动能定理的运用
动能定理在多过程问题中的应用(含解析)

动能定理在多过程问题中的应用类型一动能定理在多过程问题中的应用1.运用动能定理解决多过程问题,有两种思路:(1)可分段应用动能定理求解;(2)全过程应用动能定理:所求解的问题不涉及中间的速度时,全过程应用动能定理求解更简便.2.全过程列式时,涉及重力、弹簧弹力、大小恒定的阻力或摩擦力做功时,要注意它们的特点.(1)重力、弹簧弹力做功取决于物体的初、末位置,与路径无关.(2)大小恒定的阻力或摩擦力做功的数值等于力的大小与路程的乘积.例1(2016·浙江10月选考·20)如图甲所示,游乐场的过山车可以底朝上在竖直圆轨道上运行,可抽象为图乙所示的模型.倾角为45°的直轨道AB、半径R=10 m的光滑竖直圆轨道和倾角为37°的直轨道EF,分别通过水平光滑衔接轨道BC、C′E平滑连接,另有水平减速直轨道FG与EF平滑连接,EG间的水平距离l=40 m.现有质量m=500 kg的过山车,从高h=40 m处的A点由静止下滑,经BCDC′EF最终停在G点.过山车与轨道AB、EF 间的动摩擦因数均为μ1=0.2,与减速直轨道FG间的动摩擦因数μ2=0.75.过山车可视为质点,运动中不脱离轨道,g取10 m/s2.求:(1)过山车运动至圆轨道最低点C时的速度大小;(2)过山车运动至圆轨道最高点D时对轨道的作用力大小;(3)减速直轨道FG的长度x.(已知sin 37°=0.6,cos 37°=0.8)【答案】(1)810 m/s(2)7×103 N(3)30 m【解析】(1)设过山车在C点的速度大小为v C,由动能定理得mgh-μ1mg cos 45°·hsin 45°=12m v C2代入数据得v C=810 m/s(2)设过山车在D点速度大小为v D,由动能定理得mg (h -2R )-μ1mg cos 45°·h sin 45°=12m v D 2F +mg =m v D 2R,解得F =7×103 N由牛顿第三定律知,过山车在D 点对轨道的作用力大小为7×103 N (3)全程应用动能定理mg [h -(l -x )tan 37°]-μ1mg cos 45°·hsin 45°-μ1mg cos 37°·l -xcos 37°-μ2mgx =0解得x =30 m.变式训练1 (动能定理在多过程问题中的应用)(2020·河南信阳市罗山高三一模)如图甲所示,一倾角为37°,长L =3.75 m 的斜面AB 上端和一个竖直圆弧形光滑轨道BC 相连,斜面与圆轨道相切于B 处,C 为圆弧轨道的最高点.t =0时刻有一质量m =1 kg 的物块沿斜面上滑,其在斜面上运动的v -t 图象如图乙所示.已知圆轨道的半径R =0.5 m .(取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)物块与斜面间的动摩擦因数μ;(2)物块到达C 点时对轨道的压力的大小F N ;(3)试通过计算分析是否可能存在物块以一定的初速度从A 点滑上轨道,通过C 点后恰好能落在A 点.如果能,请计算出物块从A 点滑出的初速度大小;如果不能请说明理由. 【答案】(1)0.5 (2)4 N (3)见解析【解析】(1)由题图乙可知物块上滑时的加速度大小为a =10 m/s 2① 根据牛顿第二定律有:mg sin 37°+μmg cos 37°=ma ② 由①②联立解得μ=0.5③(2)设物块到达C 点时的速度大小为v C ,由动能定理得: -mg (L sin 37°+R +R cos 37°)-μmgL cos 37°=12m v C 2-12m v 02④在C 点,根据牛顿第二定律有:mg +F N ′=m v C 2R ⑤联立③④⑤解得:F N ′=4 N ⑥根据牛顿第三定律得:F N =F N ′=4 N ⑦ 物块在C 点时对轨道的压力大小为4 N(3)设物块以初速度v 1上滑,最后恰好落到A 点 物块从C 到A ,做平抛运动,竖直方向:L sin 37°+R (1+cos 37°)=12gt 2⑧水平方向:L cos 37°-R sin 37°=v C ′t ⑨ 解得v C ′=977 m/s>gR = 5 m/s ,⑩所以物块能通过C 点落到A 点 物块从A 到C ,由动能定理得:-mg (L sin 37°+1.8R )-μmgL cos 37°=12m v C ′2-12m v 12⑪联立解得:v 1=21837m/s ⑫ 类型二 动能定理在往复运动问题中的应用在有些问题中物体的运动过程具有重复性、往返性,而在这一过程中,描述运动的物理量多数是变化的,而且重复的次数又往往是无限的或者难以确定.求解这类问题时若运用牛顿运动定律及运动学公式将非常繁琐,甚至无法解出.由于动能定理只涉及物体的初、末状态而不计运动过程的细节,此类问题多涉及滑动摩擦力,或其他阻力做功,其做功的特点与路程有关,求路程对应的是摩擦力做功,所以用动能定理分析这类问题可使解题过程简化.例2 如图所示,竖直面内有一粗糙斜面AB ,BCD 部分是一个光滑的圆弧面,C 为圆弧的最低点,AB 正好是圆弧在B 点的切线,圆心O 与A 、D 点在同一高度,θ=37°,圆弧面的半径R =3.6 m ,一滑块质量m =5 kg ,与AB 斜面间的动摩擦因数μ=0.45,将滑块从A 点由静止释放(sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2).求在此后的运动过程中:(1)滑块在AB 段上运动的总路程;(2)在滑块运动过程中,C 点受到的压力的最大值和最小值. 【答案】(1)8 m (2)102 N 70 N【解析】 (1)由题意可知斜面AB 与水平面的夹角为θ=37°, 知mg sin θ>μmg cos θ,故滑块最终不会停留在斜面上, 由于滑块在AB 段受摩擦力作用,则滑块做往复运动的高度将越来越低,最终以B 点为最高点在光滑的圆弧面上往复运动. 设滑块在AB 段上运动的总路程为s ,滑块在AB 段上所受摩擦力大小F f =μF N =μmg cos θ, 从A 点出发到最终以B 点为最高点做往复运动, 由动能定理得mgR cos θ-F f s =0,解得s =Rμ=8 m.(2)滑块第一次过C 点时,速度最大,设为v 1,分析受力知此时滑块所受轨道支持力最大,设为F max ,从A 到C 的过程,由动能定理得mgR -F f l AB =12m v 12-0,斜面AB 的长度l AB =Rtan θ,由牛顿第二定律得F max -mg =m v 12R ,解得F max =102 N.滑块以B 为最高点做往复运动的过程中过C 点时,速度最小,设为v 2,此时滑块所受轨道支持力最小,设为F min ,从B 到C , 由动能定理得mgR (1-cos θ)=12m v 22-0,由牛顿第二定律得F min -mg =m v 22R ,解得F min =70 N ,根据牛顿第三定律可知C 点受到的压力最大值为102 N ,最小值为70 N.变式训练2 (动能定理在往复运动中的应用)(2020·浙江高三开学考试)如图所示,有一圆弧形的槽ABC ,槽底B 放在水平地面上,槽的两侧A 、C 与光滑斜坡aa ′、bb ′分别相切,相切处a 、b 位于同一水平面内,距水平地面高度为h .一质量为m 的小物块从斜坡aa ′上距水平面ab 的高度为2h 处沿斜坡自由滑下,并自a 处进入槽内,到达b 处后沿斜坡bb ′向上滑行,到达的最高处距水平面ab 的高度为h ,若槽内的动摩擦因数处处相同,不考虑空气阻力,且重力加速度为g ,则( )A .小物块第一次从a 处运动到b 处的过程中克服摩擦力做功mghB .小物块第一次经过B 点时的动能等于2.5mghC .小物块第二次运动到a 处时速度为零D .经过足够长的时间后,小物块最终一定停在B 处 【答案】 A【解析】在第一次运动过程中,小物块克服摩擦力做功,根据动能定理可知mgh -W f =0-0,解得W f =mgh ,故A 正确;因为小物块从右侧到最低点的过程中对轨道的压力较大,所受的摩擦力较大,所以小物块从右侧到最低点的过程中克服摩擦力做的功W f1>12W f =12mgh ,设小物块第1次通过最低点的速度为v ,从自由滑下到最低点的过程,由动能定理得3mgh -W f1=E k -0,解得E k <2.5mgh ,故B 错误;由于在AC 段,小物块与轨道间有摩擦力,故小物块在某一位置的速度大小要减小,故与轨道间的摩擦力减小,第二次在AC 段运动时克服摩擦力做功比第一次要少,故第二次到达a (A )点时,有一定的速度,故C 错误;由于在AC 段存在摩擦力,故小物块在B 点两侧某一位置可能处于静止状态,故D 错误. 故选A 。
高考物理课程复习:动能定理及其应用

【对点演练】
4.(2021湖南卷)“复兴号”动车组用多节车厢提供动力,从而达到提速的目的。
总质量为m的动车组在平直的轨道上行驶。该动车组有四节动力车厢,每节
车厢发动机的额定功率均为P,若动车组所受的阻力与其速率成正比(F阻=kv,k
为常量),动车组能达到的最大速度为vm。下列说法正确的是(
答案 C
解析 本题考查机车启动问题,考查分析综合能力。动车组匀加速启动过程
中,根据牛顿第二定律,有F-kv=ma,因为加速度a不变,速度v改变,所以牵引
力F改变,选项A错误。由四节动力车厢输出功率均为额定值,可得
4
4P=Fv,F-kv=ma',联立解得 a'=
− ,因为 v 改变,所以 a'改变,选项 B 错误。
量损失,sin 37°=0.6,cos 37°=0.8,重力加速度大小为g)。则(
6
A.动摩擦因数 μ=7
2ℎ
B.载人滑沙板最大速度为 7
C.载人滑沙板克服摩擦力做功为 mgh
3
D.载人滑沙板在下段滑道上的加速度大小为5g
)
答案 AB
解析 对整个过程,由动能定理得 2mgh-μmgcos
ℎ
45°·
载人滑沙板在下段滑道上的加速度大小为
错误。
cos37 °- sin37 °
3
a=
= 35 g,故
D
考点三
应用动能定理求解多过程问题[名师破题]
应用动能定理求解多过程问题的解题步骤
(1)首先需要建立运动模型,选择合适的研究过程能使问题得以简化。当物体
的运动过程包含几个运动性质不同的子过程时,可以选择一个、几个或全部
高三力学复习十五讲--动能定理的应用

力学复习十二一、动能定理的应用[知识点析]1、用动能定理求变力做的功由于某些力F 的大小或方向变化,所以不能直接由公式W=FScos α计算它们做的功,此时可由其做功的结果——动能的变化来求变力F 做的功。
2、在不同过程中运用动能定理由于物体运动过程中可能包括几个不同的物理过程,解题时,可以分段考虑,也可视为一整体过程,往往对全过程运用动能定理比较简便。
[例题析思][例题1]一列质量为M=5.0×105kg 的火车,在一段平直的轨道上始终以额定功率P 行驶,在300S 内的位移为 2.85×103m ,而速度由8m/s 增加到火车在此轨道上行驶的最大速度17m/s 。
设火车所受阻力f 大小恒定,求1、火车运动中所受阻力f 的大小;2、火车头的额定功率P 的大小。
[解析]火车的初速度和末速度分别用V 0和V t 表示,时间用t 表示,位移用S 表示,根据动能定理有: Pt-fs=2022121mV mV t -火车速度达到最大时,牵引力等于阻力f ,根据瞬时功率的计算公式有:P=fV e 。
N S V V V M f t t 4225202105.2)285030017(2)817(100.5)(2)(⨯=-⨯⨯-⨯⨯=--=N fV P t 541025.417105.2⨯=⨯⨯==[思考1]总质量为M 的列车,沿水平直线轨道匀速前进,其末节车厢质量为m ,中途脱节,司机发觉时,机车已行驶L 的距离,于是立即关闭发动机滑行,设运动的阻力与质量成正比,机车的牵引力是恒定的,当列车的两部分都停止时,它们的距离是多少?[提示]法一:脱节的列车整个运动过程有两个阶段,先做匀加速运动,后关闭发动机滑行做匀减速运动,运用动能定理,从全过程考虑有: FL-K(M-m)gS 1=0-20)(21V m M -对末节车厢根据动能定理有-kmgS 2=0-2021mV ,由于原来列车匀速,故有F=kmg ,则m M ML S S S -=-=∆/21法二:由于脱节后列车比末节车厢多行驶的那段距离内,克服阻力所做的功等于牵引力在L 这段距离内所做的功,所以有:)/()(m M ML S Sg m M K KMgL -=∆∆-=[例题2]如图6-25所示,ABCD 是一条长轨道,其中AB 段是倾角为θ的斜面,CD 段是水平的,BC 是与AB 和CD 都相切的一小段圆弧,其长度可以不计。
动能定理在力学中的应用

动能定理在力学中的应用在我们探索力学的奇妙世界时,动能定理就像一把神奇的钥匙,能够帮助我们解开许多复杂的力学谜题。
动能定理指出,合外力对物体所做的功等于物体动能的变化量。
这个看似简单的表述,却蕴含着深刻的物理内涵,并且在解决各种力学问题中发挥着至关重要的作用。
让我们先来理解一下动能定理的核心概念。
动能,简单来说,就是物体由于运动而具有的能量。
它的大小与物体的质量和速度的平方成正比,即动能= 1/2×质量×速度²。
而合外力对物体做功,会导致物体的动能发生改变。
如果合外力对物体做正功,物体的动能就增加;反之,如果合外力对物体做负功,物体的动能就减少。
在实际的力学问题中,动能定理有着广泛的应用。
比如,在研究物体的直线运动时,动能定理常常能够让我们避开复杂的运动过程分析,直接从功和能量的角度得出结论。
假设一个质量为 m 的物体,在水平面上受到一个恒定的水平拉力 F 的作用,摩擦力为 f ,物体从静止开始运动了一段距离 s 。
如果我们要通过牛顿运动定律来求解物体的末速度,就需要先分析物体的受力,求出加速度,再利用运动学公式进行计算,这是一个相对繁琐的过程。
但如果运用动能定理,就会简单很多。
合外力对物体做的功为(F f)×s ,这个功等于物体动能的变化量,即 1/2×m×v² 0 。
通过这个等式,我们可以直接求出物体的末速度 v 。
再来看一个物体在竖直方向上运动的例子。
一个质量为 m 的物体,从高度 h 处自由下落。
在这个过程中,重力对物体做正功,大小为mgh 。
根据动能定理,重力做的功等于物体动能的增加量,即 mgh =1/2×m×v²,从而可以轻松求出物体下落至地面时的速度 v 。
动能定理在碰撞问题中也有着重要的应用。
在完全弹性碰撞中,虽然动量守恒,但要分析动能的变化,动能定理就能派上用场。
比如两个质量分别为 m1 和 m2 的物体发生弹性碰撞,通过分析碰撞前后合外力做功的情况,结合动能定理,就可以求出碰撞后物体的速度。
《动能定理的应用》 讲义

《动能定理的应用》讲义一、动能定理的基本概念动能定理是物理学中一个非常重要的定理,它描述了力对物体做功与物体动能变化之间的关系。
动能是物体由于运动而具有的能量,其表达式为:$E_k =\frac{1}{2}mv^2$,其中$m$是物体的质量,$v$是物体的速度。
而动能定理指出:合外力对物体所做的功等于物体动能的变化量。
用公式表示即为:$W =\Delta E_k$,其中$W$是合外力做的功,$\Delta E_k$是动能的变化量。
二、动能定理的推导为了更好地理解动能定理,我们来进行一下简单的推导。
假设一个质量为$m$的物体,在恒力$F$的作用下,沿直线运动了一段距离$x$,加速度为$a$,初速度为$v_0$,末速度为$v$。
根据牛顿第二定律:$F = ma$根据运动学公式:$v^2 v_0^2 = 2ax$又因为功的定义:$W = Fx$将$F = ma$和$x =\frac{v^2 v_0^2}{2a}$代入$W = Fx$中,可得:\\begin{align}W&=ma\times\frac{v^2 v_0^2}{2a}\\&=\frac{1}{2}mv^2 \frac{1}{2}mv_0^2\end{align}\这就得到了动能定理:合外力对物体所做的功等于物体动能的变化量。
三、动能定理的应用场景(一)求变力做功当力是变力时,使用牛顿运动定律和运动学公式往往很难求解做功问题,但动能定理却能发挥巨大作用。
例如,一个物体在一根弹簧的作用下运动,弹簧的弹力是一个变力。
我们可以通过测量物体的初末速度,计算出动能的变化量,从而得出弹力做的功。
(二)多过程问题在涉及多个运动过程的问题中,动能定理可以避免对每个过程分别进行受力分析和运动分析,大大简化计算。
比如,一个物体先在粗糙水平面上匀减速运动,然后进入光滑斜面加速上升。
我们可以分别计算出每个过程中合外力做的功,然后根据动能定理求出物体在整个过程中的末速度。
2020高中物理必修二同步第七章 习题课2 动能定理的应用

习题课2 动能定理的应用[学习目标] 1.进一步理解动能定理,领会应用动能定理解题的优越性.2.会利用动能定理分析变力做功、曲线运动以及多过程问题.一、利用动能定理求变力的功1.动能定理不仅适用于求恒力做功,也适用于求变力做功,同时因为不涉及变力作用的过程分析,应用非常方便.2.利用动能定理求变力的功是最常用的方法,当物体受到一个变力和几个恒力作用时,可以用动能定理间接求变力做的功,即W 变+W 其他=ΔE k .例1 如图1所示,质量为m 的小球自由下落d 后,沿竖直面内的固定轨道ABC 运动,AB 是半径为d 的14光滑圆弧,BC 是直径为d 的粗糙半圆弧(B 是轨道的最低点).小球恰能通过圆弧轨道的最高点C .重力加速度为g ,求:图1(1)小球运动到B 处时对轨道的压力大小. (2)小球在BC 运动过程中,摩擦力对小球做的功. 答案 (1)5mg (2)-34mgd解析 (1)小球下落到B 点的过程由动能定理得2mgd =12m v 2,在B 点:F N -mg =m v 2d ,得:F N =5mg ,根据牛顿第三定律:F N ′= F N =5mg .(2)在C 点,mg =m v C2d 2.小球从B 运动到C 的过程:12m v C 2-12m v 2=-mgd +W f ,得W f =-34mgd . 针对训练 如图2所示,某人利用跨过定滑轮的轻绳拉质量为10 kg 的物体.定滑轮的位置比A 点高3 m.若此人缓慢地将绳从A 点拉到B 点,且A 、B 两点处绳与水平方向的夹角分别为37°和30°,则此人拉绳的力做了多少功?(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8,不计滑轮的摩擦)图2答案 100 J解析 取物体为研究对象,设绳的拉力对物体做的功为W .根据题意有h =3 m. 物体升高的高度Δh =h sin 30°-h sin 37°.①对全过程应用动能定理W -mg Δh =0.② 由①②两式联立并代入数据解得W =100 J. 则人拉绳的力所做的功W 人=W =100 J. 二、利用动能定理分析多过程问题一个物体的运动如果包含多个运动阶段,可以选择分段或全程应用动能定理.(1)分段应用动能定理时,将复杂的过程分割成一个个子过程,对每个子过程的做功情况和初、末动能进行分析,然后针对每个子过程应用动能定理列式,然后联立求解.(2)全程应用动能定理时,分析整个过程中出现过的各力的做功情况,分析每个力做的功,确定整个过程中合外力做的总功,然后确定整个过程的初、末动能,针对整个过程利用动能定理列式求解.当题目不涉及中间量时,选择全程应用动能定理更简单,更方便.注意:当物体运动过程中涉及多个力做功时,各力对应的位移可能不相同,计算各力做功时,应注意各力对应的位移.计算总功时,应计算整个过程中出现过的各力做功的代数和. 例2 如图3所示,右端连有一个光滑弧形槽的水平桌面AB 长L =1.5 m ,一个质量为m =0.5 kg 的木块在F =1.5 N 的水平拉力作用下,从桌面上的A 端由静止开始向右运动,木块到达B 端时撤去拉力F ,木块与水平桌面间的动摩擦因数μ=0.2,取g =10 m/s 2.求:图3(1)木块沿弧形槽上升的最大高度(木块未离开弧形槽); (2)木块沿弧形槽滑回B 端后,在水平桌面上滑动的最大距离.答案 (1)0.15 m (2)0.75 m解析 (1)设木块沿弧形槽上升的最大高度为h ,木块在最高点时的速度为零.从木块开始运动到沿弧形槽上升的最大高度处,由动能定理得: FL -F f L -mgh =0其中F f =μF N =μmg =0.2×0.5×10 N =1.0 N 所以h =FL -F f Lmg=(1.5-1.0)×1.50.5×10m =0.15 m(2)设木块离开B 点后沿桌面滑动的最大距离为x .由动能定理得: mgh -F f x =0所以:x =mgh F f =0.5×10×0.151.0 m =0.75 m三、动能定理在平抛、圆周运动中的应用动能定理常与平抛运动、圆周运动相结合,解决这类问题要特别注意:(1)与平抛运动相结合时,要注意应用运动的合成与分解的方法,如分解位移或分解速度求平抛运动的有关物理量.(2)与竖直平面内的圆周运动相结合时,应特别注意隐藏的临界条件:①有支撑效果的竖直平面内的圆周运动,物体能通过最高点的临界条件为v min =0. ②没有支撑效果的竖直平面内的圆周运动,物体能通过最高点的临界条件为v min =gR . 例3 如图4所示,一可以看成质点的质量m =2 kg 的小球以初速度v 0沿光滑的水平桌面飞出后,恰好从A 点沿切线方向进入圆弧轨道,其中B 为轨道的最低点,C 为最高点且与水平桌面等高,圆弧AB 对应的圆心角θ=53°,轨道半径R =0.5 m.已知sin 53°=0.8,cos 53°=0.6,不计空气阻力,g 取10 m/s 2.图4(1)求小球的初速度v 0的大小;(2)若小球恰好能通过最高点C ,求在圆弧轨道上摩擦力对小球做的功. 答案 (1)3 m/s (2)-4 J解析 (1)在A 点由平抛运动规律得: v A =v 0cos 53°=53v 0.①小球由桌面到A 点的过程中,由动能定理得 mg (R +R cos θ)=12m v A 2-12m v 0 2②由①②得:v 0=3 m/s.(2)在最高点C 处有mg =m v C2R ,小球从桌面到C 点,由动能定理得W f =12m v C 2-12m v 02,代入数据解得W f =-4 J.1.(用动能定理求变力的功) 如图5所示,质量为m 的物体与水平转台间的动摩擦因数为μ,物体与转轴相距R ,物体随转台由静止开始转动.当转速增至某一值时,物体即将在转台上滑动,此时转台开始匀速转动.设物体的最大静摩擦力近似等于滑动摩擦力,则在整个过程中摩擦力对物体做的功是( )图5A.0B.2μmgRC.2πμmgRD.μmgR2答案 D解析 物体即将在转台上滑动但还未滑动时,转台对物体的最大静摩擦力恰好提供向心力,设此时物体做圆周运动的线速度为v ,则有μmg =m v 2R.①在物体由静止到获得速度v 的过程中,物体受到的重力和支持力不做功,只有摩擦力对物体做功,由动能定理得:W =12m v 2-0.②联立①②解得W =12μmgR .2.(利用动能定理分析多过程问题)滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图6是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O点,圆心角为60°,半径OC 与水平轨道CD 垂直,水平轨道CD 段粗糙且长8 m.某运动员从轨道上的A 点以3 m /s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧形轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为60 kg ,B 、E 两点到水平轨道CD 的竖直高度分别为h 和H ,且h =2 m ,H =2.8 m ,g 取10 m/s 2.求:图6(1)运动员从A 点运动到达B 点时的速度大小v B ; (2)轨道CD 段的动摩擦因数μ;(3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,则最后停在何处?答案 (1)6 m/s (2)0.125 (3)不能回到B 处,最后停在D 点左侧6.4 m 处(或C 点右侧1.6 m 处) 解析 (1)由题意可知:v B =v 0cos 60°解得:v B =6 m/s.(2)从B 点到E 点,由动能定理可得: mgh -μmgx CD -mgH =0-12m v B 2代入数据可得:μ=0.125.(3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处,根据动能定理得: mgh -mgh ′-μmg ·2x CD =0-12m v B 2解得h ′=1.8 m<h =2 m所以第一次返回时,运动员不能回到B 点设运动员从B 点运动到停止,在CD 段的总路程为s ,由动能定理可得: mgh -μmgs =0-12m v B 2④解得:s =30.4 m因为s =3x CD +6.4 m ,所以运动员最后停在D 点左侧6.4 m 处或C 点右侧1.6 m 处. 3.(动能定理在平抛、圆周运动中的应用) 如图7所示,一个质量为m =0.6 kg 的小球以初速度v 0=2 m /s 从P 点水平抛出,从粗糙圆弧ABC 的A 点沿切线方向进入(不计空气阻力,进入圆弧时无动能损失)且恰好沿圆弧通过最高点C ,已知圆弧的圆心为O ,半径R =0.3 m ,θ=60°,g =10 m/s 2.求:图7(1)小球到达A 点的速度v A 的大小; (2)P 点到A 点的竖直高度H ;(3)小球从圆弧A 点运动到最高点C 的过程中克服摩擦力所做的功W . 答案 (1)4 m/s (2)0.6 m (3)1.2 J解析 (1)在A 点由速度的合成得v A =v 0cos θ,代入数据解得v A =4 m/s(2)从P 点到A 点小球做平抛运动,竖直分速度v y =v 0tan θ① 由运动学规律有v y 2=2gH ② 联立①②解得H =0.6 m (3)恰好过C 点满足mg =m v C 2R由A 点到C 点由动能定理得 -mgR (1+cos θ)-W =12m v C 2-12m v A 2代入数据解得W =1.2 J.课时作业一、选择题(1~7为单项选择题,8~9为多项选择题)1.在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速度为v ,用g 表示重力加速度,则在此过程中物块克服空气阻力所做的功等于( ) A.mgh -12m v 2-12m v 0 2B.12m v 2-12m v 0 2-mghC.mgh +12m v 0 2-12m v 2D.mgh +12m v 2-12m v 0 2答案 C解析 选取物块从刚抛出到正好落地时的过程,由动能定理可得: mgh -W f 克=12m v 2-12m v 0 2解得:W f 克=mgh +12m v 0 2-12m v 2.2.如图1所示,AB 为14圆弧轨道,BC 为水平直轨道,圆弧的半径为R ,BC 的长度也是R ,一质量为m 的物体,与两个轨道间的动摩擦因数都为μ,当它由轨道顶端A 从静止开始下落,恰好运动到C 处停止,那么物体在AB 段克服摩擦力所做的功为( )图1A.12μmgR B.12mgR C.-mgR D.(1-μ)mgR答案 D解析 设物体在AB 段克服摩擦力所做的功为W AB ,物体从A 运动到C 的全过程,根据动能定理,有mgR -W AB -μmgR =0.所以有W AB =mgR -μmgR =(1-μ)mgR .3.一质量为m 的小球,用长为l 的轻绳悬挂于O 点,小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2所示,则拉力F 所做的功为( )图2A.mgl cos θB.mgl (1-cos θ)D.Fl sin θ 答案 B解析 小球缓慢移动,时时都处于平衡状态,由平衡条件可知,F =mg tan θ,随着θ的增大,F 也在增大,是一个变化的力,不能直接用功的公式求它所做的功,所以这道题要考虑用动能定理求解.由于物体缓慢移动,动能保持不变,由动能定理得:-mgl (1-cos θ)+W =0,所以W =mgl (1-cos θ).4.质量为m 的物体以初速度v 0沿水平面向左开始运动,起始点A 与一轻弹簧最右端O 相距s ,如图3所示.已知物体与水平面间的动摩擦因数为μ,物体与弹簧相碰后,弹簧的最大压缩量为x ,则从开始碰撞到弹簧被压缩至最短,物体克服弹簧弹力所做的功为(不计空气阻力)( )图3A.12m v 0 2-μmg (s +x )B.12m v 0 2-μmgxC.μmgsD.μmgx答案 A解析 设物体克服弹簧弹力所做的功为W ,则物体向左压缩弹簧过程中,弹簧弹力对物体做功为-W ,摩擦力对物体做功为-μmg (s +x ),根据动能定理有-W -μmg (s +x )=0-12m v 0 2,所以W =12m v 0 2-μmg (s +x ).5.质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,如图4所示,运动过程中小球受到空气阻力的作用.设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg ,在此后小球继续做圆周运动,经过半个圆周恰好能通过最高点,则在此过程中小球克服空气阻力所做的功是( )图4A.14mgR B.13mgR C.12mgR D.mgR解析 小球通过最低点时,设绳的张力为F T ,则 F T -mg =m v 1 2R ,6mg =m v 1 2R①小球恰好过最高点,绳子拉力为零,这时mg =m v 2 2R ②小球从最低点运动到最高点的过程中,由动能定理得 -mg ·2R -W f =12m v 2 2-12m v 1 2③由①②③式联立解得W f =12mgR ,选C.6.如图5所示,假设在某次比赛中运动员从10 m 高处的跳台跳下,设水的平均阻力约为其体重的3倍,在粗略估算中,把运动员当作质点处理,为了保证运动员的人身安全,池水深度至少为(不计空气阻力)( )图5A.5 mB.3 mC.7 mD.1 m答案 A解析 设水深为h ,对运动全程运用动能定理可得: mg (H +h )-F f h =0,mg (H +h )=3mgh .所以h =5 m.7.如图6所示,小球以初速度v 0从A 点沿粗糙的轨道运动到高为h 的B 点后自动返回,其返回途中仍经过A 点,则经过A 点的速度大小为( )图6A.v 0 2-4ghB.4gh -v 0 2C.v 0 2-2ghD.2gh -v 0 2答案 B解析 从A 到B 运动过程中,重力和摩擦力都做负功,根据动能定理可得mgh +W f =12m v 0 2,从B 到A 过程中,重力做正功,摩擦力做负功(因为是沿原路返回,所以两种情况摩擦力做功大小相等),根据动能定理可得mgh -W f =12m v 2,两式联立得再次经过A 点的速度为4gh -v 0 2,故B 正确.8.在平直公路上,汽车由静止开始做匀加速直线运动,当速度达到v max 后,立即关闭发动机直至静止,v -t 图象如图7所示,设汽车的牵引力为F ,受到的摩擦力为F f ,全程中牵引力做功为W 1,克服摩擦力做功为W 2,则( )图7A.F ∶F f =1∶3B.W 1∶W 2=1∶1C.F ∶F f =4∶1D.W 1∶W 2=1∶3答案 BC解析 对汽车运动的全过程,由动能定理得:W 1-W 2=ΔE k =0,所以W 1=W 2,选项B 正确,选项D 错误;由动能定理得Fx 1-F f x 2=0,由图象知x 1∶x 2=1∶4.所以 F ∶F f =4∶1,选项A 错误,选项C 正确.9.如图8所示,一个小环沿竖直放置的光滑圆环形轨道做圆周运动.小环从最高点A 滑到最低点B 的过程中,线速度大小的平方v 2随下落高度h 的变化图象可能是图中的( )图8答案 AB解析 对小环由动能定理得mgh =12m v 2-12m v 02,则v 2=2gh +v 0 2.当v 0=0时,B 正确.当v 0≠0时,A 正确.二、非选择题10.如图9所示,光滑水平面AB 与一半圆形轨道在B 点相连,轨道位于竖直面内,其半径为R ,一个质量为m 的物块静止在水平面上,现向左推物块使其压紧弹簧,然后放手,物块在弹力作用下获得一速度,当它经B 点进入半圆形轨道瞬间,对轨道的压力为其重力的7倍,之后向上运动恰能完成半圆周运动到达C 点,重力加速度为g .求:图9(1)弹簧弹力对物块做的功;(2)物块从B 到C 克服阻力所做的功;(3)物块离开C 点后,再落回到水平面上时的动能.答案 (1)3mgR (2)12mgR (3)52mgR 解析 (1)由动能定理得W =12m v B 2 在B 点由牛顿第二定律得7mg -mg =m v B 2R解得W =3mgR(2)物块从B 到C 由动能定理得12m v C 2-12m v B2=-2mgR +W ′ 物块在C 点时mg =m v C 2R解得W ′=-12mgR ,即物块从B 到C 克服阻力做功为12mgR . (3)物块从C 点平抛到水平面的过程中,由动能定理得2mgR =E k -12m v C 2,解得E k =52mgR . 11.如图10所示,绷紧的传送带在电动机带动下,始终保持v 0=2 m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =10 kg 的工件轻轻地放在传送带底端,由传送带传送至h =2 m 的高处.已知工件与传送带间的动摩擦因数μ=32,g 取10 m/s 2.图10(1)通过计算分析工件在传送带上做怎样的运动?(2)工件从传送带底端运动至h =2 m 高处的过程中摩擦力对工件做了多少功?答案 (1)工件先以2.5 m /s 2的加速度做匀加速直线运动,运动0.8 m 与传送带达到共同速度2 m/s 后做匀速直线运动 (2)220 J解析 (1)工件刚放上传送带时受滑动摩擦力:F f =μmg cos θ,工件开始做匀加速直线运动,由牛顿运动定律:F f -mg sin θ=ma 可得:a =F f m-g sin θ =g (μcos θ-sin θ)=10×⎝⎛⎭⎫32cos 30°-sin 30° m/s 2 =2.5 m/s 2.设工件经过位移x 与传送带达到共同速度,由匀变速直线运动规律可得:x =v 0 22a =222×2.5 m =0.8 m <h sin θ=4 m 故工件先以2.5 m /s 2的加速度做匀加速直线运动,运动0.8 m 与传送带达到共同速度2 m/s 后做匀速直线运动.(2)在工件从传送带底端运动至h =2 m 高处的过程中,设摩擦力对工件做功为W f ,由动能定理得W f -mgh =12m v 0 2, 可得:W f =mgh +12m v 0 2=10×10×2 J +12×10×22 J =220 J. 12.如图11所示,光滑斜面AB 的倾角θ=53°,BC 为水平面,BC 长度l BC =1.1 m ,CD 为光滑的14圆弧,半径R =0.6 m.一个质量m =2 kg 的物体,从斜面上A 点由静止开始下滑,物体与水平面BC间的动摩擦因数μ=0.2,轨道在B、C两点光滑连接.当物体到达D点时,继续竖直向上运动,最高点距离D点的高度h=0.2 m.sin 53°=0.8,cos 53°=0.6.g取10 m/s2.求:图11(1)物体运动到C点时的速度大小v C;(2)A点距离水平面的高度H;(3)物体最终停止的位置到C点的距离s.答案(1)4 m/s(2)1.02 m(3)0.4 m解析(1)物体由C点运动到最高点,根据动能定理得:-mg(h+R)=0-122m v C代入数据解得:v C=4 m/s(2)物体由A点运动到C点,根据动能定理得:12-0=mgH-μmgl BC2m v C代入数据解得:H=1.02 m(3)从物体开始下滑到停下,根据动能定理得:mgH-μmgs1=0代入数据,解得s1=5.1 m由于s1=4l BC+0.7 m所以,物体最终停止的位置到C点的距离为:s=0.4 m.。
《动能定理的应用》 讲义

《动能定理的应用》讲义一、动能定理的基本概念在物理学中,动能定理描述了力对物体做功与物体动能变化之间的关系。
动能定理指出:合外力对物体所做的功等于物体动能的变化量。
动能的表达式为:$E_k =\frac{1}{2}mv^2$,其中$m$是物体的质量,$v$是物体的速度。
而合外力做功的计算则要根据具体的力和运动情况来确定。
二、动能定理的表达式动能定理的数学表达式为:$W_{合} =\Delta E_k$其中,$W_{合}$表示合外力做的功,$\Delta E_k$表示动能的变化量。
如果物体受到多个力的作用,可以先分别求出每个力做的功,然后将它们代数相加得到合外力做的功。
三、动能定理的应用场景1、求物体的速度当已知物体所受合外力做功以及物体的初始动能时,可以利用动能定理求出物体的末速度。
例如,一个质量为$m$的物体在水平方向上受到一个恒力$F$的作用,经过一段距离$x$,力$F$做的功为$W = Fx$。
若物体的初始速度为$v_0$,则可以根据动能定理$Fx =\frac{1}{2}mv^2 \frac{1}{2}mv_0^2$求出物体的末速度$v$。
2、求力的大小在已知物体的运动情况和动能变化量的情况下,可以通过动能定理求出作用在物体上的力的大小。
比如,一个物体从高处自由下落,下落高度为$h$,重力做功$mgh$,物体的末速度可以通过运动学公式求出,然后利用动能定理$mgh =\frac{1}{2}mv^2 0$,求出重力$mg$的大小。
3、解决多过程问题对于物体经历多个不同的运动过程,每个过程中力的情况较为复杂时,动能定理能发挥很大的作用。
因为动能定理只关注初末状态的动能变化和整个过程中合外力做的功,而不需要考虑中间过程的细节。
例如,一个物体先在粗糙水平面上做匀减速直线运动,然后进入光滑斜面向上运动。
可以分别计算在粗糙水平面上摩擦力做的功和在斜面上重力做的功,然后利用动能定理求出物体在斜面上能达到的高度。
高中物理:巧用动能定理求解多过程问题

动能定理揭示了物体外力的总功与其动能变化间的关系。
可表示为W=E k2-E k1=△E k,在所研究的问题中,如果物体受外力作用而运动状态变化时,巧妙运用动能定理,往往能使解决问题的途径简捷明快,事半功倍。
例1.质量m=1.5kg的物块(可视为质点)在水平恒力F作用下,从水平面上A点由静止开始运动,运动一段距离撤去该力,物块继续滑行t=2.0 s停在B点,已知A、B两点的距离x=5.0 m,物块与水平面间的动摩擦因数μ=0.20,求恒力F多大?(g=10m/s2)解析:设撤去力F前、后物体的位移分别为x1、x2物块受到的滑动摩擦力为F f=μmg=0.2×1.5×10N=3N.撤去力F后物块的加速度大小为最后2s内,物体的位移为故力F作用的位移x1=x-x2=1.0m对物块运动的全过程应用动能定理:得本题应用牛顿第二定律也可求解,但比较繁琐,应用动能定理求解则简捷得多,求解时一定要注意两个力作用的位移是不同的。
例2.如图1所示,一物体质量m=2kg,从倾角θ=37°的斜面上的A点以初速度v0=3m/s下滑,A点距弹簧上的挡板位置B的距离AB=4 m,当物体到达B后,将弹簧压缩到C点,最大压缩量BC=0.2 m,然后物体又被弹簧弹上去,弹到最高位置D点,D点距A点为AD=3 m,求物体跟斜面间的动摩擦因数.(g=10m/s2,弹簧及挡板质量不计)解析:在该题中,物体的运动过程分成了几个阶段,若用牛顿运动定律解决,要分几个过程来处理,考虑到全过程始末状态动能都是零,用动能定理解决就方便多了。
对A→B→C→D全过程,由动能定律得:F f=μmgcosθ两式联立得:当物体运动是由几个物理过程组成,又不需要研究过程的中间状态时,可以把几个物理过程看做一个整体来研究,从而避免每个运动过程的具体细节,大大简化运算。
例3.如图2所示,在一个固定盒子里有一个质量为m的滑块,它与盒子底面的动摩擦因数为μ开始滑块在盒子中央以足够大的初速度v0向右运动,与盒子两壁碰撞若干次后速度减为零,若盒子长为L,滑块与盒壁碰撞没有能量损失,求整个过程中物体与两壁碰撞的次数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动能定理的应用
应用动能定理的解题步骤
①确定研究对象,进行受力分析
②确定研究过程,进行运动分析
③分析各个力做功的情况,分析初、末态的动能
④根据动能定理列方程
一、利用动能定理求解多个力做功的问题
动能定理反映了外力的功和物体动能的变化之间关系,外力做正功,物体动能增加,外力做负功,物体动能减少。
不仅适用于单个力做功的情况,也适用于多个力做功的情况,此时的功应理解为合外力的功或外力对物体做功的代数和。
例1、如图所示,物体置于倾角为37度的斜面的底端,在恒定的沿斜面向上的拉力的作用下,由静止开始沿斜面向上运动。
F大小为2倍物重,斜面与物体的动摩擦因数为0.5,求物体运动5m时速度的大小。
(g=10m/s2)
分析:
在将物体沿斜面向上拉的过程中,小球受四个力的作用:重力G、支持力N、沿斜面向上的拉力F和滑动摩擦力f。
其中支持力不做功,F对物体做正功,G和f对物体做负功。
在将物体沿斜面向上运动3m的过程中,对物体由动能定理有:
ΣW=W f+W F+W G= mv -0
写出各功的表达式:-mgssinθ-fs+FS= mv -0
在垂直于斜面的向上物体没有运动:N=mgcosθf=μN
由以上三式解得:v2=10m/s
说明:
是物体在恒力作用下的匀变速直线运动,还可以用牛顿第二定律和匀变速运动公式来解。
由于动能定理不涉及物体运动过程中的加速度和时间,因此应用它来解题往往比较方便。
二、利用动能定理求解变力做功的问题
动能定理反映了力对物体的作用效果在空间上的积累,不仅适用于恒力的功,而且适用于变力的功。
从而提供了一种求变力功的方法。
例2、一个质量为m的小球用长为L的轻绳悬挂于O点,小球在水平拉力F作用下,从平衡位置P缓慢地移动到Q点,这时绳与竖直方向的夹角为θ,如图所示,则力F做的功是多少?
分析:
在将小球从P点移动到Q点的过程中,小球受三个力的作用:重力、水平拉力和绳子的拉力。
小球缓慢运动(速率很小且速率不变),可以认为小球在各瞬间都处于平衡状态,小球所受合力为零,由力的矢量三角形可得F=Gtanθ。
由于在小球运动的过程中,θ始终在变化,所以F 是个变力,因此,不能用W=F·S·cosθ来计算功了。
由于动能定理将外力的功与物体动能的变化联系起来,所以可以利用动能定理来计算功的大小。
在小球所受到的三个力中,绳子的拉力始终与小球速度方向垂直,不做功,只有重力和水平拉力做功。
由动能定理:
W总=W F+W G=ΔE K=0
得到:W F=-W G=-(-mgh)=mgh=mgL(1-cosθ)
例3、小球用绳系住在光滑的水平面上做匀速圆周运动。
当拉力由F增大到8F时,圆运动的半径从r减小到。
在这一过程中拉力所做的功为
A、4Fr
B、Fr
C、Fr
D、Fr
分析:
在球的轨道半径减小的过程中,拉力的切向分力对小球做正功,而切向分力是变力,我们可以设拉力所做的功为W F,由动能定理,有W F= mv - mv ①
再由牛顿第二定律,物体分别以半径r和做匀速圆周运动时,有
②
③
可解:
三、利用动能定理求解多过程问题
动能定理反映了功的一种累积效果:若物体运动经历多个过程,每一个过程中外力的总功等于这个过程中物体动能的变化,因此可以将所有过程相加,则有全过程中外力的总功等于全过程中物体动能的变化。
因此动能定理也可应用于多个过程的问题。
例4、一个滑雪的人从高度为h的斜坡上由静止开始滑下,然后在水平面滑行一段距离停下来。
已知斜面的倾角为θ,滑雪板和雪之间的动摩擦因数为μ,求滑雪人在水平面上滑行的距离S1。
你能否求出滑雪人通过的水平距离S?其它条件不变,只改变斜坡的倾角θ,水平距离S是否改变?
分析:
对从A→B的全过程应用动能定理,分析人在A→C和C→B两个阶段的受力及力做功情况,具体受力情况如图所示,则由动能定理可知:
W总=W f1+W f2+W G=ΔE K
W f1+W f2+mgh=0①
设斜坡长为L,则W f1=f1·L·cos180°②
W f2=f2·S1·cos180°③
而f1=μN1=μmgcosθ,f2=μmg④
①、②、③、④联立:Lcosθ+S1=h/μ
而S=S1+Lcosθ,即S=h/μ
可见若只改变θ,则S不会变,始终等于h/μ。
例5、一物体以初速度v0从倾角为α的斜面底端冲上斜面,到达某一高度后又返回,回到斜面底端的速度为v t,则斜面与物体间的摩擦系数μ等于多少?
分析:
设物体的质量为m,上升的最大高度为h。
物体在沿斜面上滑的过程中,重力和摩擦力都做负功,由动能定理,有
-mgh-μmgcosα =0- mv
物体在从最高点沿斜面下滑的过程中,重力做正功,摩擦力做负功,则
mgh-μmgcosα = mv -0
还可以研究物体从上到下的整个过程,重力做功为零,摩擦力一直做负功,则
-2μmgcosα = mv - mv
以上三个方程联立其中任意两个即可解得:
四、利用动能定理求解连接体问题
对于两个或两个以上的物体组成的系统,可以对整个系统运用动能定理求解。
此时系统的外力的总功等于系统动能的变化。
例6、如图所示,质量皆为m的两物块A和B通过一根跨过滑轮的轻质细绳相连,放在一固定在水平地面的斜面上,A和斜面间的动摩擦因数为0.25。
斜面长5m高3m,B距地面高2m。
先用手托住B并从静止释放,求A沿斜面所能上升的最大位移。
物体的运动经历了两个过程:
过程1:释放B后,A沿斜面向上、B竖直向下做匀加速运动,A和B的位移的大小都为S,速度的大小始终相等。
过程2:B落地后,A沿斜面向上做匀减速运动,当其速度减小到零时,位移最大。
对于A、B组成的系统,在B落地前的匀加速运动过程中,系统受到的外力有A和B的重力,A受到的摩擦力和支持力。
由动能定理有:mgH-mgHsin37°-μmgHcos37°= 2mv2-0
对于A,在B落地后的匀减速运动过程中,由动能定理,有
-mgsin37°s-μmgHcos37°s=0- mv2
联立可解:
所以,A沿斜面所能上升的最大位移为
本周练习:
1、一物体静止在光滑水平面上,先对物体施一水平向右的恒力F1,经t秒后撤去F1,立即再对它施一水平向左的恒力F2,又经t秒后物体回到出发点,在这一过程中,F1、F2分别对物体作的功W1、W2间的关系是
(A)W2=W1(B)W2=2W1(C)W2=3W1(D)W2=5W1
2、某消防队员从一平台上跳下,下落2米后双脚触地,接着他用双腿弯曲的方法缓冲,使自身重心又下降了0.5米,在着地过程中地面对他双脚的平均作用力估计为
(A)自身所受重力的2倍(B)自身所受重力的5倍
(C)自身所受重力的8倍(D)自身所受重力的10倍
3、质量为m的小球被系在轻绳一端,在竖直平面内做半径为R的圆周运动,运动过程中小球受到空气阻力的作用。
设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为(A)mgR/4(B)mgR/3(C)mgR/2(D)mgR
4、如图所示,ABCD是一条长轨道,其中AB段是倾角为θ的斜面,CD段是水平的,BC 是与AB和CD都相切的一小段圆弧,其长度可以略去不计。
一质量为m的小滑块自高为h的A 点从静止释放,沿轨道滑下,最后停在D点,A点和D点的水平位移为s。
现用一水平方向的恒力F自D点开始推滑块,恰好能推回A点。
则滑块自D回到A的过程中,动能的最大值为
(A)Fs(B)(Fs-hmg)(s-hctgθ)/s
(C)(Fs-hmgcosθ)(h/ssinθ)(D)mgh(s-hctgθ)/s
5、以10m/s的初速度竖直向上抛出一个质量为0.5kg的物体,它上升的最大高度为4m,设空气对物体的阻力大小不变,求物体落回抛出点时的动能。
参考答案:
1、C
2、B
3、C
4、B
5、15J。