人教版七年级数学下册专题训练
七年级数学下册专题训练3二元一次方程组的实际应用作业新版新人教版

=1062,解得:m=6.答:商店是打
6
折出售这两
种商品.
类 型 5 几何图形与图表信息问题
12.(玉环期中)根据如图提供的信息,可知一个热水瓶的价格
是( C )
A.7 元
B.35 元
C.45 元
D.50 元
13.如图,用 12 块相同的小长方形瓷砖拼成一个大的长方形,
则每个小长方形瓷砖的面积是( B )
专题训练(三)
二元一次方程组的实际应用
类 型 1 和、差、倍、分问题
1.某校七年级(1)班 50 名同学为灾区捐款,共捐款 200 元,捐 款情况如下表:
表中捐款 2 元和 3 元的人数不小心被墨水污染已看不清楚,若
设捐款 2 元的有 x 名同学,捐款 3 元的有 y 名同学,根据题意,
可列方程组( A )
B.x9+0x+y=112020y=,22200
C.xx++yy==2222020,0
D.x11+0xy=+92020y=,22200
15.本地某快递公司规定:寄件不超过 1 千克的部分按起步价 计费;寄件超过 1 千克的部分按千克计费.小丽分别寄快递到 上海和北京,收费标准及实际收费如下表:
求 a,b 的值.
解:设改进加工方法前用了 x 天,改进加工方法后用了 y 天, 依题意,得x3+x+y=5y=6,22, 解得xy==24,, 答:该合作社改进加 工方法前用了 4 天,改进加工方法后用了 2 天.
3.为响应国家节能减排的号召,鼓励居民节约用电,各省先 后出台了居民用电“阶梯价格”制度,如表中是某省的电价标准 (每月).例如:方女士家 5 月份用电 500 度,电费=180×0.6+220× 二档电价+100×三档电价=352 元;李先生家 5 月份用电 460 度,交费 316 元,请问表中二档电价、三档电价各是多少?
人教版七年级下册数学一元一次不等式解决实际问题应用题专项训练(含答案)

人教版七年级下册数学一元一次不等式解决实际问题应用题专项训练1.某校组织290名师生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李;乙种汽车每辆最多能载30人和20件行李.请你帮助学校设计所有可能的租车方案.2.为加快老旧小区改造,某企业需运输一批物资.据调查得知,2辆大货车与3辆小货车一次可以运输60箱物资:5辆大货车与6辆小货车一次可以运输135箱物资.(1)求1辆大货车和1辆小货车一次分别运输多少箱物资;(2)计划用两种货车共12辆运输这批物资,每辆大货车一次需费用500元,每辆小货次需费用300元.若运输物资不少于150箱,且总费用小于5400元.请你列出所有运输方案,并指出哪种方案所需费用最少.最少费用是多少?3.为了更好地治理水质,保护环境,市治污公司决定购买10台污水处理设备,现有A、B两种设备,A、B的单价分别为a万元/台和b万元/台,月处理污水分别为240吨/月和200吨/月,经调查,买一台A型设备比买一台B 型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a、b的值;(2)经预算,市治污公司购买污水处理器的资金不超过105万元,你认为该公司有哪几种购买方案?(3)在(2)的条件下,若每月处理的污水不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的方案.4.疫情形势依然严峻,我们需要继续坚持常态化防控.卫生专家建议多补充维生素增强身体免疫力以抵御病菌,现有甲、乙、丙3种食物的维生素含量和成本如下表:某食品公司欲用这3种食物研制100千克食品,要求研制成的食品中至少含有36000单位的维生素A和40000单位的维生素B.(1)研制100千克食品,甲种食物至少要用多少千克?丙种食物至多能用多少千克?(2)若限定甲种食物用50千克,则研制这100千克食品的总成本S的取值范围是多少?5.某校开展以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,则需110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元;(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总金额不超过320元,则最多购进乙种笔记本多少个?6.为共产党建党一百周年,某校举行“礼赞百年,奋斗有我”演讲比赛,准备购买甲、乙两种纪念品奖励在活动中表现优秀的学生,已知购买2个甲种纪念品和3个乙种纪念品共需35元,购买1个甲种纪念品和4个乙种纪念品共需30元.(1)求购买一个甲种纪念品和一个乙种纪念品各需多少元?(2)若要购买这两种纪念品共100个,投入货金不多于900元,最多买多少个甲种纪念品?7.有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为170人,1辆甲种客车与2辆乙种客车的总载客量为100人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某单位组织180名员工到某革命家传统教育基地开展“纪念建党100周年”活动,拟租用甲、乙两种客车共5辆,总费用在1950元的限额内,一次将全部员工送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为320元,有哪几种租车方案,最少租车费用是多少?8.由甲、乙两运输队承包运输6000立方米沙石的任务.要求10天之内(含10天)完成,已知两队共有15辆汽车且全部参与运输,甲队每辆车每天能够运输50立方米的沙石,乙队每辆车每天能够运输40立方米的沙石,前3天两队一共运输了2070立方米.(1)甲队有________辆汽车,乙队有________辆汽车;(2)3天后,另有紧急任务要从甲队调出车辆支援,在不影响工期的情况下,利用(1)的结论求最多可以从甲队调出汽车多少辆?9.某学校计划从商店购买A,B两种商品,购买一个A种商品比购买一个B种商品多用20元,且购买10个A种商品和5个B种商品共需275元.(1)求购买一个A种商品、一个B种商品各需要多少元;(2)根据学校实际情况,该学校需要购买B种商品的个数是购买A种商品个数的3倍还多18个,经与商店洽谈,商店决定在该学校购买A种商品时给予八折优惠,如果该学校本次购买A,B两种商品的总费用不超过1000元,那么该学校最多可购买多少个A种商品?10.下表是某奶茶店的一款奶茶近两天的销售情况.(1)根据表格数据,这款奶茶中杯和大杯的销售单价各是多少元?(2)已知这款奶茶中杯成本3元/杯,大杯成本4元/杯,奶茶店每天最多供应200杯奶茶,如果奶茶店老板希望每天该款奶茶的利润不低于2000元,则至少需卖出多少杯大杯奶茶?11.某汽车贸易公司销售A,B两种型号的新能源汽车,A型车进货价格为每台12万元,B型车进货价格为每台15万元,该公司销售2台A型车和5台B型车,可获利3.1万元,销售1台A型车和2台B型车,可获利1.3万元.(1)求销售一台A型、一台B型新能源汽车的利润各是多少万元?(2)该公司准备用300万元资金,采购A,B两种新能源汽车,可能有多少种采购方案?(3)该公司准备用不超过300万,采购A,B两种新能源汽车共22台,问最少需要采购A型新能源汽车多少台?12.为为发展校园足球运动,我县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每个足球比每套队服多60元,5套队服与3个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a大于10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,假如你是本次购买任务的负责人,你认为到哪家商场购买更优惠?13.深圳某校6名教师和234名学生外出参加集体活动,学校准备租用45座大车和30座小车若干辆.已知租用1辆大车、2辆小车的租车费用是1000元,租用2辆大车、1辆小车的租车费用是1100元.(1)求大、小客车每辆的租车费各是多少元?(2)学校要求每辆车上至少要有一名教师,且租车总费用不超过2300元,请问有几种符合条件的租车方案?14.某商店销售A,B两种型号的钢笔.下表是近两周的销售情况:(1)求A,B两种型号钢笔的销售单价;(2)某公司购买A,B两种型号钢笔共45支,若购买总费用不少于2600元,则B型号钢笔最少买几支?15.小明与小红开展读书比赛.小明找出了一本以前已读完84页的古典名著打算继续往下读,小红上个周末恰好刚买了同一版本的这本名著,不过还没开始读.于是,两人开始了读书比赛.他们利用右表来记录了两人5天的读书进程.例如,第5天结束时,小明还领先小红24页,此时两人所读到位置的页码之和为424.已知两人各自每天所读页数相同.(1)表中空白部分从左到右2个数据依次为,;(2)小明、小红每人每天各读多少页?(3)已知这本名著有488页,问:从第6天起,小明至少平均每天要比原来多读几页,才能确保第10天结束时还不被小红超过?(答案取整数)16.2021年元旦新冠病毒肆虐,为抗疫救灾,甲、乙两运输队接受了运输20000箱抗疫物资的任务,任务要求在11天之内(包含11天)完成.已知两队共有18辆汽车,甲队每辆车每天能够运输120箱的抗疫物资,乙队每辆车每天能够运输100箱的抗疫物资,前4天两队一共运输了8000箱.(1)求甲、乙两队各有多少辆汽车;(2)4天后,甲队另有紧急任务需要抽调车辆支援,在不影响工期的情况下,甲队最多可以抽调多少辆汽车走?17.巴蜀中学两江校区和鲁能校区联合准备重庆市中学生新年文艺汇演.准备参加汇演的学生共102人(其中鲁能校区人数多于两江校区人数,且鲁能校区人数不足100人),按要求准备统一购买服装(一人买一套)参加演出,下面是服装厂给出的演出服装的价格表:如果两校区分别单独购买服装,一共应付7500元.(1)如果两校区联合起来购买服装,那么比各自单独购买服装共可以节省多少钱?(2)两江校区和鲁能校区各有多少学生准备参加演出?(3)如果鲁能校区有7名参加演出的同学临时接到通知将参加某大学的自主招生考试而不能参加演出,那么你认为有几种购买方案,通过比较,你该如何购买服装才能最省钱?18.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?19.某社区拟建甲,乙两类摊位以激活“地摊经济”,1个甲类摊位和2个乙类摊位共占地面积14平方米,2个甲类摊位和3个乙类摊位共占地面积24平方米.(1)求每个甲,乙类摊位占地面积各为多少平方米?(2)该社区拟建甲,乙两类摊位共100个,且乙类摊位的数量不多于甲类摊位数量的3倍,求甲类摊位至少建多少个?20.某班计划购买A、B两款文具盒作为期末奖品.若购买3盒A款的文具盒和1盒B款的文具盒需用22元;若购买2盒A款的文具盒和3盒B款的文具盒需用24元.(1)每盒A款的文具盒和每盒B款的文具盒各多少元.(2)某班决定购买以上两款的文具盒共40盒,总费用不超过210元,那么该班最多可以购买多少盒A款的文具盒?参考答案:1.第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆.2.(1)1辆大货车一次运输15箱物资,1辆小货车一次运输10箱物资;(2)方案①6辆大货车,6辆小货车,方案①7辆大货车,5辆小货车,方案①8辆大货车,4辆小货车;方案①,即当有6辆大货车,6辆小货车时,费用最小,最小费用为4800元.3.(1)a=12,b=10(2)三种方案,4.(1)即至少要用甲种食物35千克,丙种食物至多能用45千克(2)研制这100千克食品的总成本S的取值范围是470≤S≤5005.(1)甲种笔记本的单价是3元,乙种笔记本的单价是5元;(2)本次最多购买31个乙种笔记本.6.(1)购买一个甲种纪念品需10元,一个乙种纪念品需5元.(2)80个7.(1)1辆甲种客车的载客量为40人,1辆乙种客车的载客量为30人.(2)有2种租车方案,最少租车费用是1840元.8.(1)9;6;(2)最多可以从甲队调出汽车2辆.9.(1)购买一个A种商品需要25元,购买一个B种商品需要5元.(2)最多可购买26个A种商品.10.(1)这杯奶茶中杯和大杯的销售单价分别为12元,15元(2)至少需卖出100杯大杯奶茶11.(1)一台A型、一台B型新能源汽车的利润各0.3,0.5万元(2)可能有5种采购方案(3)最少需要采购A型新能源汽车10台12.(1)设每套队服售价90元,则每个足球售价为150元(2)甲商场购买装备所花费用(150a+7500)元,乙商场购买装备所花费用:(120a+9000)元(3)当购买足球数大于10而小于50时,到甲商场更优惠;当购买足球数等于50时,到甲、乙商场一样优惠;当购买足球数大于50时,到乙商场更优惠13.(1)大车每辆的租车费是400元、小车每辆的租车费是300元;(2)有两种租车方案,方案一:4辆大车,2辆小车;方案二:5辆大车,1辆小车.14.(1)A型号的钢笔销售单价为50元/支,B型号的钢笔销售单价为80元/支(2)最少买B型号的钢笔12支15.(1)288,356(2)小明每天读28页,小红每天读40页(3)小明至少平均每天要比原来多读8页,才能确保第10天结束时还不被小红超过16.(1)甲队有10辆汽车,乙队有8辆汽车(2)甲队最多可以抽调2辆汽车走17.(1)1380元(2)两江校区有学生36人,则鲁能校区有学生66人.(3)两校联合起来选择按60元每套一次购买100套服装最省钱.18.(1)水果店两次分别购买了800元和1400元的水果(2)6元19.(1)每个甲类摊位占地6平方米,每个乙类摊位占地4平方米(2)甲摊位至少建25个20.(1)每盒A款的文具盒为6元,每盒B款的文具盒为4元(2)该班最多可以购买25盒A款的文具盒。
人教版初中数学七年级下册第六章《6.1平方根》同步练习题(含答案)

《平方根》同步练习1 课堂作业1.9的算术平方根是()A.-3B.±3C.3D2.一个数的算术平方根不可能是()A.正数B.负数C.分数D.非负数3的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间4.144的算术平方根是________;(-5)2的算术平方根是________;181的算术平方根是________.5.求下列各数的算术平方根:(1)0.64;(2)9116;(3)2.56;(4)0.6.求下列各式的值:(2).课后作业7() A.-3B.3C.-9D.98() A.-2B.±2CD.29.下列说法正确的是() A.7是49的算术平方根B.±4是16的算术平方根C.-6是(-6)2的算术平方根D.0.01是0.1的算术平方根10.下列运算正确的是()A.(5)5=--=B1 12 =C33 2244 =+=D0.5=±11.一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是() A.a+1B.a2+1CD112.用“>”或“<”连接下列各式:(2)(3)4-.13.若172.≈,22.84≈,则217________≈,________≈0.02284≈,则x =________.14.邻居张大爷家有一块正方形的花圃,面积为289m 2,张大爷要在花圃的四周围上栅栏,则至少需要栅栏的长度为________.15.求下列各式的值:16.小玉想用一张面积为900cm 2的正方形纸片,沿着边的方向裁出一张面积为560cm 2的长方形纸片,使它的长、宽之比为2︰1,但不知是否能裁出来.小芳看见了说:“很明显,一定能用一张面积大的纸片裁出一张面积小的纸片.”你同意小芳的观点吗?小玉能用这张正方形纸片裁出符合要求的长方形纸片吗?答案[课堂作业]1.C2.B 3.C4.12 5 195.(1)0.8 (2)54 (3)1.6 (4)0 6.(1)147 (2)-3(3)9(4)45[课后作业]7.B8.C9.A10.B11.B12.(1)>(2)>(3)>13.0.2284228.40.000521714.68m15.(1)17(2)0.8(3)216.设长方形纸片的长为2xcm,宽为xcm.由题意,得2x·x=560,解得x=280>256,16>.∴2x>32,即裁出的长方形纸片的长大于32cm.而已知正方形纸片的面积为900cm2,则边长只有30cm,因此,我不同意小芳的观点小玉不能用这张正方形纸片裁出符合要求的长方形纸片《平方根》同步练习2课堂作业1.下列各数中,没有平方根的是()A.(-3)2B.0C.1 8D.-632.求449的平方根,下列运算过程正确的是()A4 49 =B.27 =±C2 7 =D.2 7 =3.若x的一个平方根,则另一个平方根是________,x是________.4.2.25的平方根是________;19的平方根是________;1625的平方根是________.5.求下列各数的平方根:(1)196;(2)0.16;(3)25 169;(4)729.6.有一个边长为11cm的正方形和一个长15cm、宽5cm的长方形,要做一个面积为这两个图形的面积之和的正方形,则该正方形的边长应为多少?课后作业7.下列各式正确的是()A3=-B.3=-C3=±D3=±8.下列说法正确的是()A.14是0.5的一个平方根B.正数有两个平方根,且这两个平方根之和等于0C.72的平方根是7D.负数有一个平方根9()A.±3B.3C.±9D.910.若a是(-3)2的平方根,b的一个平方根是2,则a+b的值为________.11.若一个正数的两个平方根分别是2a-2和a-4,则a的值是________.12.求下列各式的值:(1);(2);(4)13.求下列各式中x的值:(1)3x2=75;(2)292(1)8x-=;(3)2(x2+1)=5.38.14.已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的值.15.为了促进全民健身活动的开展,改善居民的生活质量,某居民小区决定在一块面积为905m2的正方形空地上建一个篮球场.已知篮球场的面积是420m2,长是宽的2815倍,篮球场的四周必须留出1m宽的空地.请你计算一下,能否按规定在这块空地上建一个篮球场.答案[课堂作业]1.D2.B3 54.±1.513±45±5.(1)±14(2)±0.4(3)513±(4)53±6.设该正方形的边长为xcm.由题意,得x2=11×11+15×5=196.∵x>0,∴14x==.∴该正方形的边长应为14cm[课后作业]7.B8.B9.A10.1或711.212.(1)±30(2)-1.7(3)7 4(4)±1113.(1)x =±5 (2)14x =或74x = (3)x =±1.314.由题意,得2a -1=(±3)2,3a +b -1=42,解得a =5,b =2.∴a +2b =5+2×2=915.设篮球场的宽为xm ,那么长为28m 15x .由题意,得2842015x x = .∴x 2=225.∵x >0,∴15x ==.又∵228(2)90090515x +=<,∴能按规定在这块空地上建一个篮球场 《平方根》同步练习3同步练习:一、基础训练1.若一个偶数的立方根比2大,算术平方根比4小,则这个数是_______.2.下列计算不正确的是( )A ±2B 9C =0.4D 63.下列说法中不正确的是( )A .9的算术平方根是3B 2C .27的立方根是±3D .立方根等于-1的实数是-14 )A .±8B .±4C .±2 D5.-18的平方的立方根是( ) A .4 B .18 C .-14 D .146_______;9的立方根是_______.7______________(保留4个有效数字)8.求下列各数的平方根.(1)100;(2)0;(3)925;(4)1;(5)11549;(6)0.09.9.计算:(1)(2(3(4二、能力训练10.一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A.x+1B.x2+1C1D11.若2m-4与3m-1是同一个数的平方根,则m的值是()A.-3B.1C.-3或1D.-112.已知x,y(y-3)2=0,则xy的值是()A.4B.-4C.94D.-94参考答案1.13.10,12,14 点拨:23<这个数<42,即8<这个数<16.2.A 2.3.C4.C =4,故4的平方根为±2.5.D 点拨:(-18)2=164,故164的立方根为14.6.±237.6.403,12.61 8.(1)±10 (2)0 (3)±35 (4)±1 (5)±87 (6)±0.3 9.(1)-3 (2)-2 (3)14(4)±0.510.D 点拨:这个自然数是x 2,所以它后面的一个数是x 2+1,则x 2+1.12.B 点拨:3x +4=0且y -3=0.。
人教版七年级数学下册期末考试填空题专项训练40题

人教版七年级数学下册期末考试填空题专项训练40题一.选择题(共10小题)1.某县教育局今年体育测试中,从某校毕业班中抽取男,女学生各15人进行三项体育成绩复查测试.在这个问题中,下列叙述正确的是()A.该校所有毕业班学生是总体B.所抽取的30名学生是样本C.样本的容量是15D.个体指的是毕业班每一个学生的体育测试成绩2.为了了解我市七年级学生每天用于学习的时间,对其中500名学生进行了调查,则下列说法错误的是()A.总体是我市七年级学生每天用于学习的时间B.其中500名学生每天用于学习的时间是总体的一个样本C.样本容量是500名D.个体是其中1名学生每天用于学习的时间3.去年娄底市有7.6万学生参加初中毕业会考,为了解这7.6万名学生的数学成绩,从中抽取1 000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1000名考生是总体的一个样本B.7.6万名考生是总体C.每位考生的数学成绩是个体D.1000名学生是样本容量4.某火车站为了了解某月每天上午乘车人数,抽查了其中10天的每天上午的乘车人数,所抽查的这10天每天上午乘车人数是这个问题的()A.总体B.个体C.一个样本D.样本容量5.为了考查一批日光灯管的使用寿命,从中抽取了30只进行试验,在这个问题中,下列说法正确的有()①总体是指这批日光灯管的全体;②个体是指每只日光灯管的使用寿命;③样本是指从中抽取的30只日光灯管的使用寿命;④样本容量是30只.A.1个B.2个C.3个D.4个6.玩具车间每天能生产甲种玩具零件24个或乙种玩具零件12个,若甲种玩具零件一个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在60天内组装出最多的玩具设生产甲种玩具零件x天,乙种玩具零件y天,则有()A.B.C.D.7.游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽是红色游泳帽的2倍,设男孩有x人,女孩有y人,则下列方程组正确的是()A.B.C.D.8.某校组织学生进行了禁毒知识竞赛,竞赛结束后,菁菁和彬彬两个人的对话如下:根据以上信息,设单选题有x道,多选题有y道,则可列方程组为()A.B.C.D.9.已知A种盐水含盐15%,B种盐水含盐40%,现在要配制500克含盐25%的盐水,需要A、B两种盐水各多少克?若设需要A种盐水x克,B种盐水y克,根据题意可列方程组为()A.B.C.D.10.10年前,小明妈妈的年龄是小明的6倍,10年后,小明妈妈的年龄是小明的2倍,小明和他妈妈现在的年龄分别是多少岁?若设小明和他妈妈现在分别是x岁和y岁,根据题意可列方程组为()A.B.C.D.二.填空题(共30小题)11.的算术平方根是,的平方根是.12.立方根等于本身的数的个数为a,平方根等于本身的数的个数是b,算术平方根等于本身的数的个数为c,倒数等于本身的数的个数是d,则a+b+c+d=.13.81的平方根为;﹣216的立方根为;的算术平方根为;开平方得.14.36的平方根是;的算术平方根是;=.15.若x+2的平方根是±2,2x+y+7的立方根是3,则6x3+y的算术平方根为.16.不等式组的整数解为.17.不等式组的整数解共有个.18.不等式组的整数解为.19.满足不等式3(1+x)≥﹣0.5x﹣7的最大负整数的解是.20.不等式组有2个整数解,则m的取值范围是.21.已知:(x2+y2+1)2﹣4=0,则x2+y2=.22.已知(x2+y2+2)2=9,则x2+y2=.23.如果|a﹣1|+(b+2)2=0,则(a+b)2006的平方根是.24.若x2=7,则x=.25.若某个正数的两个平方根分别是2a﹣1与2a+5,则a=.26.已知平面直角坐标系内两点M(5,a)、N(b,﹣2),若直线MN∥x轴,则a、b.27.在平面直角坐标系中,点P(0,﹣2)和点Q(0,4)之间的距离等于个单位长度,线段PQ的中点M的坐标为.28.若线段AB平行y轴,AB长为5,若A的坐标为(4,5),则B的坐标为.29.在平面直角坐标系中,若点M(1,x)与点N(1,3)之间的距离是5,则x的值是.30.直角坐标系中有点A(m,3),点B(2,n)两点,若直线AB∥y轴,则m=.31.小强调查“每人每天的用水量”这一问题时,收集到80个数据,最大数据是70升,最小数据是42升,若取组距为4,则应分为组绘制频数分布表.32.已知样本25,21,23,25,27,29,25,28,30,29,26,24,25,27,26,22,24,25,26,28.若取组距为2,那么应分为组,在24.5~26.5这一组的频数是.33.在1000个数据中,用适当的方法抽取50个作为样本进行统计.在频数分布表中,54.5~57.5这一组的频率为0.12,那么这1000个数据中落在54.5~57.5之间的数据约有个.34.体育老师从七年级学生中抽取40名参加全校的健身操比赛.这些学生身高(单位:cm)的最大值为175,最小值为155.若取组距为3,则可以分成组.35.统计得到一组数据,最大值时136,最小值是52,取组距为10,可以分成组.36.如图,5个一样大小的矩形拼成一个大矩形,如果大矩形的周长为14厘米,那么小矩形的周长为厘米.37.请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何”诗句中谈到的鸦为只,树为棵.38.小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图所示,请你根据图中的信息,若小明把100个纸杯整齐叠放在一起时,它的高度约是cm.39.如图的天平中各正方体的质量相同,各小球质量相同,若使两架天平都平衡,则下面天平右端托盘上正方体的个数为.40.设“●”,“■”表示两种不同的物体,现用天平称了两次,如下图所示,那么这两种物体的质量分别为:g,g.人教版七年级数学下册期末考试填空题专项训练40题参考答案一.选择题(共10小题)1.D;2.C;3.C;4.C;5.B;6.C;7.C;8.C;9.C;10.B;二.填空题(共30小题)11.2;;12.8;13.±9;﹣6;;;14.±6;2;﹣3;15.8;16.0或1;17.5;18.0,1,2,3,4;19.﹣1;20.1<m≤2;21.1;22.1;23.±1;24.;25.﹣1;26.=﹣2;≠5;27.6;(0,1);28.(4,0)或(4,10);29.﹣2或8;30.2;31.8;32.5;8;33.120;34.7;35.9;36.6;37.20;5;38.106;39.5;40.30;40;。
专题03 三线八角-人教版七年级下册数学常考题专练(解析版)

专题03三线八角★知识归纳●同位角、内错角、同旁内角的概念1. “三线八角”模型如图,直线AB、CD与直线EF相交(或者说两条直线AB、CD被第三条直线EF所截),构成八个角,简称为“三线八角”,如图1.图1要点梳理:⑴两条直线AB,CD与同一条直线EF相交.⑵“三线八角”中的每个角是由截线与一条被截线相交而成.2. 同位角、内错角、同旁内角的定义在“三线八角”中,如上图1,(1)同位角:像∠1与∠5,这两个角分别在直线AB、CD的同一方,并且都在直线EF的同侧,具有这种位置关系的一对角叫做同位角.(2)内错角:像∠3与∠5,这两个角都在直线AB、CD之间,并且在直线EF的两侧,像这样的一对角叫做内错角. (3)同旁内角:像∠3和∠6都在直线AB、CD之间,并且在直线EF的同一旁,像这样的一对角叫做同旁内角.要点梳理:(1)“三线八角”是指上面四个角中的一个角与下面四个角中的一个角之间的关系,显然是没有公共顶点的两个角.(2)“三线八角”中共有4对同位角,2对内错角,2对同旁内角.●同位角、内错角、同旁内角位置特征及形状特征要点梳理:巧妙识别三线八角的两种方法:(1)巧记口诀来识别:一看三线,二找截线,三查位置来分辨.(2)借助方位来识别根据这三种角的位置关系,我们可以在图形中标出方位,判断时依方位来识别,如图2.★实操夯实一.选择题(共15小题)1.下列图形中,∠1和∠2不是同位角的是()A.B.C.D.【解答】解:A、∠1和∠2是同位角,故此选项不合题意;B、∠1和∠2是同位角,故此选项不合题意;C、∠1和∠2不是同位角,故此选项符合题意;D、∠1和∠2是同位角,故此选项不合题意;故选:C.2.下列所示的四个图形中,∠1和∠2是同位角的是()A.②③B.①②③C.③④D.①②④【解答】解:图①②④中,∠1和∠2是同位角,故选:D.3.如图,下列说法错误的是()A.∠A与∠C是同旁内角B.∠1与∠3是同位角C.∠2与∠3是内错角D.∠3与∠B是同旁内角【解答】解:A、∠A与∠C是同旁内角,故A正确;B、∠1与∠3是同旁内角,故B错误;C、∠2与∠3是内错角,故C正确;D、∠3与∠B是同旁内角,故D正确;故选:B.4.给出下列说法:(1)两条直线被第三条直线所截,同位角相等;(2)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;(3)相等的两个角是对顶角;(4)从直线外一点到这条直线的垂线段,叫做这点到直线的距离.其中正确的有()A.0个B.1个C.2个D.3个【解答】解:(1)同位角只是一种位置关系,只有两条直线平行时,同位角相等,错误;(2)强调了在平面内,正确;(3)不符合对顶角的定义,错误;(4)直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度.故选:B.5.已知∠1和∠2是同旁内角,∠1=40°,∠2等于()A.160°B.140°C.40°D.无法确定【解答】解:同旁内角只是一种位置关系,两直线平行时同旁内角互补,不平行时无法确定同旁内角的大小关系,故选D.6.在下列四个图中,∠1与∠2是同位角的图是()A.①②B.①③C.②③D.③④【解答】解:①∠1和∠2是同位角;②∠1的两边所在的直线没有任何一条和∠2的两边所在的直线公共,∠1和∠2不是同位角;③∠1和∠2是同位角;④∠1的两边所在的直线没有任何一条和∠2的两边所在的直线公共,∠1和∠2不是同位角.故选:B.7.如图,直线a、b被直线c所截,互为同旁内角是()A.∠4和∠6B.∠2和∠7C.∠4和∠5D.∠4和∠6【解答】解:∵直线a、b被直线c所截,∴互为同旁内角是∠4和∠5.故选:C.8.如图,∠1与∠2是同位角,若∠1=63°,则∠2的大小是()A.27°B.63°C.27°或63°D.不能确定【解答】解:因为被截的两条直线是相交还是平行无法确定,所以∠2与∠1的关系也无法确定,故∠2大小不能确定.故选:D.9.如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是()A.∠4,∠2B.∠2,∠6C.∠5,∠4D.∠2,∠4【解答】解:∠1的同位角是∠2,∠5的内错角是∠6,故选:B.10.下列说法正确的是()A.小于平角的角是直角B.相等的角是对顶角C.同位角相等D.互为邻补角的两角和等于180°【解答】解:A、小于平角的角是直角,也有可能是锐角,故本选项错误;B、如等腰三角形的两底角相等但不是对顶角,故本选项错误;C、两直线平行,同位角相等,故本选项错误;D、互为邻补角的两角和等于180°,故本选项正确.故选:D.11.如图,图中∠1与∠2是同位角的是()A.(2)(3)B.(2)(3)(4)C.(1)(2)(4)D.(3)(4)【解答】解:(1)(2)(4)中,∠1与∠2是同位角;图(3)中,∠1与∠2不是同位角,因为这两个角的边所在的直线没有一条公共边.故选:C.12.如图,∠ADE和∠CED是()A.同位角B.内错角C.同旁内角D.互为补角【解答】解:由图知,∠ADE和∠CED是直线AB和AC被DE所截形成的,在截线两侧,且在两被截线之间,故是内错角.故选:B.13.如图,直线a,b被直线c所截,则下列说法中错误的是()A.∠1与∠3是对顶角B.∠1与∠2是邻补角C.∠3与∠4是内错角D.∠2与∠4是同位角【解答】解:A、∠1与∠3是对顶角,说法正确;B、∠2与∠3是邻补角,说法正确;C、∠3与∠4是同旁内角,故原说法错误;D、∠2与∠4是同位角,说法正确;故选:C.14.如图所示,下列说法中错误的是()A.∠A和∠2是同旁内角B.∠A和∠3是同位角C.∠A和∠B是同旁内角D.∠C和∠1是内错角【解答】解:A、∠A和∠2不是同旁内角,原说法错误,故此选项符合题意;B、∠A和∠3是同位角,原说法正确,故此选项不符合题意;C、∠A和∠B是同旁内角,原说法正确,故此选项不符合题意;D、∠C和∠1是内错角,原说法正确,故此选项不符合题意;故选:A.15.如图,平行直线AB、CD与相交直线EF、GH相交,图中的同旁内角共有()A.4对B.8对C.12对D.16对【解答】解:直线AB、CD被EF所截有2对同旁内角;直线AB、CD被GH所截有2对同旁内角;直线CD、EF被GH所截有2对同旁内角;直线CD、GH被EF所截有2对同旁内角;直线GH、EF被CD所截有2对同旁内角;直线AB、EF被GH所截有2对同旁内角;直线AB、GH被EF所截有2对同旁内角;直线EF、GH被AB所截有2对同旁内角.共有16对同旁内角.故选:D.二.填空题(共3小题)16.如图,射线DE、DC被直线AB所截得的用数字表示的角中,∠4与∠1是同位角.【解答】解:∠4与∠1是同位角,故答案为:∠1.17.如图,∠A的同位角是∠BFG,∠CGF,∠1的内错角是∠CGF,∠2的同旁内角是∠CGF或∠B 或∠A.【解答】解:∠A与∠BDG是直线AC、DE被直线AB所截形成的同位角,∠A与∠BFG是直线AC、DE被直线AB所截形成的同位角;∠1与∠CGF是直线AC、AB被直线DE所截形成的内错角;∠A与∠2是直线AB、BC被直线AC所截形成的同旁内角,∠2与∠B是直线AC、AB被直线BC所截形成的同旁内角,∠2与∠CGF是直线BC、DE被直线AC所截形成的同位角;故∠A的同位角是∠BFG,∠CGF,∠1的内错角是∠CGF,∠2的同旁内角是∠CGF或∠B或∠A.18.如图,∠1与∠B是同旁内角,它们是由直线AC和CB被直线AB所截而形成.【解答】解:∠1与∠B是直线AC、BC被AB所截而成的同旁内角,故答案为:同旁内;AC、BC、AB.。
2021年七年级数学下册期末综合专题训练:专题04 实数的规律探究(含答案及解析)(人教版)

2020-2021学年七年级数学下册期末综合专题训练(人教版)专题04 实数的规律探究【专题训练】一、选择题1.观察下列各式,发现规律:111233+=, 112344+=, 113455+=, (1)填空:146+= ,157+= ; (2)计算(写出计算过程):120172019+; (3)请用含正整数n 的代数式把你们所发现的规律表示出来.【答案】(1)114566+=,115677+=;(2)120182019;(3)()112n n ++. 【解析】【分析】(1)先通分,然后把分子中两数的积运用平方差公式变形,再根据二次根式的性质化简即可; (2)与(1)的步骤相同;(3)与(1)的步骤相同.【详解】 (1)()()2515111461514566666-++⨯++====, ()()2616111571615677777-++⨯++====;(2)11 2017201820192019+=,原式()()20181201811 20172019120192019-++⨯+==220181201820192019 ==;(3)()()()22111112222n n nn nn n n n++++===+++++.【点睛】本题考查了二次根式的性质与化简,平方差公式,通分后能运用平方差公式变形是解答本题的关键. 2.观察下列材料各式:①284222 242 55555⨯-===⨯=即22 2255 -=②3279333 393 1010101010⨯-===⨯=即33 331010 -=……(1)按照发现的规律填空4417-=.(2)按此规律,第6个等式是.写出你的推理过程.(3)请用含自然数n(n>0)的式子写出你发现的规律;.【答案】(1)4417;(2)见解析;(3)见解析.【解析】【分析】(1)根据算术平方根的概念进行计算;(2)根据计算过程和各式的变化规律猜想结果;(3)根据给出各式的计算过程和结果,总结规律.【详解】(1)观察所给的式子可得: 44441717-=. 故答案为4417. (2)按此规律,第6个等式是77775050-=. 73507343497777.505050505050⨯-=-=== 即:77775050-=. (3)第n 个式子为:()221111.1111()()n n n n n n +++-=+++++ 【点睛】本题属于规律型,数字的变化类,根据数据前后的变化得出变化的规律是解题的关键.3.先观察下列等式,再回答下列问题:①2211111111121112++=+-=+; ②2211111111232216++=+-=+ ③22111111113433112++=+-=+ (1)请你根据上面三个等式提供的信息,猜想2211145++的结果,并验证; (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数).【答案】(1)1120(2)()111n n ++(n 为正整数) 【解析】 试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n +1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.试题解析:(1)2211 145++=1+14−141+=1120, 验证:2211145++=1111625++=25161400400++=441400=1120 (2)()2211 1n n 1+++=1+1 n −1 n 1+=1+()1n n 1+ (n 为正整数). 点睛:本题考查了二次根式的性质与化简,即2a a =,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.4.阅读理解.观察下列变形:13142⨯+==;24193⨯+==;351164⨯+==;…解答下列各题:(1)填空:7 9 1( )⨯+==________;22241( )⨯+==________;31331( ) ⨯+==________.(2)请用含n (n 为正整数)的等式反映上述变形的规律.【答案】(1)64,8;529,23;1024,32;(2)(2)11n n n ++=+【分析】(1)根据实数的性质即可化简求解;(2)根据(1)中的式子发现规律即可写出等式.【详解】解:(1)根据题意得791648⨯+==;22241529⨯+==23;313311024⨯+==32,故答案为:8,23,32;(2)根据题意得()2(2)11n n n ++=+=|n +1|=n +1 即(2)11n n n ++=+.【点睛】此题主要考查实数的性质及规律探索,解题的关键是熟知实数的性质.5.(探究)用“>”、“<”、“≤”、“≥”或“=”填空,并探究规律:(1)4+5 245⨯;(2)3+14 2134⨯; (3)1+12 2112⨯; (4)a +1 221(a >0).(发现)用一句话概括你发现的规律: ;(表达)用符号语言写出你发现的规律并加以证明;(应用)若a >0,求a +1a的最小值. 【答案】探究:(1)>,(2)>,(3)>,(4)≥;发现:两个正数的和大于等于这两数乘积的算术平方根的2倍;表达: a +b ≥2ab ,a >0,b >0);应用:2【分析】﹝发现﹞根据前面4个填空题即可得出规律;﹝表达﹞将这两个数表示为a 、b ,得到关系式即可;﹝应用﹞利用公式代入计算即可得到答案.【详解】﹝发现﹞通过计算即可完成,故答案为>,>,>,≥;﹝表达﹞故答案为:两个正数的和大于等于这两数乘积的算术平方根的2倍;故答案为:a +b ≥2ab (a >0,b >0); ﹝应用﹞由归纳的公式可知,1122a a a a +≥⨯=, ∴1a a+的最小值是2. 【点睛】此题考查代数式类规律的探究,根据所给例子总结得出此式子的规律是解题的关键.6.观察下列各式及其变形过程:11112212a ==-+ 2111233223a ==-+ 3111344334a ==-+ (1)按照此规律,写出第五个等式5a = ;(2)按照此规律,若123···n n S a a a a =++++,试用含n 的代数式表示n S . 【答案】(1)1156-;(2)111n S n =-+. 【分析】(1)根据上述的规律第五个等式a 5=1156-;(2)根据(1)总结得到的规律,用含n 的等式表示a n ,然后计算S n ,抵消合并后,即可得到S n =111n --; 【详解】解:()511156a =- 故答案为:1156- ()2用含字母n (n 为正整数)的等式表示(1)中的一般规律为 ()111111n a n n n n n n ==-++++ 123···n n S a a a a ∴=++++11111111?··223341n n =-+-+-++-+ 111n =-+ 【点睛】此题考查了分母有理化,属于规律型题,根据题意找出一般性规律是解本题的关键. 7.观察例题:∴479<<,即273<<,∴7的整数部分为2,小数部分为(72)-.请你观察上述的规律后试解下面的问题: (1)如果2的小数部分为a ,22-的小数部分为b ,求221a b +-的值.(2)已知a 是173-的整数部分,b 是173-的小数部分,求(﹣a )3+(b +4)2的平方根.【答案】(1)1;(2)±4【分析】(1)按照例题仿写即可得出小数部分和整数部分,代入即可;(2)按照例题仿写即可得出小数部分和整数部分,代入即可.【详解】(1)124<< 即122<<0221∴<-<, ∴2的整数部分为1,小数部分为()21-,22-的小数部分是22-, 21,22a b ∴=-=-, ()()22122122211a b ∴+-=-+--=; (2)161725<< 即4175<<11732∴<-< ∴173-的整数部分为1,173-的小数部分为1731=174---1,174a b ∴==-,()()()()232341174411716a b ∴-++=-+-+=-+=, ()()324a b ∴-++的平方根为:4±.【点睛】本题考查了无理数的估算,熟练掌握数的平方根是解题的关键.8.观察下列等式: 12-12-121212-1()() 13-23-232323-2()() 14-34-343434-3()()回答下列问题:(1)化简:120202019(无需化为最简二次根式) (2)化简:1n 1n (n 为正整数)(3)利用上面所揭示的规律计算(无需化为最简二次根式):111111223342018201920192020 【答案】(1)20202019 (2)1n n +- (3)2020-1【分析】 (1)根据已知得出式子变化规律写出答案即可;(2)进而由(1)的规律得出答案; (3)利用发现的规律化简各式进而求出即可.【详解】解:(1)12020201920202019; 故答案为:20202019; (2)111n n n n =+-++;(n 为正整数); 故答案为:1n n +-;(3)111111223342018201920192020 2132432019201820202019 20201.【点睛】 此题主要考查了分母有理化,正确发现式子中变化规律是解题关键.9.观察等式:3333,22+=2422,33⨯+=5555,44+=⋅⋅⋅. (1)请用含n (3n ≥的整数)的式子表示出上述等式的规律;(2)按上述规律若10109a ab +=,则a b +=________; (3)仿照上面内容,另编一个等式,验证你在(1)中得到的规律. 【答案】(1)11n n n n n n +=--(3n ≥的整数);(2)109+;(3)111111111010+=(答案不唯一) 【分析】(1)根据已知等式,找出等式规律,然后总结公式即可;(2)根据(1)中规律,即可求出a 和b 的值,然后代入即可;(3)根据(1)中规律,再写一个等式,然后验证即可.【详解】(1)第一个等式:3333,22+=即333,31331+=-- 第二个等式:2422,33⨯+= 即4444,1441⨯+=-- 第三个等式:5555,44+=即5155,1555+=-- ∴用含n (3n ≥的整数)的式子表示为:11n n n n n n +=--(3n ≥的整数). (2)根据题意得1010101099+=,则10,a =9b =, 即109a b +=+ 故答案为:109+.(3)此等式可以为:111111111010+=(答案不唯一),验证如下: 1110111111111110101010+=+=(此时n =11). 【点睛】此题考查的是探索规律题,根据已知等式找出规律,并归纳公式是解决此题的关键. 10.先判断下列等式是否成立,再回答问题. ①2211111122++=; ②2211111236++=; ③22111113412++=.(1)试猜想2211145++=______. (2)按照上述各式反映的规律,试用含n 的式子表示这一规律(n 为正整数).【答案】等式成立,(1)1120;(2) 2211111+(1)(1)n n n n ++=++. 【分析】(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n +1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子【详解】等式成立.(1)2211145++=1120, 理由是:2211145++=1251611++=4411625=⨯1120; (2)2211111111(1)1(1)n n n n n n ++=+-=++++. 【点睛】 此题考查了实数有关运算的规律问题,通过阅读找出题目隐含条件.总结:找规律的题,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.。
人教版七年级下册数学不等式与不等式组应用题训练(word,含答案)

人教版七年级下册数学不等式与不等式组应用题训练1.列方程组或不等式解决问题:2022年北京冬奥会、冬残奥会已圆满结束,活泼敦厚的“冰墩墩”,喜庆祥和的“雪容融”引起广大民众的喜爱.王老师想要购买两种吉祥物作为本次冬奥会的纪念品,已知购买2件“冰墩墩”和1件“雪容融”共需150元,购买3件“冰墩墩”和2件“雪容融”共需245元.(1)求“冰墩墩”和“雪容融”的单价;(2)学校现需一次性购买上述型号的“冰墩墩”和“雪容融”纪念品共100个,要求购买的总费用不超过5000元,则最多可以购买多少个“冰墩墩”?2.为支援上海抗击新冠肺炎,甲地捐赠多批救援物资并联系了一家快递公司进行运送.快递公司准备安排A、B两种车型把这批物资从甲地快速送到上海.其中,从甲地到上海,A型货车1辆、B型货车1辆,一共需补贴油费1000元;A型货车10辆、B 型货车6辆,一共需补贴油费8400元.(1)从甲地到上海,A、B两种型号的货车,每辆车需补贴的油费分别是多少元?(2)如果需派出20辆车,并且预算油费补贴不超过9600元,那么该快递公司至多能派出几辆A型货车?3.开学前夕,某书店计划购进A、B两种笔记本共350 本.已知A种笔记本的进价为12 元/本,B种笔记本的进价为15 元/本,共计4800 元.(1)请问购进了A种笔记本多少本?(2)在销售过程中,A、B两种笔记本的标价分别为20元/本、25元/本.受疫情影响,两种笔记本按标价各卖出m本以后,该店进行促销活动,剩余的A种笔记本按标价的七折全部售出,剩余的B种笔记本按成本价清货,若两种笔记本的总利润不少于2348元,请求出m的最小值.4.抗击新型冠状肺炎疫情期间,84消毒液和酒精都是重要的防护物资.某药房根据实际需要采购了一批84消毒液和酒精,共花费11000元,84消毒液和酒精的进价和售价如下:(1)该药房销售完这批84消毒液和酒精后共获利5400元,则84消毒液和酒精各销售了多少瓶?(2)随着疫情的发展,结合药房实际,该药房打算用不超过6600元钱再次采购84消毒液和酒精共300瓶,已知84消毒液和酒精价格不变,则第二批最多采购84消毒液多少瓶?5.小玉计划购买A、B两种饮料,若购买8瓶A种饮料和5瓶B种饮料需用220元;若购买4瓶A种饮料和6瓶B种饮料需用152元.(1)求每瓶A种饮料和B种饮料各多少元;(2)小玉决定购买A种饮料和B种饮料共15瓶,总费用不超过260元,那么最多可以购买多少瓶A种饮料?6.小明家新买了一套住房,打算装修一下,春节前住进去.现有甲、乙两家装修公司可供选择,这两家装修公司提供的信息如下表所示:若设需要x天装修完毕,请解答下列问题:(1)请分别用含x的代数式,写出甲、乙两家公司的装修总费用;(2)当装修天数为多少时,两家公司的装修总费用一样多?(3)根据装修天数x讨论选择哪家装修公司更合算(提示:结合(2)中的结论进行分类解决问题).7.每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲、乙两种型号设备的价格;(2)公司决定购买甲、乙两种型号的设备共10台,且该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司甲种型号的设备至多购买几台?8.为庆祝“元旦”,光明学校统一组织合唱比赛,七、八年级共92人(其中七年级的人数多于八年级的人数,且七年级的人数不足90人)准备统一购买服装参加比赛.如表是某服装厂给出服装的价格表:(1)如果两个年级分别单独购买服装一共应付5000元,求七、八年级各有多少学生参加合唱比赛;(2)如果七年级参加合唱比赛的学生中,有10名同学抽调去参加绘画比赛,不能参加合唱比赛,请你为两个年级设计一种最省钱的购买服装方案.9.某电器超市销售每台进价分别为140元、100元的A、B两种型号的电风扇,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入一进货成本)(1)求A、B两种型号的电风扇的销售单价.(2)若超市准备用不多于6500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过2850元的目标?若能,请给出相应的采购方案:若不能,请说明理由.10.某商店欲购进A、B两种商品,若购进A种商品5件和B种商品4件需300元;购进A种商品6件和B种商品8件需440元.(1)A、B两种商品每件的进价分别为多少元?(2)若该商店A种商品每件的售价为48元,B种商品每件的售价为31元,该商店准备购进A、B两种商品共50件,且这两种商品全部售出后总获利不低于344元,则至少购进多少件A种商品?11.学校近期举办了一年一度的经典诵读比赛.某班级因节目需要,须购买A、B两种道具.已知购买1件A道具比购买1件B道具多10元,购买2件A道具和3件B道具共需要45元.(1)购买一件A道具和一件B道具各需要多少元?(2)根据班级情况,需要这两种道具共60件,且购买两种道具的总费用不超过620元.求道具A最多购买多少件?12.对于企业来说:科学技术永远是第一生产力,在长沙市里程最长、站点最多的地铁6号线建设过程中,某知名运输集团承包了地铁6号线多标段的土方运输任务,该集团为了出色完成承接任务,拟派出该集团自主研发的A、B两种新型运输车运输土方.已知4辆A型运输车与3辆B型运输车一次共运输土方64吨,2辆A型运输车与4辆B型运输车一次共运输土方52吨.(1)请问一辆A型运输车和一辆B型运输车一次各运输土方多少吨?(2)该运输集团决定派出A、B两种型号新型运输车共18辆参与运输土方,若每次运输土方总量不小于169吨,且B型运输车至少派出4辆,则有哪几种派车方案?13.某商店欲购进A、B两种商品,若购进A种商品5件和B种商品4件需300元;若购进A种商品6件和B种商品8件需440元.(1)求A、B两种商品每件的进价分别为多少元?(2)商店准备用不超过1615元购进50件这两种商品,求购进A种商品最多是多少件?14.某超市共用24000元同时购进甲、乙两种型号书包各200个,购进甲型号书包40个比购进乙型书包30个少用100元.(1)求甲、乙两种型号书包的进价各为多少元?(2)若超市把甲、乙两种型号书包均按每个90元定价进行零售,同时为扩大销售,拿出一部分书包按零售价的8折进行优惠销售.商场在这批背包全部售完后,若总获利不低于10200元,则超市用于优惠销售的书包数量最多为多少个?15.某工艺品店购进A,B两种工艺品,已知这两种工艺品的单价之和为200元,购进2个A种工艺品和3个B种工艺品需花费520元.(1)求A,B两种工艺品的单价;(2)该店主欲用9600元用于进货,且最多购进A种工艺品36个,B种工艺品的数量不超过A种工艺品的2倍,则共有几种进货方案?16.每年的4月22日是世界地球日.某校为响应“携手为保护地球投资”的号召计划购入,A B两种规格的分类垃圾桶,用于垃圾分类.若购买A种垃圾桶30个和B种垃圾桶20个共需1020元;若购买A种垃圾桶50个和B种垃圾桶40个共需1860元.(1),A B两种垃圾桶的单价分别是多少元?(2)若该校最多有4360元用于购买这两种规格的垃圾桶共200个,则B种垃圾桶最多可以买________个.17.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B 商品共用了880元.(1)A,B两种商品的单价分别是多少元?(2)已知该商店购买A,B两种商品共30件,要求购买B商品的数量不高于A商品数量的2倍,且该商店购买的A,B两种商品的总费用不超过276元,那么该商店有几种购买方案?18.每年一度的中考牵动着数万家长的心,为了给考生一个良好的环境,某市教委规定每个考场安排考生数是固定的人数,该市A 区的9000 名考生安排的考场数比B 区3000人安排的考场数多200个.(1)求每个考场安排固定考生的人数;(2)该市C区共有可作为考场的大小教室共300 间,由于今年疫情影响,该市教委要求大教室按原固定人数的80%安排考生,小教室按原固定人数的50%安排考生,若该市C 区共有考生6300 人,则至少需要有多少间大教室.19.2022年北京冬奥会吉祥物冰墩墩和雪容融在一开售时,就深受大家的喜欢.某供应商今年2月购进一批冰墩墩和雪容融,已知一个冰墩墩的进价比一个雪容融的进价多40元,并且购买20个冰墩墩和30个雪容融的价格相同.(1)问每个冰墩墩和雪容融的进价分别是多少元?(2)根据市场实际,供应商计划用20000元购进这两种吉祥物200个,则他本次采购时最多可以购进多少个冰墩墩?20.某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克.经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.已知工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?参考答案:1.(1)“冰墩墩”和“雪容融”的单价分别为55元,40元(2)最多可以购买66个“冰墩墩”2.(1)每辆A型货车补贴油费600元,每辆B型货车补贴油费400元.(2)该快递公司至多能派出8辆A型货车.3.(1)购进了A种笔记本150本;(2)m的最小值128.4.(1)84消毒液销售了200瓶,酒精销售了300瓶;(2)120瓶5.(1)每瓶A种饮料20元,每瓶B种饮料12元(2)10瓶6.(1)甲公司的总费用为(900x+2700)元,乙公司的总费用为(960x+1500)元;(2)当装修天数为20天时,两家公司的装修总费用一样多;(3)当x<20时,乙装修公司更合算;当x=20时,两家装修公司一样;当x>20时,甲装修公司更合算.7.(1)甲、乙两种型号设备每台的价格分别为12万元和10万元(2)至多购买5台8.(1)七年级52人,八年级40人;(2)两个年级一起买91套时最省钱;9.(1)A、B两种型号的电风扇的销售单价分别为200元和150元(2)A种型号的电风扇最多能采购37台(3)能实现利润超过2850元的目标,相应方案有两种:方案一:购买A种型号的电风扇36台,购买B种型号的电风扇14台;方案二:购买A种型号的电风扇37台,购买B种型号的电风扇13台10.(1)A种商品每件的进价为40元,B种商品每件的进价为25元(2)至少购进22件A种商品11.(1)购买1件A道具需要15元,1件B道具需要5元(2)道具A最多购买32件12.(1)一辆A型运输车一次运土10吨,一辆B型运输车一次运土8吨(2)有两种派送方案,方案一:派出A型号的新型运输车13辆,B型号的新型运输车5辆;方案二:派出A型号的新型运输车14辆,B型号的新型运输车4辆.13.(1)A种商品每件进价40元,B种商品每件进价25元(2)24件14.(1)A、B两种型号书包的进货单价各为50元、70元;(2)商场用于优惠销售的书包数量为100个.15.(1)A种工艺品的单价为80元,B种工艺品的单价为120元(2)共有3种进货方案16.(1)A种垃圾桶的单价熟练掌握18元,B种垃圾桶的单价是24元.(2)12617.(1)A种商品的单价为16元、B种商品的单价为4元(2)有四种方案,方案一:购买A商品的件数为10件,购买B商品的件数为20件;方案二:购买A商品的件数为11件,购买B商品的件数为19件;方案三:购买A商品的件数为12件,购买B商品的件数为18件;方案四:购买A商品的件数为13件,购买B商品的件数为17件.18.(1)每个考场安排固定考生的人数为30人;(2)至少需要有200间大教室.19.(1)今年2月第一周每个冰墩墩的进价为120元,每个雪容融的进价为80元(2)最多可以购进100个冰墩墩20.共有如下四种方案:A种21件,B种39件;A种20件,B种40件;A种19件,B种41件;A种18件,B种42件。
人教版七年级数学下册专题训练

七年级下册数学第七章专题训练班级 姓名 一、象限内点的坐标1. 在平面直角坐标系中,A (2,-1)在第 象限,B (1,-3)在第 象限,C (-4,-3.5)在第 象限。
2、点P (x,y )在第二象限,则x 0,y 0.3、已知点A (m ,n )在第四象限,那么点B (n ,m )在第 象限4、如果xy<0,那么点P (x ,y )在第 象限 5、点P (x ,y )在第四象限,且|x|=3,|y|=2,则P 点的坐标是 。
二、坐标轴上点的坐标1、点A(2,0)在 轴上;点B(0,9)在 轴上,点C 在2、点P (a-1,2a-9)在x 轴上,则P 点坐标是 。
3、点P (a-1,2a-9)在y 轴上,则P 点坐标是 。
三、点到坐标轴的距离1、点A(2,3)到x 轴的距离为 ;到y 轴的距离为 点B(-4,-5)到x 轴的距离为 ;到y 轴的距离为 点P(x ,y )到x 轴的距离为 ;到y 轴的距离为2、点C 在第三象限,且到x 轴的距离为1,到y 轴的距离为3,则C 点坐标是 。
3、点P到x 轴、y 轴的距离分别是2、1,则点P的坐标可能为 。
四、平行于x 轴,y 轴的直线上的点的坐标1.过A(4,-2) 和B(-2,-2) 两点的直线一定( )A.垂直于x 轴B.与Y 轴相交但不平于x 轴C.平行于x 轴D.与x 轴、y 轴平行 2、已知点A (m ,-2),点B (3,m-1),且直线AB ∥y 轴,则m 的值为 。
3.在平面直角坐标系中,点A 的坐标为(-1,5),线段AB ∥X 轴,且AB=4,则点B 的坐标为五、象限平分线上点的坐标1、若点(a ,2)在第二象限,且在两坐标轴的夹角平分线上,则a= .2、已知点P (3-x ,1)在一、三象限夹角平分线上,则x= .检测1.在平面直角坐标系内,下列说法错误的是( )A.原点O 不在任何象限内B.原点O 的坐标是0C.原点O 既在X 轴上也在Y 轴上D.原点O 在坐标平面内 2.在平面直角坐标系中,点(-3,-1)在第________象限.3.点P (x ,y )在第二象限,且|x|=3,|y|=2,则P 点的坐标是 .4.已知点P 在第二象限,且到x 轴的距离是3,到y 轴的距离是2,则点P 的坐标为______. 5.点P(x,y)满足xy>0,则点P 在第 象限6.点P (m ,1)在第二象限内,则点Q (m -,0)在( ). A.x 轴正半轴上B.x 轴负半轴上C.y 轴正半轴上D.y 轴负半上7. 若点P (a ,b -)在第二象限,则点Q (ab -,a b +)在第_______象限. 8.点M (1m +,3m +)在x 轴上,则点M 坐标为_______.9.X 轴上的点P 到Y 轴的距离为2.5,则点P的坐标为( )A.(2.5,0)B.(-2.5,0)C.(0,2.5)D.(2.5,0)或(-2.5,0) 10.直角坐标系中,在y 轴上有一点p ,且线段OP=5,则P 的坐标为 . 11.已知点A (m ,-2),点B (3,m-1),且直线AB ∥x 轴,则m 的值为 12.已知点A (3-,2),B (3,2),则A ,B 两点相距( ). A.3个单位长度 B.4个单位长度 C.5个单位长度D.6个单位长度13.已知点P 的坐标(2a -,36a +),且点P 到两坐标轴的距离相等,则点P 的坐标是 .14.矩形OABC 在坐标系中的位置如图,点B 坐标为(3,-2),则矩形的面积等于_________ .平移以及面积专题训练1、坐标平面内的三个点A (1,3),B (3,1),O (0,0),求△ABO 的面积.2、(综合题)在如图所示的平面直角坐标系中描出A (2,3),B (-3,-2),•C (4,1)三点,并用线段将A 、B 、C 三点依次连接起来,你能求出它的面积吗?3.如图,在平面直角坐标系中:(1)分别写出△ABC 的顶点坐标(3分); (2)求出△ABC 的面积(3分);(3)将△ABC 各个顶点的横坐标增加3,纵坐标减少2,请画出所得的△C B A '''(3分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学下册专题训练
七年级下册数学第七章专题训练
1、点A(2,0)在x轴上;点B(0,9)在y轴上,点
C在第四象限。
2、点P(a-1,2a-9)在x轴上,则P点坐标为(a-1,
0)。
3、点P(a-1,2a-9)在y轴上,则P点坐标为(0,2a-
9)。
一、象限内点的坐标
1.在平面直角坐标系中,A(2,-1)在第一象限,B(1,
-3)在第四象限,C(-4,-3.5)在第三象限。
三、点到坐标轴的距离
1、点A(2,3)到x轴的距离为3;到y轴的距离为2.
2、点P(x,y)在第二象限,则x<0,y<0.
点B(-4,-5)到x轴的距离为5;到y轴的距离为4.
3、已知点A(m,n)在第四象限,则点B(n,m)在第
二象限。
4、如果x
2、点C在第三象限,且到x轴的距离为1,到y轴的距
离为3,则C点坐标为(-1,-3)。
5、点P(x,y)在第四象限,且|x|=3,|y|=2,则P点的
坐标为(3,-2)。
3、点P到x轴、y轴的距离分别是2、1,则点P的坐标
可能为(3,2)或(-3,1)。
二、坐标轴上点的坐标
点C坐标为(-4,0)或(0,-3.5)。
四、平行于x轴,y轴的直线上的点的坐标检测
1.过A(4,-2)和B(-2,-2)两点的直线一定平行于x轴。
在平面直角坐标系内,下列说法错误的是()A.垂直于x
轴B.与Y轴相交但不平于x轴C.平行于x轴D.与x轴、y轴
平行
A.原点O不在任何象限内B.原点O的坐标是(0,0)C.
原点O既在X轴上也在Y轴上D.原点O在坐标平面内。
2、已知点A(m,-2),点B(3,m-1),且直线
AB∥y轴,则m=-2.
2.在平面直角坐标系中,点(-3,-1)在第三象限。
3.点P(x,y)在第二象限,且|x|=3,|y|=2,则P点的坐
标为(-3,-2)。
3.在平面直角坐标系中,点A的坐标为(-1,5),线
段AB∥X轴,且AB=4,则点B的坐标为(3,5)。
4.已知点P在第二象限,且到x轴的距离是3,到y轴
的距离是2,则点P的坐标为(-3,-2)。
五、象限平分线上点的坐标
1、若点(a。2)在第二象限,且在两坐标轴的夹角平分线上,
则a=2.
6.点P(m,1)在第二象限内,则点Q(m,-1)在第
三象限。
5.点P(x,y)满足xy>0,则点P在第一象限或第三象限。
2、已知点P(3-x,1)在一、三象限夹角平分线上,则
x=3.
A.x轴正半轴上
D.y轴负半轴上。