微生物固定化的方法和应用
环境污水处理中微生物的应用

点对污水中的油脂等有机物进行降解从而实现对污水的处理并且处理过程中无二次污染物产生。
2.2 降解作用微生物在生理代谢的过程中能够将有机物质降解为无机物质,基于微生物的这一作用可以对污水中的有机物质进行降解使其转化成为无机物质从而实现对污水的处理。
同时,微生物降解后的无机物质可以作为资源参与到其它领域中实现物质的循环利用和动态平衡。
需要注意的是,微生物技术的有效应用依赖于细菌和真菌等微生物的有效参与,因此,在实际应用中需要做好对微生物的选择才能确保取得较好的污水处理效果。
2.3 去毒作用污水中通常含有大量的无机磷类似污染物质导致污水具有一定的毒性,随着无机磷类似污染物质的浓度升高污水毒性随之加剧。
无机磷类似污染物质的降解难度比较高,如果处理不达标排入自然水体中会造成水体富营养化对水体生态系统平衡造成破坏。
利用微生物技术处理污水中无机磷类似污染物就是利用微生物的生理代谢作用将污水中的无机磷类似污染物进行吸收和净化从而降低污水的毒性程度。
3 微生物技术应用于污水处理中的具体方式3.1 微生物吸附技术微生物吸附技术是利用微生物自身具有的或者微生物生理代谢产生的具有一定物理化学特性的物质与污水中的某些物质结合形成较为稳定的固态物质,然后利用某种人工技术手段将污水中的固态物质分离出来。
微生物吸附技术是一种较为新颖的微生物污水处理方式,该技术方式具有成本较低的优点,目前在具有一定污染面积的重金属污水处理方面应用比较广泛[3]。
经0 引言社会和经济的发展会产生了大量的废水和污水,例如:居民日常生活中产生的大量生活污水、各种工业和制造业日常生产产生的大量废水、畜禽养殖业产生的大量养殖污水等等,如果这些污水得不到有效处理排入自然水体会造成自然水体富营养化进而导致水体缺氧引起水生动植物死亡最终形成黑臭水体,如果这些废水和污水得不到有效治理必然会给生态环境安全和人民生命健康造成严重危害,也给水环境治理部门造成了巨大压力,因此近年来国家和各级环保部门对污水处理工作高度重视[1]。
固定化

固定化技术及其应用摘要固定化细胞技术是酶工程的核心技术之一,它将酶工程提高到一个新水平。
该技术简化了工业分离纯化的步骤,并使酶反应的连续生产成为现实。
目前,该技术已经广泛应用于食品、发酵、三废处理等行业,经济效益显著。
首先分析了固定化细胞的优缺点,介绍了近年来在食品、发酵和三废处理行业的应用,最后对其应用进行了展望。
关键词固定化酶;食品;发酵;三废处理;应用引言固定化细胞就是被限制自由移动的细胞,既细胞受到物理化学等因素约束或限制在一定的空间界限内,但细胞仍保留催化活性并具备能被反复或连续使用的活力。
是在酶固定化基础上发展起来的一项技术。
【1】固定化微生物技术使用化学或物理手段,将游离细胞或者酶定位于限定的区域,使其保持活性并可反复利用的方法。
最初主要用于发酵生产,70年代后期,被利用到水处理领域,近年来则成为各国学者研究的热点【2】。
固定化微生物技术克服了生物细胞太小,与水溶液分离较难,易造成二次污染的缺点,保持了效率高、稳定性强、能纯化和保持高效菌种的优点,在废水处理领域有广阔的应用前景。
在实际应用过程中,如何固定、何种载体,才能使固定化微生物能较长时间的保持一定的强度和活度,才能降低固定化成本,延长固定微生物的使用寿命,是该技术在污水处理中得到广泛应用的关键。
固定化技术作为实现动物细胞大规模培养的重要途径, 相对悬浮培养而言具有细胞生长密度高、抗剪切力和抗污染能力强、产物易于收集和分离纯、对贴壁型和非贴壁型细胞【3】都适用的优点, 因此在动物细胞的大规模培养上得到越来越广泛的应用,相继出现了微载体、中空纤维及微囊化等多种固定化培养技术。
本文作者将结合动物细胞的培养特性,介绍目前动物细胞大规模培养中的固定化技术。
酶作为一种蛋白质,其催化活性与空间结构密切相关,在大多数情况下固相酶的催化活性较低,以固定化氨基酰化酶为例,选择比较好的载体材料和固定化方法,其活性一般也仅为游离酶的50%~60%。
一种生物炭固定化菌剂的制备与应用

一种生物炭固定化菌剂的制备与应用生物炭固定化菌剂是一种将有效菌剂固定在生物炭载体上的制剂,具有较好的微生物菌株存活率和保活时间,同时还能提供理想的生物炭固定作用。
本文将介绍生物炭固定化菌剂的制备方法及其在农业生产中的应用。
生物炭是一种由植物残渣等有机材料经过高温热解而得到的碳质固体,具有多孔性和吸附性等特点。
生物炭具有较高的比表面积和孔隙结构,有利于固定微生物菌株并提供菌落生长的适宜环境。
目前,生物炭固定化菌剂的制备主要分为两种方法:直接法和包埋法。
直接法是将生物炭和微生物菌液直接混合,通过物理吸附和化学结合的方式将微生物菌株固定在生物炭表面。
该方法简单易行,操作成本低,适用于规模较小的制备过程。
首先,将所需的微生物菌株培养并得到菌液。
然后,将适量的生物炭加入到菌液中,并搅拌均匀。
最后,将混合液体进行干燥,得到生物炭固定化菌剂。
此制备方法制备的生物炭固定化菌剂菌株存活率高,但保活时间相对较短。
包埋法是将微生物菌株与生物炭进行包埋,将微生物埋藏在生物炭内部,从而延长微生物的存活时间。
此制备方法首先需要将微生物培养至一定时期,然后将微生物培养物与生物炭混合,并搅拌均匀。
接着,将混合物进行滲透处理,待生物炭吸附微生物后,对其进行烘干处理,最终得到生物炭固定化菌剂。
包埋法制备的生物炭固定化菌剂能够延长微生物的存活时间,但制备工艺较为繁琐,操作难度较大。
生物炭固定化菌剂在农业生产中具有广泛的应用前景。
一方面,生物炭固定化菌剂可以作为土壤调理剂应用于农田中,能够改善土壤结构,调节土壤酸碱度,提高土壤肥力。
由于生物炭固定化菌剂具有较好的微生物保活性,可以通过菌根和植株共生关系提高植物养分吸收能力和抗逆性。
另一方面,生物炭固定化菌剂还可以应用于农作物病害防控。
通过固定化的方式,可以将有效菌株固定在生物炭上,并在农田中进行施用,从而有效地抑制病原微生物的生长繁殖。
综上所述,生物炭固定化菌剂的制备与应用是一种具有潜力的农业生产技术。
固定化微生物简介及海藻酸钠包埋固定法

固定化微生物简介及海藻酸钠包埋固定法李玉兵上海师范大学环境工程系2003级0313549摘要:固定化微生物技术起始于1959年,由Hattori等人首次实现了大肠杆菌的固定化,此后发展迅速。
该技术最初主要用于工业发酵,20世纪70年代以后,由于水污染严重,迫切需要一种高效、快速,能连续处理的废水处理技术,从而微生物固定化技术才在污水处理中得到广泛应用[1]。
固定化微生物技术是将微生物固定在载体上使其高度密集并保持其生物活性功能,在适宜条件下还可以增殖以满足应用之需的生物技术。
在生物反应器中所使用的微生物菌体往往被称之为生物催化剂。
由于在传统的废水生物处理工艺中,微生物通常是在水中以悬浮态生长的,因而易于从反应器中流失,又由于其与水的密度差小,因此从流出的水中回收微生物进行重复利用将变得较为困难或复杂。
为此,采用固定化技术,将微生物通过一定的技术手段是微生物固着生长,有利于提高生物反应器内微生物的数量,利于反应后的固液分离,利于去除氮,取出高浓度有机物或难以生物降解物质,提高系统的处理能力和适应性,是一项高效低耗,运行管理简单的废水生物处理技术[2]。
关键词:固定化,载体,海藻酸钠,细胞活性,前景1. 引言下面介绍一下固定化微生物中的一些基础知识,即固定化微生物的要求,载体的要求,以及载体种类,制备等。
1.1被固定的微生物(主要是人为选定的特效降解菌的优势菌种)基本条件:①投加的菌体活性高;②菌体可快速降解目标污染物;③在系统中不仅能竞争生存,而且可维持相当数量[1]。
1.2 固定化载体为微生物创造了更不易解体的生存环境,所以一个理想的固定化载体的选择也很重要。
适合于废水处理的固定化载体应具有以下性能:①对微生物无毒,生物滞留量高,不干扰生物分子的功能;②传质性能好;③具有足够的机械、物理和化学稳定性,不易被生物降解;④机械强度高,使用寿命长;⑤固定化操作简单;⑥对其它生物的吸附小;⑦价格低廉[1]。
固定化技术应用-酶和细胞的固定化

固定化技术应用-酶和细胞的固定化试题中出现固定酶能不能催化一系列反应,查找资料,没有权威资料认为已经存在催化系列反应的酶,应该是研究方向。
选修知识的考查已经出现应用方向,也拓展到了技术的前景。
也就是说,需要在教学中创设情境适当扩大知识面,结合试题进行教学会收到很好的效果,如固定化酶技术可以拓展到固定化细胞。
问题:固定化技术以及发展前景如何?什么是固定化酶?什么是固定化细胞?011.固定化酶技术固定化酶技术是用物理或化学手段。
将游离酶封锁住固体材料或限制在一定区域内进行活跃的、特有的催化作用,并可回收长时间使用的一种技术。
酶的固定化技术已经成为酶应用领域中的一个主要研究方向。
经固定化的酶与游离酶相比具有稳定性高、回收方便、易于控制、可反复使用、成本低廉等优点,在生物工业、医学及临床诊断、化学分析、环境保护、能源开发以及基础研究等方面发挥了重要作用。
2.固定化酶技术的发展以前,固定化酶技术是把从生物体内提取出来的酶,用人工方法固定在载体上。
1916年Nelson和GrImn最先发现了酶的固定化现象。
科学家们就开始了同定化酶的研究工作。
1969年日本一家制药公司第一次将固定化的酰化氨基酸水解酶用于从混合氨基酸中生产L-氮基酸,开辟了固定化酶在工业生产中的新纪元。
我国的固定化酶研究开始于1970年,首先是微生物所和上海生化所的工作者开始了固定化酶的研究。
当今,固定化酶技术发展方向是无载体的酶固定化技术。
邱广亮等用磁性聚乙二醇胶体粒子作载体,采用吸附-交联法,制备出具有磁响应性的固定化糖化酶,简称磁性酶(M I E)一方面由于载体具有两亲性,M I E可稳定的分散于水相或有机相中,充分的进行酶催化反应;另一方面,由于载体具有磁响应性,M I E又可借助外部磁场简单地回收,反复使用,大大提高酶的使用效率。
Puleo等将钛合金表面用丙烯酸胺等离子体处理引入氨基,然后将含碳硝化甘油接枝于钛合金表面,或者将等离子体处理的钛合金先由琥珀酸酐处理,再用含碳硝化甘油接枝,进而将溶菌酶和骨形态蛋白进行固定,实现了生物分子在生物惰性金属上的固定化。
高中生物酵母细胞的固定化 (3)

↓ 冲洗:将固定好的酵母细胞(凝胶珠)用蒸馏水冲洗 2~3 次
↓ 发酵:将 150 mL 质量分数为 10%的葡萄糖溶液转移至 200 mL 的锥形瓶中,加入固定好的酵母细胞,25 ℃下发酵 24 h
3.用包埋法固定化细胞是将微生物细胞均匀地包埋于 不溶于水的多孔性载体 中,常用的包埋载体有
明胶 、 琼脂糖 、 海藻酸钠 、 醋酸纤维素 和 聚丙烯酰胺 等。 4.固定化酶的应用实例——高果糖浆的生产 固定化酶技术已经应用于高果糖浆的生产中,生产 高果糖浆所需要的酶是 葡萄糖异构酶 ,所使用的反 应柱上的孔应满足 酶颗粒 不能通过筛板上的小孔, 而 反应溶液却可以自由出入。
(3)影响实验成败的关键步骤是________________。 (4)海藻酸钠溶化过程的注意事项是______________。 (5)如果海藻酸钠浓度过低,形成的凝胶珠所包埋的酵母细胞 数目_____。如果形成的凝胶珠不是圆形或椭圆形 ,说明 ______。 (6)该实验中CaCl2溶液的作用是__________。
解析 (1)酵母细胞在缺水的状态下休眠。活化是加入水使酵 母菌恢复到生活状态。酵母细胞活化后体积会增大。(2)固定 化酶常用化学结合法和物理吸附法固定化。(3)实验的关键是 配制海藻酸钠溶液,得到凝胶珠。(4)海藻酸钠溶化过程要小 火加热(小火间断加热)不断搅拌,使海藻酸钠完全溶化,又 不会焦糊。(5)海藻酸钠浓度过低,包埋的酵母菌就过少;海 藻酸钠浓度过高,不易与酵母菌混合均匀。(6)氯化钙能使海 藻酸钠形成聚沉。
反应物不易 与酶接近, 尤其是大分 子物质,反 应效率下降
酵母细胞的固定化

酵母细胞的固定化一、固定化酶与固定化细胞及应用实例1、固定化酶(1)含义:将酶固定在不溶于水的载体上。
(2)实例:利用固定化酶技术生产“高果糖浆”。
(3)优点:酶既能与反应物接触,又能与产物分离,同时,固定在载体上的酶还可以被反复利用。
(4)缺点:一种酶只能催化一种化学反应,而在实际生产中,很多产物的形成是通过一系列的酶促反应才能得到。
(5)应用实例:生产高果糖浆①原料:葡萄糖②原理:葡萄糖果糖③生产过程及示意图:a.反应柱能连续使用半年,大大降低了生产成本。
b.提高了果糖的产量和品质。
2、固定化细胞(1)含义:将细胞固定在一定空间内的技术。
(2)优点:成本低、操作容易、对酶活性的影响更小、可以催化一系列的反应、容易回收(3)缺点:固定后的细胞与反应物不容易接近,可能导致反应效果下降,由于大分子物质难以自由通过细胞膜,因此固定化细胞的应用也受到限制。
二、固定化酶或固定化细胞技术的常用方法1、固定化酶或固定化细胞:指利用物理或化学方法将酶或细胞固定在一定空间内的技术。
2、方法:①物理吸附法 :将酶(或细胞)吸附在载体表面上②包埋法:将酶(或细胞)包埋在细微网格里③化学结合法:将酶(或细胞)相互结合,或将其结合到载体上。
葡萄糖异构酶三、固定化酵母细胞的制备与发酵(一)制备固定化酵母细胞1、酵母细胞的活化:1g干酵母+10mL蒸馏水→50mL烧杯→搅拌均匀→放置1h,使之活化。
〖思考〗活化是指什么?在缺水状态下,微生物处于休眠状态。
活化是指让处于休眠状态的微生物重新恢复正常生活状态的过程。
2、配制物质的量浓度为0.05mol/L的CaCl2溶液:0.83gCaCl2+150mL蒸馏水→200mL烧杯→溶解备用3、配制海藻酸钠溶液0.7g海藻酸钠+10mL水→50mL烧杯→酒精灯微火(或间断)加热,并不断搅拌,使之溶化→蒸馏水定容到10mL。
注:加热时要用小火,或者间断加热,并搅拌,反复几次,直到海藻酸钠溶化为止4、海藻酸钠溶液和酵母细胞混合将溶化好的海藻酸钠溶液冷却至室温,加入以活化的酵母细胞,进行充分搅拌,再转移至注射器中注:1、海藻酸钠溶液必须冷却至室温,搅拌要彻底充分,使两者混合均匀,以免影响实验结果的观察。
固定化细胞技术综述

固定化细胞技术综述及其应用张弘扬1401024103 高娟丽1401024122天津农学院农学与资源环境生物技术(1)班摘要固定化细胞是将动植物或微生物细胞固定于合适的不溶性载体上的一种技术,它既可以提高生产效率和生产能力、延长生产周期,又易于细胞的分离和回收。
在生物、医药、环境保护、食品工业等方面得到了广泛应用。
本文主要介绍了固定化细胞技术的方法,载体的选择与应用,综述了固定化细胞技术在工业、环境中的应用,并对其发展前景进行展望。
关键词细胞固定化固定化方法细胞固定载体生物反应器酒精发酵环境治理固定化技术包括固定化酶技术与固定化细胞技术。
固定化细胞技术起步较晚,在20世70年代后才从固定化酶技术发展而来,它是指通过物理或化学的方法将分散、游离的微生物细胞固定在某一限定空间区域内,以提高微生物细胞的浓度,使其保持较高的生物活性并反复利用的方法。
相对于固定化酶技术,该方法不需把酶从细胞中提取出来,且无需纯化,酶活力损失小。
目前,固定化细胞技术的应用范围涵盖生物学、生化工程、有机化学、合成化学、高分子化学、食品与发酵工业、环境净化、能源生产等多个领域,已经成为生物技术中十分活跃的跨学科研究领域。
本文主要对该技术及其应用进行了简单介绍,并对其发展前景进行展望。
一、生物细胞固定化技术1、细胞固定化的原理及方法固定化技术是使生物催化剂更广泛、更有效应用的一种重要手段,任何一种限制生物催化剂自由流动的技术都可以用于制备固定化生物催化剂。
由于细胞的种类多种多样,大小和特性各不相同,故此细胞固定化的方法有很多种。
Karel 等人将其归纳为表面吸附、多介质包埋、隔离和自凝集4大类;王建龙把目前常用的固定化方法分为吸附法、包埋法、胶联法和截留法;杨文英等介绍了吸附法、包埋法、共价结合法、胶联法、多孔物质包络法、超过滤法、多种固定化方法联用等7种常用方法;成庆利等按有无外加载体将细胞固定化方法分为有载体固定化法和无载体固定化法2种;张磊等按照固定化载体与方式的不同将其分为吸附法、包埋法、共价结合法和胶联法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微生物固定化的方法和应用
微生物固定化是一种利用生物体系固定化生物体的方法,可以使
微生物与其代谢产物稳定地存在于不同的环境中。
这种方法通常包括
将微生物或其细胞固定在高分子基材上或在一些吸附剂上,以使微生
物能够长期地与环境联系并发挥其活性。
目前已有多种微生物固定化
的方法,如以下几种:
1.凝胶微生物固定化:该方法是将微生物或其代谢产物与聚合物
混合物一起凝胶固定化。
凝胶方法可以令微生物长期固定于材料上,
通过固定化,可以提高微生物的生产效率和活性。
2.包埋法微生物固定化:此方法是将微生物与聚合物混合后,将
混合物包裹在微小气泡中。
包埋法可以保护微生物,使其不受环境影响,可以延长微生物的寿命,并可提高微生物的生产效率。
3.微生物纤维固定化:采用无纺布制备作为基质,将微生物凝胶
固定于无纺布上,以便在生产中使用。
对于过生产季节性的酶类产品,可以使用该方法固定化微生物,以延长生产周期。
4.交联法微生物固定化:用化学交联剂,将微生物与载体进行固定,使微生物不易被抑制和灭活。
交联法在微生物的良好生长条件下,可以提高微生物的耐性和活性。
目前微生物固定化应用非常广泛,在制药、食品工程、环境保护
等领域中均有应用。
例如,在制药领域中,微生物固定化方法可应用
于发酵、代谢产物提取等工序中,以提高产量和纯度;在食品领域,
微生物固定化可以使生产中的微生物更加稳定,以保证产品质量和长
效存储;在环境保护领域中,微生物固定化可用于水处理、废物处理
等领域,如微生物萃取技术可既能高效地去除重金属等有害物质,同
时又能够将废弃物转化成有用的资源。