的互化【解析】根据对数函数的恒等式,求出2a的值,再计算2a+2−a的值.【解答】解:∵a=log23,∴2a=2log23=3,∴2a+2−a=2a+12a=3+1 3=103.故答案为:103.16.【答案】5√2【考点】对数及其运算指数式与对数式的互化【解析】先求出x=log2M,y=log5M2,再根据1x+1y=2求得logM50=2,即可得出答案【解答】解:因为2x=52y=M>0,所以x=log2M,2y=log5M,所以y=log5M2,所以1x +1y=logM2+2logM5=logM2+logM25=logM50=2,所以M2=50,解得M=5√2或−5√2(舍去),所以M=5√2.故答案为:5√2.17.【答案】nm【考点】指数式与对数式的互化换底公式的应用【解析】暂无【解答】解:设3m=4n=a(m,n≠0),则m=log3a,n=log4a,故log43=log a3log a4=1log3a1log4a=log4alog3a=nm.故答案为:nm.18.【答案】1【考点】指数式与对数式的互化对数的运算性质【解析】无【解答】解:由2x=3y=72,得x=log272,y=log372,即1x =log722,1y=log723.∴3x +2y=3log722+2log723=log729+log728=log7272=1.故答案为:1.19.【答案】2−log23【考点】基本不等式在最值问题中的应用不等式比较两数大小指数式与对数式的互化【解析】由基本不等式得2a+2b≥2√2a2b=2×2a+b2,可求出2a+b的范围,再由2a+2b+2c=2a+b+c=2a+b2c=2a+b+2c,2c可用2a+b表达,利用不等式的性质求范围即可.【解答】解:由基本不等式得2a+2b≥2√2a2b=2×2a+b2,即2a+b≥2√2a2b=2×2a+b2,则a+b≥2,所以2a+b≥4,令t=2a+b,由2a+2b+2c=2a+b+c可得2a+b+2c=2a+b2c,所以2c=tt−1=1+1t−1.因为t≥4,所以1<tt−1≤43,即1<2c≤43,所以0<c≤log243=2−log23.故答案为:2−log23.三、解答题(本题共计 7 小题,每题 10 分,共计70分)20.【答案】解:(1)原式=1+(32)−2×(278)23−(1100)−12+log12254=1+(32)−2×(32)2−10−54=1+1−10−54=−374.(2)log2.56.25+lg1100+ln√e+21+log23=log2.52.52+lg10−2+ln e12+2×2log23=2−2+12+6=13 2.【考点】有理数指数幂的运算性质及化简求值对数与对数运算指数式与对数式的互化对数及其运算有理数指数幂的化简求值【解析】此题暂无解析【解答】1121.【答案】解:(1)原式=√254−1−√2783,=52−1−32,=1−1=0.(2)原式=lg (4×25)−log 223,=lg100−3,=2−3=−1.【考点】有理数指数幂的化简求值指数式与对数式的互化对数及其运算根式与分数指数幂的互化及其化简运算【解析】把分数次幂化为根式得形式,求解.利用对数的和等于积的对数,乘方的对数运算法则解题.【解答】解:(1)原式=√254−1−√2783,=52−1−32,=1−1=0.(2)原式=lg (4×25)−log 223,=lg100−3,=2−3=−1.22.【答案】解:(1)原式=√a 5b 4⋅ab −13a 2b =a 2b a 2b=1.(2)原式=(3424)−14+14⋅4log 23⋅log 32+log 5(100×14)−1+13 =23+1+2−1+13=3.【考点】根式与分数指数幂的互化及其化简运算指数式与对数式的互化【解析】【解答】解:(1)原式=√a 5b 4⋅ab −13a 2b=a2b a2b=1.(2)原式=(3424)−14+14⋅4log23⋅log32+log5(100×14)−1+13=23+1+2−1+13=3.23.【答案】解:由于3a=c,两边取对数得,log c3a=log c c=1,即a logc3=1,∴logc 3=1a;同理可得1b =logc5,∴由1a +1b=2,得logc3+logc5=2,∴logc 15=2,∴c2=15,∵c>0,∴c=√15.【考点】对数的运算性质指数式与对数式的互化【解析】此题暂无解析【解答】解:由于3a=c,两边取对数得,log c3a=log c c=1,即a logc3=1,∴logc 3=1a;同理可得1b =logc5,∴由1a +1b=2,得logc3+logc5=2,∴logc 15=2,∴c2=15,∵c>0,∴c=√15.24.【答案】f(x)=4x−a2x+b=(2x−a2)2+b−a24换元t =2x ∴ y =(t −a 2)2+b −a 24,t ∈(0,+∞)∵ 当x =1时,t =2∈(0, +∞),f(x)有最小值−1∴ a 2=2,b −a 24=−1∴ a =4,b =3f(x)=4x −4×2x +3≤0⇔(2x −3)(2x −1)≤0∴ 1≤2x ≤3∴ 0≤x ≤log 23∴ 集合A ={x|0≤x ≤log 23}【考点】二次函数的图象指数型复合函数的性质及应用指数式与对数式的互化二次函数的性质【解析】(1)考虑换元t =2x ∴ y =(t −a 2)2+b −a 24,t ∈(0,+∞),由题意可得当x =1时,即t =2∈(0, +∞),函数有最小值−1,结合二次函数的性质代入可求(2)由f(x)≤0(2可得∴ 1≤2x ≤3,解不等式可求集合A【解答】f(x)=4x −a2x +b =(2x−a 2)2+b −a 24 换元t =2x ∴ y =(t −a 2)2+b −a 24,t ∈(0,+∞)∵ 当x =1时,t =2∈(0, +∞),f(x)有最小值−1∴ a 2=2,b −a 24=−1∴ a =4,b =3f(x)=4x −4×2x +3≤0⇔(2x −3)(2x −1)≤0∴ 1≤2x ≤3∴ 0≤x ≤log 23∴ 集合A ={x|0≤x ≤log 23}25.【答案】解:(1)已知 log a x +3log x a −log x y =3即log a x +3log x a −3=log x y利用换底公式有:log a x +3log x a −3=log a y log a x则(log a x )2−3log a x +3=log a y .设x =a t ,则:t =log a x .即:t 2−3t +3=log a y , ∴ y =a t 2−3t+3.(2)∵ y =f(x)有最大值√24,且0<a <1,∴ log a y 有最小值log a√24 当log a x =32时,log a √24=34∴ a =14 此时log 14x =32∴ x =18, 即a =14,x =18为所求 【考点】指数式与对数式的互化对数的运算性质【解析】(1)若设x =a t ,试用a 、t 表示y .首先对等式log a x +3log x a −log x y =3利用换底公式化简为(log a x )2−3log a x +3=log a y ,然后把x =a t 代入化简即可.(2)先根据(1)所解得的函数y =a t2−3t+3,然后利用二次函数的性质求如果y 有最大值√24时a 和x 的值【解答】解:(1)已知 log a x +3log x a −log x y =3即log a x +3log x a −3=log x y利用换底公式有:log a x +3log x a −3=log a y log a x则(log a x )2−3log a x +3=log a y .设x =a t ,则:t =log a x .即:t 2−3t +3=log a y , ∴ y =a t 2−3t+3.(2)∵ y =f(x)有最大值√24,且0<a <1,∴ log a y 有最小值log a√24 当log a x =32时,log a√24=34 ∴ a =14此时log 14x =32∴ x =18, 即a =14,x =18为所求26.【答案】解:(1)由题意可知,函数y =ka x (k >0, a >1)和函数y =px 12+k (p >0,k >0)在(0, +∞)上都是增函数,随着x 的增加,函数y =ka x (k >0, a >1)的值增加的越来越快,但函数y =px 12+k (p >0,k >0)的值增加的越来越慢.由于凤眼莲在湖中的蔓延速度越来越快,所以函数模型y =ka x (k >0, a >1)符合要求.由题意可知,x =2时,y =24;x =3时,y =36,所以{ka 2=24,ka 3=36,解得{k =323,a =32.故该函数模型的解析式是y =323⋅(32)x ,x ∈N ∗. (2)由(1)可知,y =323⋅(32)x ,x ∈N ∗, 则当x =0时,y =323⋅(32)0=323, 所以元旦放入凤眼莲面积是323m 2.由题意,得323⋅(32)x >10×323, 即(32)x >10,解得x >log 3210=lg 10lg 32=1lg 3−lg 2,又1lg 3−lg 2=10.4711−0.3010≈5.9,所以x ≥6.故凤眼莲覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份是6月份.【考点】函数模型的选择与应用指数函数的实际应用指数式与对数式的互化【解析】(Ⅰ)判断两个函数y =ka x (k >0, a >1),y =px 12+q(p >0)在(0, +∞)的单调性,说明函数模型y =ka x (k >0, a >1)适合要求.然后列出方程组,求解即可. (Ⅱ)利用 x =0时,y =323⋅(32)0=323,元旦放入凤眼莲面积是323m 2,列出不等式转化求解即可.【解答】解:(1)由题意可知,函数y =ka x (k >0, a >1)和函数y =px 12+k (p >0,k >0)在(0, +∞)上都是增函数,随着x 的增加,函数y =ka x (k >0, a >1)的值增加的越来越快,但函数y =px 12+k (p >0,k >0)的值增加的越来越慢.由于凤眼莲在湖中的蔓延速度越来越快,所以函数模型y =ka x (k >0, a >1)符合要求.由题意可知,x =2时,y =24;x =3时,y =36,所以{ka 2=24,ka 3=36,解得{k =323,a =32. 故该函数模型的解析式是y =323⋅(32)x ,x ∈N ∗. (2)由(1)可知,y =323⋅(32)x ,x ∈N ∗, 则当x =0时,y =323⋅(32)0=323, 所以元旦放入凤眼莲面积是323m 2.由题意,得323⋅(32)x >10×323, 即(32)x >10,解得x >log 3210=lg 10lg 32=1lg 3−lg 2,又1lg 3−lg 2=10.4711−0.3010≈5.9,所以x ≥6.故凤眼莲覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份是6月份.。

指数与对数运算

指数与对数运算

指数与对数运算一.指数与指数运算1、 指数式:形如ba N =,a 叫做底数,b 叫做指数,N 叫做幂. 2、 0指数幂与分数指数幂:(1)01(0)a a =≠;(2)1(0)nn a a a-=≠. 3、 根式性质:(1)na =;(2)||a n a n ⎧=⎨⎩,为奇数,为偶数.4、 分数指数幂:(1) 正分数指数10)m n na a a =>=,*(0,,)m a m n N n>∈、为既约分数.(2) 负分数指数幂:1m nm naa-=*(0,,)ma m n N n>∈、为既约分数. 5、 指数幂运算法则:(1)m n m na a a +⋅=;(2)m m nn a a a-=;(3)()m nm na a ⋅=;(4)()nnnab a b =⋅.【练习题】1、0,0)x y <<得( )A.22x y B.2xy C.24x y D.22x y -2、2110323(3)(0.002)2)(8π----+-+-= .3、= .4、1223321()4(0.1)()a b ---= .5、 已知11223a a-+=,求下列各式的值.(1)1a a -+; (2)22a a -+; (3)33221122a a a a----.二.对数与对数运算1. 对数定义:若(0,1)ba N a a =>≠且,则b 叫做以a 为底N 的对数,记作log a b N =,a 叫做底,N 叫做真数.(2)对数恒等式:log (0,10)a N a N a a N =>≠>且,(3)对数换底公式:log log log a b a NN b=(4)对数的性质:①负数与零没有对数;②log 1a a =,log 10a =;③log log 1a b b a ⋅= (5)常用对数:以10为底的对数10log N 叫做常用对数,简记作lg N ; 自然对数:以e 为底的对数log e N 叫做自然对数,简记作ln N 。

数学指数函数与对数运算测试卷(纯手打)

数学指数函数与对数运算测试卷(纯手打)

指数函数与对数运算测试题 班级 姓名 得分1、21-⎡⎤⎢⎥⎣⎦等于( )A 、2B 、1C、 D 、122、设全集为R ,且{0}A x =,22{|1010}x x B x -==,则()R A B =ð( )A 、{2}B 、{—1}C 、{x|x ≤2}D 、∅3、函数()f x = )A 、(,0]-∞B 、[0,)+∞C 、(,0)-∞D 、(,)-∞+∞4、已知对不同的a 值,函数1()2(01)x f x a a a -=+>≠,且的图象恒过定点P ,则P 点的坐标是( ) A 、()0,3 B 、()0,2 C 、()1,3 D 、()1,25、函数1(2y =的增区间是( )A 、1[1,]2-B 、(,1]-∞-C 、[2,)+∞D 、1[,2]26、已知lg 2,lg3a b ==,则lg12lg15等于( ) A 、21a b a b +++ B 、21a b a b +++ C 、21a b a b +-+ D 、21a b a b+-+7、已知2lg(2)lg lg x y x y -=+,则xy的值为 ( )A 、1B 、4C 、1或4D 、4或—1 8、函数xy a =(a >1)的图象是( b )9、若221333111(),(),()522a b c ===,则a ,b ,c 的大小关系是 ( ) A 、a>b>c B 、c>b>a C 、a>c>b D 、b>a>c10、已知函数()f x 的定义域是(0,1),那么(2)xf 的定义域是( ) A.(0,1) B.(21,1) C.(-∞,0) D.(0,+∞) 11、若集合A ={y | y=2x , x ∈R } , B = {y | y=x 2 , x ∈R } , 则( ) A.A B B.A B C.A=B D.A∩B=∅二、填空题(4⨯5‘)1、点(2,1)与(1,2)在函数()2ax b f x +=的图象上,则()f x 的解析式为 22x -+2、求函数11(),[0,2]3x y x -=∈的值域是 [1/3,3]3、已知()f x 是奇函数,且当x>0时,()10x f x =,则x<0时,()f x = 10x--4、若集合{}{},,lg()0,,x xy xy x y =,则228log ()x y += 1/3 三、解答题(7⨯10‘)1、计算(1)122(11)]-+; (2)4912log 3log 2log ⋅-。

指数函数对数函数专练习题(含答案)

指数函数对数函数专练习题(含答案)

指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.且图象过定点,即当.在在变化对图在第一象限内,从逆时针方向看图象,看图象,对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.且图象过定点,即当时,上是增函数上是减函数变化对图在第一象限内,从顺时针方向看图象,看图象,指数函数习题一、选择题 1.定义运算a ⊗b =⎩⎪⎨⎪⎧a (a ≤b )b (a >b ),则函数f (x )=1⊗2x的图象大致为( )2.函数f (x )=x 2-bx +c 满足f (1+x )=f (1-x )且f (0)=3,则f (b x )与f (c x)的大小关系是( )A .f (b x )≤f (c x)B .f (b x )≥f (c x)C .f (b x )>f (c x)D .大小关系随x 的不同而不同3.函数y =|2x-1|在区间(k -1,k +1)内不单调,则k 的取值范围是( ) A .(-1,+∞) B .(-∞,1) C .(-1,1) D .(0,2)4.设函数f (x )=ln [(x -1)(2-x )]的定义域是A ,函数g (x )=lg(a x-2x-1)的定义域是B ,若A ⊆B ,则正数a 的取值范围( ) A .a >3 B .a ≥3 C .a > 5D .a ≥ 55.已知函数f (x )=⎩⎪⎨⎪⎧(3-a )x -3,x ≤7,a x -6,x >7.若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( ) A .[94,3)B .(94,3)C .(2,3)D .(1,3)6.已知a >0且a ≠1,f (x )=x 2-a x,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是( )A .(0,12]∪[2,+∞)B .[14,1)∪(1,4]C .[12,1)∪(1,2]D .(0,14)∪[4,+∞)二、填空题7.函数y =a x(a >0,且a ≠1)在[1,2]上的最大值比最小值大a2,则a 的值是________.8.若曲线|y |=2x+1与直线y =b 没有公共点,则b 的取值范围是________.9.定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.三、解答题10.求函数y=211.若函数y=a2x+2a x-1(a>0且a≠1)在x∈[-1,1]上的最大值为14,求a的值.12.已知函数f(x)=3x,f(a+2)=18,g(x)=λ·3ax-4x的定义域为[0,1].(1)求a的值;(2)若函数g(x)在区间[0,1]上是单调递减函数,求实数λ的取值范围.1.解析:由a ⊗b =⎩⎪⎨⎪⎧a (a ≤b )b (a >b )得f (x )=1⊗2x=⎩⎪⎨⎪⎧2x(x ≤0),1 (x >0).答案:A2. 解析:∵f (1+x )=f (1-x ),∴f (x )的对称轴为直线x =1,由此得b =2. 又f (0)=3,∴c =3.∴f (x )在(-∞,1)上递减,在(1,+∞)上递增.若x ≥0,则3x ≥2x ≥1,∴f (3x )≥f (2x).若x <0,则3x <2x <1,∴f (3x )>f (2x).∴f (3x )≥f (2x). 答案:A3.解析:由于函数y =|2x-1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k -1,k +1)内不单调,所以有k -1<0<k +1,解得-1<k <1. 答案:C4. 解析:由题意得:A =(1,2),a x -2x >1且a >2,由A ⊆B 知a x -2x>1在(1,2)上恒成立,即a x -2x -1>0在(1,2)上恒成立,令u (x )=a x -2x -1,则u ′(x )=a x ln a -2x ln2>0,所以函数u (x )在(1,2)上单调递增,则u (x )>u (1)=a -3,即a ≥3. 答案:B5. 解析:数列{a n }满足a n =f (n )(n ∈N *),则函数f (n )为增函数,注意a 8-6>(3-a )×7-3,所以⎩⎪⎨⎪⎧a >13-a >0a 8-6>(3-a )×7-3,解得2<a <3.答案:C6. 解析:f (x )<12⇔x 2-a x <12⇔x 2-12<a x ,考查函数y =a x 与y =x 2-12的图象,当a >1时,必有a -1≥12,即1<a ≤2,当0<a <1时,必有a ≥12,即12≤a <1,综上,12≤a <1或1<a ≤2.答案:C7. 解析:当a >1时,y =a x 在[1,2]上单调递增,故a 2-a =a 2,得a =32.当0<a <1时,y =ax在[1,2]上单调递减,故a -a 2=a 2,得a =12.故a =12或32.答案:12或328. 解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y |=2x+1与直线y =b 的图象如图所示,由图象可得:如果|y |=2x+1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1]. 答案:[-1,1]9. 解析:如图满足条件的区间[a ,b ],当a =-1,b =0或a =0,b =1时区间长度最小,最小值为1,当a =-1,b =1时区间长度最大,最大值为2,故其差为1. 答案:110. 解:要使函数有意义,则只需-x 2-3x +4≥0,即x 2+3x -4≤0,解得-4≤x ≤1. ∴函数的定义域为{x |-4≤x ≤1}.令t =-x 2-3x +4,则t =-x 2-3x +4=-(x +32)2+254,∴当-4≤x ≤1时,t max =254,此时x =-32,t min =0,此时x =-4或x =1.∴0≤t ≤254.∴0≤-x 2-3x +4≤52.∴函数y =1()2[28,1]. 由t =-x 2-3x +4=-(x +32)2+254(-4≤x ≤1)可知,当-4≤x ≤-32时,t 是增函数,当-32≤x ≤1时,t 是减函数.根据复合函数的单调性知:y =1()2在[-4,-32]上是减函数,在[-32,1]上是增函数.∴函数的单调增区间是[-32,1],单调减区间是[-4,-32].11. 解:令a x=t ,∴t >0,则y =t 2+2t -1=(t +1)2-2,其对称轴为t =-1.该二次函数在[-1,+∞)上是增函数.①若a >1,∵x ∈[-1,1],∴t =a x ∈[1a,a ],故当t =a ,即x =1时,y max =a 2+2a -1=14,解得a =3(a =-5舍去). ②若0<a <1,∵x ∈[-1,1],∴t =a x∈[a ,1a ],故当t =1a,即x =-1时,y max =(1a+1)2-2=14.∴a =13或-15(舍去).综上可得a =3或13.12. 解:法一:(1)由已知得3a +2=18⇒3a=2⇒a =log 32.(2)此时g (x )=λ·2x -4x, 设0≤x 1<x 2≤1,因为g (x )在区间[0,1]上是单调减函数,所以g (x 1)-g (x 2)=(2x 1-2x 2)(λ-2x 2-2x 1)>0恒成立,即λ<2x 2+2x 1恒成立.由于2x 2+2x 1>20+20=2,所以实数λ的取值范围是λ≤2. 法二:(1)同法一.(2)此时g (x )=λ·2x -4x,因为g (x )在区间[0,1]上是单调减函数,所以有g ′(x )=λln2·2x -ln4·4x=ln2[-2·(2x )2+λ·2x ]≤0成立.设2x =u ∈[1,2],上式成立等价于-2u 2+λu ≤0恒成立. 因为u ∈[1,2],只需λ≤2u 恒成立, 所以实数λ的取值范围是λ≤2.对数与对数函数同步练习一、选择题1、已知32a =,那么33log 82log 6-用a 表示是( )A 、2a -B 、52a -C 、23(1)a a -+ D 、 23a a -2、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或13、已知221,0,0x y x y +=>>,且1l o g (1),l o g ,l o g 1y aa a x m n x+==-则等于( )A 、m n +B 、m n -C 、()12m n +D 、()12m n -4、如果方程2lg (lg5lg7)lg lg5lg70x x +++= 的两根是,αβ,则αβ 的值是( )A 、lg5lg 7B 、lg 35C 、35D 、351 5、已知732log [log (log )]0x =,那么12x -等于( )A 、13 B C D 6、函数2lg 11y x ⎛⎫=- ⎪+⎝⎭的图像关于( )A 、x 轴对称B 、y 轴对称C 、原点对称D 、直线y x =对称7、函数(21)log x y -=的定义域是( )A 、()2,11,3⎛⎫+∞ ⎪⎝⎭B 、()1,11,2⎛⎫+∞ ⎪⎝⎭C 、2,3⎛⎫+∞ ⎪⎝⎭D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是( )A 、RB 、[)8,+∞C 、(),3-∞-D 、[)3,+∞ 9、若log 9log 90m n <<,那么,m n 满足的条件是( )A 、 1 m n >>B 、1n m >>C 、01n m <<<D 、01m n <<<10、2log 13a <,则a 的取值范围是( )A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞ ⎪⎝⎭C 、2,13⎛⎫ ⎪⎝⎭D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭11、下列函数中,在()0,2上为增函数的是( )A 、12log (1)y x =+ B 、2log y =C 、21log y x = D 、2log (45)y x x =-+ 12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1()x f x a +=是( )A 、在(),0-∞上是增加的B 、在(),0-∞上是减少的C 、在(),1-∞-上是增加的D 、在(),0-∞上是减少的 二、填空题13、若2log 2,log 3,m n a a m n a +=== 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指数与对数运算练习题
1、用根式的形式表示下列各式(a>0)(1)a(2)a(3)a
2、用分数指数幂的形式表示下列各式:(1)xy(2)(3
=(m>0)
;(5)aaa;
3、求下列各式的值
(1)8;(2)100=;(3)()=;(4)()4=
6)⎡1-⎡=(7)64=⎡⎡⎡⎡
(1)a∙a∙a
1334712
=(2)a∙a÷a=3)3a∙(-a)÷9a=
234563234
8a-3-3
(4)=(5)()=6227ba∙a⎡(7)ab
5.排序(1)
(2)(3)()-1-4⋅(-2)-3+()0-92
⋅a4÷b3(a≠0,b≠0)=
⎡3⎡⎡7⎡0.5-2⎡1⎡
2⎡+2⋅2⎡-(0.01)(5)2⎡
⎡9⎡⎡4⎡⎡4⎡
--323-0.75
(6)(-3)3+0.042+[(-2)]3+16
(7)1.5
+0.1-2+2⎡
⨯-⎡+80.25⨯2+⎡7⎡
6⎡2⎡2⨯3--⎡
6.求解以下方程(1)x
=(2)2x4-1=15(3)(0.5)1-3x=42x-18
=3,谋以下各式的值(1)a+a-1(2)a+a7.(1).未知a+a(2).若a+a
=3,求下列各式的值:(1)a+a;
(2)a+a=;
(3).使式子(1-2x)
存有意义的x的值域范围就是_.
(4).若3=2,3=5,则3
1、以下四式中恰当的就是()
a、log22=4
b、log21=1
c、log216=4
d、log22、下列各式值为0的是()
a、1
b、log33
c、(2-)°
d、log2∣-1∣3、2
a、-5
b、5
c、
11d、-55
4、若m=lg5-lg2,则10m的值是()a、
b、3
c、10
d、12
+,则()log23log53
a、n=2
b、n=2
c、n<-2
d、n>26、在b=loga-2(5-a)中,实数a的范围就是() a、a>5或alog
等同于()c、8
的值是()a、16b、2c、3d、4
(n+1n)等同于()a、1b、-1c、2
10、用对数形式表示下列各式中的x
10x=25:____;2x=12:____;4x=11、lg1+lg0.1+lg0.01=_____________ 12、log155=m,则log153=________________
13、lg2-lg4+1+∣lg5-1∣=_________
:____6
.2=log6181-a2
,则log122).(log63)+=.alog26
lg5+lg2⋅lg50=____________;(3)
(4)2log32-log3
+log38-3log55=________9
(5)lg5⋅lg20-lg2⋅lg50-lg25=__________
15、若lg2=a,lg3=b,则log512=________19、3=2,则log38-2log36=
________16、若loga2=m,loga3=n,a2m+n=_______21、lg25+lg2lg50+(lg2)=
17、求下列各式的值
⑴2log28⑵3log39⑶218、谋以下各式的值
⑴lg105⑵lg0.01⑶log2
log152
log173
⑷log181827
19、求lg25+lg2·lg25+lg22的值20、化简计算:log2
21.化简:(log25+log40.2)(log52+log250.5).22.若lg(x-y)+lg(x+2y)=lg2+lgx+lgy,谋
111·log3·log52589
23.未知log23=a,log37=b,用a,b则表示log4256.24排序,(1)5
1-log0.23
)log43⋅log92-log1;(3)(log25+log4125)⋅
25.计算:(1)2+log3-(-1)+log535-log57。

相关文档
最新文档