用二项式定理展开或逆用等比数列和公式化简求极限

用二项式定理展开或逆用等比数列和公式化简求极限
用二项式定理展开或逆用等比数列和公式化简求极限

二项式定理(通项公式)

六、二项式定理 一、指数函数运算 知识点:1.整数指数幂的概念 *)(N n a a a a a a n n ∈??= 个 )0(10≠=a a ,0(1 N n a a a n n ∈≠=- 2.运算性质: ),(Z n m a a a n m n m ∈=?+ ,),()(Z n m a a mn n m ∈=,)()(Z n b a ab n n n ∈?= 3.注意 ① n m a a ÷可看作n m a a -? ∴n m a a ÷=n m a a -?=m a -② n b a )(可看作n n b a -? ∴n b a )(=n n b a -?n n b 4、n m n m a a = (a >0,m ,n ∈N *,且n >1) 例题: 例1求值:43 32 13 2)81 16(,)41(,100,8---. 例2用分数指数幂的形式表示下列各式: 1) a a a a a a ,,32 32?? (式中a >0) 2)43a a ? 3)a a a 例3计算下列各式(式中字母都是正数));3()6)(2)(1(656131212132b a b a b a -÷- .))(2(88 341n m 例4计算下列各式: );0() 1(3 2 2>a a a a 435)12525)(2(÷- 例5化简:)()(4 14 12 12 1y x y x -÷- 例6 已知x+x -1 =3,求下列各式的值:.)2(,)1(2 32 32 12 1- - ++x x x x 二、二项式知识回顾 1. 二项式定理 0111()n n n k n k k n n n n n n a b C a C a b C a b C b --+=+++++ , 以上展开式共n+1项,其中k n C 叫做二项式系数,1k n k k k n T C a b -+=叫做二项展开式的通项. (请同学完成下列二项展开式) 0111()(1)(1)n n n k k n k k n n n n n n n a b C a C a b C a b C b ---=-++-++- ,1(1)k k n k k k n T C a b -+=- 01(1)n k k n n n n n n x C C x C x C x +=+++++ ① 0111(21)(2)(2)(2)(2)1n n n k n k n n n n n x C x C x C x C x ---+=+++++ 1110n n n k n n n k a x a x a x a x a ----=+++++ ②

二项式定理(通项公式).

二项式定理 二项式知识回顾 1. 二项式定理 0111 ()n n n k n k k n n n n n n a b C a C a b C a b C b --+=++ ++ +, 以上展开式共n+1项,其中k n C 叫做二项式系数,1k n k k k n T C a b -+=叫做二项展开式的通项. (请同学完成下列二项展开式) 0111()(1)(1)n n n k k n k k n n n n n n n a b C a C a b C a b C b ---=-++-+ +-,1(1)k k n k k k n T C a b -+=- 01(1)n k k n n n n n n x C C x C x C x +=++ +++ ① 01 11 (21)(2)(2)(2)(2)1n n n k n k n n n n n x C x C x C x C x ---+=++ ++ + 1110n n n k n n n k a x a x a x a x a ----=++++ + ② ① 式中分别令x=1和x=-1,则可以得到 01 2n n n n n C C C ++ +=, 即二项式系数和等于2n ; 偶数项二项式系数和等于奇数项二项式系数和,即0213 12n n n n n C C C C -++=++ = ② 式中令x=1则可以得到二项展开式的各项系数和. 2. 二项式系数的性质 (1)对称性:与首末两端等距离的两个二项式系数相等,即m n m n n C C -=. (2)二项式系数k n C 增减性与最大值: 当12n k +< 时,二项式系数是递增的;当1 2 n k +≥时,二项式系数是递减的. 当n 是偶数时,中间一项2n n C 取得最大值.当n 是奇数时,中间两项12n n C -和12n n C +相等,且同 时取得最大值. 3.二项展开式的系数a 0,a 1,a 2,a 3,…,a n 的性质:f(x )= a 0+a 1x +a 2x 2+a 3x 3……+a n x n ⑴ a 0+a 1+a 2+a 3……+a n =f(1) ⑵ a 0-a 1+a 2-a 3……+(-1)n a n =f(-1) ⑶ a 0+a 2+a 4+a 6 (2) 1()1(-+f f ⑷ a 1+a 3+a 5+a 7……= 2 ) 1()1(--f f

高中数学《二项式定理》公开课优秀教学设计二

二项式定理(第1课时) 一、内容和内容解析 内容:二项式定理的发现与证明. 内容解析:本节是高中数学人教A版选修2-3第一章第3节的内容.二项式定理是多项式乘法的特例,是初中所学多项式乘法的延伸,此内容安排在组合计数模型之后,随机变量及其分布之前,既是组合计数模型的一个应用,也是为学习二项分布作准备.由于二项式定理的发现,可以通过从特殊到一般进行归纳概括,在归纳概括过程中还可以用到组合计数模型,因此,这部分内容对于培养学生数学抽象与数学建模素养有着不可忽略的价值.教学中应当引起充分重视. 二、目标和目标解析 目标: (1)能通过多项式乘法,归纳概括出二项式定理内容,并会用组合计数模型证明二项式定理. (2)能从数列的角度认识二项式的展开式及其通项的规律,并能通过特例体会二项式定理的简单应用. (3)通过二项式定理的发现过程培养学生的数学抽象素养,以及用二项式定理这个模型培养学生数学建模素养. 目标解析: (1)二项式展开式是依多项式乘法获得的特殊形式,因此从多项式乘法出发去发现二项式定理符合学生的认知规律.但归纳概括的结论,如果不加以严格的证明不符合数学的基本要求.因此,在归纳概括的过程中,用好组合模型不仅可以更自然地得到结论,还能为证明二项式定理提供方法. (2)由于二项展开式是一个复杂的多项式.如果不把其看成一个数列的和,引进数列的通项帮助理解与应用,学生很难短期内对定理有深入的认识.因此,通过一些特例,建立二项式展开式与数列及数列和的联系,是达成教学目标的一个重要途径.(3)数学核心素养是数学教学的重要目标,但数学核心素养需要在每一堂课中寻找机会去落实.在二项式定理的教学中,从特殊的二项式展开式的特征归纳概括一般二项式展开式的规律是进行数学抽象教学的很好机会;同时利用组合计数模型证明二项式定理,以及利

等比数列常考题型归纳总结很全面

等比数列及其前n 项和 教学目标: 1、熟练掌握等比数列定义;通项公式;中项;前n 项和;性质。 2、能熟练的使用公式求等比数列的基本量,证明数列是等比数列,解决与等比数列有关的简单问题。 知识回顾: 1.定义: 一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示。用递推公式 表示为)2(1≥=-n q a a n n 或q a a n n =+1。注意:等比数列的公比和首项都不为零。(证明数列是 等比数列的关键) 2.通项公式: 等比数列的通项为:11-=n n q a a 。推广:m n m n q a a -= 3.中项: 如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项;其中ab G =2。 4.等比数列的前n 项和公式 ?? ? ??≠--==)1(1)1()1(11q q q a q na S n n 5.等比数列项的性质 (1)在等比数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则q p n m a a a a =;特别的,若m ,p ,q N +∈且q p m +=2,则q p m a a a =2 。 (2)除特殊情况外,,...,,232n n n n n S S S S S --也成等比数列。n q q ='。 (其中特殊情况是当q=-1且n 为偶数时候此时n S =0,但是当n 为奇数是是成立的)。 4、证明等比数列的方法 (1)证: q a a n n =+1(常数);(2)证:112 ·+-=n n n a a a (2≥n ). 考点分析

排列数、组合数公式及二项式定理的应用

排列数、组合数及二项式定理整理 慈济中学全椒 刘 1、排列数公式 m n A =)1()1(+--m n n n =!! )(m n n -.(n ,m ∈N*,且m n ≤). 2、排列恒等式 (1) 1(1)m m n n A n m A -=-+;(2) 1m m n n n A A n m -= -;(3)11m m n n A nA --=; (4)11n n n n n n nA A A ++=-; (5) 1 1m m m n n n A A mA -+=+.(6) 1!22!33!!(1)!1n n n +?+?+ +?=+-. 3、组合数公式 m n C =m n m m A A =m m n n n ???+-- 21)1()1(=!!!)(m n m n -?(n ∈N*,m N ∈,且m n ≤). 4、组合数的两个性质 (1) m n C =m n n C - ; (2) m n C +1 -m n C =m n C 1 +. 5、排列数与组合数的关系 m m n n A m C =?! . 6、二项式定理: 011()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=++ ++ +∈ 【注】: 1.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 2.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。

高中数学完整讲义——二项式定理6.二项式定理的应用3近似计算或估计

高中数学讲义 1 思维的发掘 能力的飞跃 1.二项式定理 ⑴二项式定理 () ()011222...n n n n n n n n n n a b C a C a b C a b C b n --*+=++++∈N 这个公式表示的定理叫做二项式定理. ⑵二项式系数、二项式的通项 011222...n n n n n n n n n C a C a b C a b C b --++++叫做()n a b +的二项展开式,其中的系数()0,1,2,...,r n C r n =叫 做二项式系数,式中的r n r r n C a b -叫做二项展开式的通项,用1r T +表示,即通项为展开式的第1r +项:1r n r r r n T C a b -+=. ⑶二项式展开式的各项幂指数 二项式()n a b +的展开式项数为1n +项,各项的幂指数状况是 ①各项的次数都等于二项式的幂指数n . ②字母a 的按降幂排列,从第一项开始,次数由n 逐项减1直到零,字母b 按升幂排列,从第一项起,次数由零逐项增1直到n . ⑷几点注意 ①通项1r n r r r n T C a b -+=是()n a b +的展开式的第1r +项,这里0,1,2,...,r n =. ②二项式()n a b +的1r +项和()n b a +的展开式的第1r +项r n r r n C b a -是有区别的,应用二项式定理时, 其中的a 和b 是不能随便交换的. ③注意二项式系数(r n C )与展开式中对应项的系数不一定相等,二项式系数一定为正,而项的系 数有时可为负. ④通项公式是()n a b +这个标准形式下而言的,如()n a b -的二项展开式的通项公式是 ()11r r n r r r n T C a b -+=-(只须把b -看成b 代入二项式定理)这与1r n r r r n T C a b -+=是不同的,在这里对应项的二项式系数是相等的都是r n C ,但项的系数一个是()1r r n C -,一个是r n C ,可看出,二项式系数与项的系 知识内容 近似计算或者估计

2016年专项练习题集-数列、等比数列、等比数列的判断与证明

2016年专项练习题集-数列、等比数列、等比数列的判断与证明 1.已知数列{}n a 的前n 项和为n S ,且满足:11(1)2(0,2)n n n S S S n λλλ+-+=++≠≥,若数列{}1n a +是等比数列,则实数λ的值等于( ) A .1 B .1- C . 1 3 D .3 【分值】5 【答案】D 【易错点】不知如何对递推关系式进行变形。 【考查方向】本题主要考查了等比数列的判定、通项公式的应用,在近几年的各省高考题出现的频率较高,常与等比数列的定义及性质交汇命题。 【解题思路】把已知数列递推式变形,由数列{}+1n a 是等比数列求实数λ的值。 【解析】试题分析:由11(1)2n n n S S S λλ+-+=++整理得111()2n n n n S S S S λ+---=-+,化简得:12n n a a λ+=+,得13 13()n n n a a a λλλ ++=+=+ ,由于数列{1}n a +是等比数列,所以 3 1λ =,解得3λ=,故选D. 2.已知数列{}n a 与{}n b 的各项均为正数,且满足关系式:*11 ln 3()n b n a dx n N x =∈?,则“数列{}n a 是等差数列”是“数列{}n b 是等比数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也必要条件

【分值】5 【答案】C 【易错点】对等差数列与等比数列的定义不清楚导致本题出错。 【考查方向】本题主要考查了充分条件与必要条件的判断及等差数列与等比数列的定义、定积分的计算等知识点,是高考考察的重点内容,在近几年的各省高考题出现的频率较高,常与不等式、等差数列、等比数列的概念、定积分的计算等知识点交汇命题。 【解题思路】根据充分条件与必要条件的定义结合等差数列与等比数列的定义进行判断。 【解析】试题分析:由1 1 ln 3n b n a dx x =? 整理得:*3()n a n b n N =∈当数列{}n a 是公差为d 的等差数列时,11333n n a d n a n b b --==,所以数列{}n b 是等比数列;当数列{}n b 是公比为q 的等比 数列时,1113133,log 3 n n n n a a a n n n a n b q a a q b -----===∴-=, 所以数列{}n a 是等差数列;因此“数列{}n a 是等差数列”是“数列{}n b 是等比数列”的充要条件.故选择C 。 3. 已知数列{}n a 的前n 项和为n S ,若*1 cos()(,2)22 n n n n S S n n N n -=+π∈≥,则数列{}n a 的前100项和100S =( ) A.0 B.101 223 - C.101 22- D. 100 2(21)3 - 【分值】5 【答案】B 【易错点】

二项式定理专题复习教学内容

二项式定理知识点、题型与方法归纳 一.知识梳理 1.二项式定理:)()(*110N n b C b a C b a C a C b a n n n r r n r n n n n n n ∈+++++=+--ΛΛ.其中) ,,2,1,0(n r C r n Λ=叫二项式系数.式中的r r n r n b a C -叫二项展开式的通项,用1+r T 表示,即通项r r n r n r b a C T -+=1. 2.二项展开式形式上的特点: (1)项数为n +1; (2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n . (3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n . (4)二项式的系数从C 0n ,C 1 n ,一直到C n - 1n ,C n n . 3.二项式系数的性质: (1)对称性:与首末两端“等距离”的两个二项式系数相等.即r n r n n C C -= (2)增减性与最大值:二项式系数C k n ,当k <n +1 2时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的;当n 是偶数时,中间一项2n n C 取得最大值;当n 是奇数时,中间两项1122n n n n C C -+=取得最大值. (3)各二项式系数和:C 0n +C 1n +C 2n +…+C r n +…+C n n =2n ; C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5 n +…=2 n - 1. 一个防范 运用二项式定理一定要牢记通项T r +1=C r n a n -r b r ,注意(a +b )n 与(b +a )n 虽然相同,但具体到它们展开式的某一项时是不同的,一定要注意顺序问题,另外二项展开式的二项式系数与该项的(字母)系数是两个不同的概念,前者只指C r n ,而后者是字母外的部分.前者只与n 和r 有关,恒为正,后者还与a ,b 有关,可正可负. 两种应用 (1)通项的应用:利用二项展开式的通项可求指定的项或指定项的系数等. (2)展开式的应用:利用展开式①可证明与二项式系数有关的等式;②可证明不等式;③可证明整除问题;④可做近似计算等. 三条性质 (1)对称性;(2)增减性;(3)各项二项式系数的和; 二.题型示例 【题型一】求()n x y +展开特定项 例1:(1+3x )n (其中n ∈N *且n ≥6)的展开式中x 5与x 6的系数相等,则n =( ) B A.6 B.7 C.8 D.9

等差等比数列的判断

等差、等比数列的判断 1. 利用定义证明一个数列成等差或等比数列 例1.已知正项数列{a n }的前n 项和为S n , n S 是41与2)1(+n a 的等比中项 (1)证明:数列{}n S 是等差数列; (2)若n n n a b 2=,数列{b n }的前n 项和为T n ,求T n ; (3)在(2)的条件下,是否存在常数λ,使得数列????? ?λ++2n n a T 为等比数列?若存在,试求出λ,若不存在说明理由 (答案:(1)12-=n a n ;(2)n n n T 2323+- =;(3)3-=λ) 例2.两个数列{}n a 、{}n b 满足n na a a a b n n ++++++++=ΛΛ32132321,证明当数列{}n a 是等差数列时{}n b 成等差数列;当{}n b 是等差数列时{}n a 也成等差数列。

例3.设)(n f k 为关于n 的)(N k k ∈次多项式函数,数列{}n a 中,,81=a 前n 项和为n S ,对于任意的正整数n ,)(n f S a k n n =+都成立。 ⑴ 若0=k ,求证:数列{}n a 是等比数列; ⑵ 试确定所有的自然数k ,使得数列{}n a 能成等差数列。 (答案:(1)略;(2)2,1=k ) 练习提高:已知数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+==L , ⑴设数列),2,1(21ΛΛ=-=+n a a b n n n ,求证:数列{}n b 是等比数列; ⑵设数列),2,1(,2ΛΛ==n a c n n n ,求证:数列{}n c 是等差数列; ⑶求数列{}n a 的通项公式及前n 项和。 2. 探索成等差、等比数列的条件 例4.设等比数列{}n a 的前n 项和为n S ,已知*)(221N n S a n n ∈+=+ (1)求数列{}n a 的通项公式; (2)在1+n n a a 与之间插入n 个数,使这n +2个数组成一个公差为n d 的等差数列 ① 求证:16 1511121<+++n d d d Λ; ②在数列{}n d 中是否存在三项p k m d d d p k m ,,(,,成等差数列)成等差数列?若存在,求出这样的三项,若不存在,说明理由。 (答案:(1)132-?=n n a ,(2)略;(3)不存在)

二项式定理

二项式定理 性质:说课稿 一、教材分析 1.教材的地位和作用 二项式定理一节,分四个课时.这里讲的是第一课时,重点是公式的推导,其次是二项式定理及二项展开式通项公式的简单应用,至于二项式定理及二项展开式的通项公式的灵活运用和二项式系数的性质留在第二、三、四课时. 二项式定理是初中学习的多项式乘法的继续,它所研究的是一种特殊的多项式——二项式的乘法的展开式,这一小节与不少内容都有着密切联系,特别是它在本章学习中起着承上启下的作用.学习本小节的意义主要在于: (1)由于二项式定理与概率理论中的三大概率分布之一-----二项分布有内在联系,本小节是学习后面的概率知识以及进一步学习概率统计的准备知识. (2)由于二项式系数都是一些特殊的组合数,利用二项式定理可得到关于组合数的一些恒等式,从而深化对组合数以及计数原理的认识. (3)基于二项式展开式与多项式乘法的联系,本小节的学习可对初中学习的多项式的变形起到复习、深化的作用. (4)二项式定理是解决某些整除性、近似计算问题的一种方法. 2.教学的重点·难点 根据以上分析和新课标的教学要求确定了以下: 重点:二项定理的推导及运用 难点:二项式定理及通项公式的运用 二、三维教学目标分析 知识目标掌握二项式定理及二项展开式的通项公式,并能熟练地进行二项式的展开及求解某些指定的项. 能力目标通过探索二项式定理,培养学生观察问题发现问题,归纳推理问题的能力. 情感目标激发学生学习兴趣、培养学生不断发现,探索新知的精神,渗透事物相互转化和理论联系实际的辩证唯物主义观点,并通过数学的对称美,培养学生的审美意识.

三、教法分析: 新的数学课程标准提出:掌握数学知识只是结果,而掌握知识的活动过程才是途径,通过这个途径,来挖掘人的发展潜能才是目的,结果应让位于过程.因此,在教学中,必须贯彻好过程性原则.也就是说,在教学过程中,充分揭示每一个阶段的思维活动过程,通过思维活动过程的暴露和数学创新活动过程的演变,使教学活动成为思维活动的教学,由此来启发、引导学生直接或间接地感受和体验知识的产生、发展和演变过程. 变传统的“接受性、训练性学习”为新颖的“探究式、发现式的学习”,变教师是传授者为组织者、合作者、指导者,在学习过程中,教师想尽办法激发学生探究式、发现式学习的兴趣,并使其作为一种教学方式应用于概念、定理、公式和解题教学中,让学生在探究、发现中获取知识,发展能力.从而增强学生的主体意识,提高学生学习的效果. 四、教学过程: (一)创设情境,激发兴趣 提出问题:“今天是星期六,我能很快知道再过810天的那一天是星期几,你能想出来吗?” 设计意图:根据教学内容特点和学生的认识规律,给学生提出一些能引起思考和争论性的题目,即一些内容丰富、背景值得进一步探究的诙谐有趣的题目、给学生创造一个“愤”和“悱”的情境,利用问题设下认知障碍,激发学生的求知欲望. (二)问题初探 (1)、从具体问题入手,启发学生将这个问题转化成一个数学问题:“求810被7除的余数是多少?”因为8=7+1,82=(7+1)2=72+2﹡ 7+1,83=(7+1)3=73+3 72+3 ﹡7+1,那810=(7+1)10又如何展开呢?更一般的(a+b)10、(a+b)n 如何展开?从而产生研究问题从特殊到一般的转化. 1、先让学生自己动手运用多项式乘多项式的法则写出(a+b) 2、(a+b) 3、(a+b)4的展开式,然后提出用这种方法写出(a+b)10的展开式容易吗?(a+b)100、(a+b)n呢?对于这个问题,我们如何解决?

等比数列的概念(教案)

等比数列的概念 亳州三中 范图江 一、教学目标 1、 体会等比数列特性,理解等比数列的概念。 2、 能根据定义判断一个数列是等比数列,明确一个数列是等比数列的限定条件。 3、 能够运用类比的思想方法得到等比数列的定义,会推导出等比数列的通项公式。 二、教学重点、难点 重点:等比数列定义的归纳及应用,通项公式的推导。 难点:正确理解等比数列的定义,根据定义判断或证明某些数列为等比数列,通项公式的推导。 三、教学过程 1、 导入 复习等差数列的相关内容: 定义:*1,()n n a a d n N +-=∈ 通项公式:()*1(1),n a a n d n N =+-∈ 等差数列只是数列的其中一种形式,现在来看这两组数列1、2、4、8……, 1、1 2、14、18 …… 问:这两组数列中,各组数列的各项之间有什么关系 2、 探究发现,建构概念 问:与等差数列的概念相类比,可以给出这种数列的概念吗是什么 <1>定义:如果一个数列从地2项起,每一项与前一项的比值都等于同一个常数,则称此数列为的不过比数列。这个常数就叫做公比,用q 表示。 <2>数学表达式:*1,()n n a q n N a +=∈ 问:从等比数列的定义及其数学表达式中,可以看出什么也就是,这个公式在什么条件下成立 结论1 等比数列各项均不为零,公比0q ≠。 带领学生看45P 页的实例,目的是让学生知道等比数列在现实生活中的应用,从而知道其重要性。 3、 运用概念 例1 判断下列数列是否为等比数列: (1)1、1、1、1、1; (2)0、1、2、4、8; (3)1、11 1124816 -、、-、.

分析 (1)数列的首项为1,公比为1,所以是等比数列; (2)等比数列中的各项均不为零,所以不是等比数列; (3)数列的首项为1,公比为12- ,所以是等比数列. 注 成等比数列的条件:11;20;30n n n a q a q a +=≠≠. 练习47P 1、判断下列数列是否为等比数列: (1)1、2、1、2、1; (2)-2、-2、-2、-2; (3)11111392781--、、、、; (4)2、1、12、14、0. 分析 (1)3122122 a a a a ==,,比值不等于同一个常数,所以不是等比数列; (2)首项是-2,公比是1,所以是等比数列; (3)首项是1,公比是13 -,所以是等比数列; (4)数列中的最后一项是零,所以不是等比数列. 例2 求出下列等比数列中的未知项: (1)2,a ,8; (2)- 4,b ,c ,12 . 分析 在做这种题的时候,可以根据等比数列的定义,列出一个或多个等式来求解。 (1)8442a a a ==-,解得或; (2)22442,,1122b c b b c b c b c c c b ?=?-?=-=??????=-=????=??化简得解得. 例3等比数列{}n a 中, ①a 3=4,a 5=16,求a n ②a 1=2,第二项与第三项的和为12,求第四项。 随堂练习 P23练习题。 思考 由前面的练习5,等比数列{}n a 的首项为1a ,公比为q , 212321234321, , , a a q a a q a q a a q a q a q ====== …… 以此类推,可以得到n a 用1a 和q 表示的数学表达式吗

高考数学 《二项式定理》

二项式定理 主标题:二项式定理 副标题:为学生详细的分析二项式定理的高考考点、命题方向以及规律总结。 关键词:二项式定理,二项式系数,项系数 难度:2 重要程度:4 考点剖析: 1.能用计数原理证明二项式定理. 2.会用二项式定理解决与二项展开式有关的简单问题. 命题方向: 1.二项式定理是高中数学中的一个重要知识点,也是高考命题的热点,多以选择、填空题的形式呈现,试题难度不大,多为容易题或中档题. 2.高考对二项式定理的考查主要有以下几个命题角度: (1)求二项展开式中的第n项; (2)求二项展开式中的特定项; (3)已知二项展开式的某项,求特定项的系数. 规律总结: 1个公式——二项展开式的通项公式 通项公式主要用于求二项式的特定项问题,在运用时,应明确以下几点: (1)C r n a n-r b r是第r+1项,而不是第r项; (2)通项公式中a,b的位置不能颠倒; (3)通项公式中含有a,b,n,r,T r+1五个元素,只要知道其中的四个,就可以求出第五个,即“知四求一”. 3个注意点——二项式系数的三个注意点 (1)求二项式所有系数的和,可采用“赋值法”; (2)关于组合式的证明,常采用“构造法”——构造函数或构造同一问题的两种算法; (3)展开式中第r+1项的二项式系数与第r+1项的系数一般是不相同的,在具体求各项的系数时,一般先处理符号,对根式和指数的运算要细心,以防出错.

知 识 梳 理 1.二项式定理 二项式定理 (a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n n b n (n ∈N *) 二项展开式 的通项公式 T r +1=C r n a n -r b r ,它表示第r +1项 二项式系数 二项展开式中各项的系数C 0 n ,C 1n ,…,C n n 2.二项式系数的性质 (1)0≤k ≤n 时,C k n 与C n -k n 的关系是C k n =C n -k n . (2)二项式系数先增后减中间项最大 当n 为偶数时,第n 2 +1项的二项式系数最大,最大值为2n n C ;当n 为奇数时,第n +1 2项和n +3 2项的二项式系数最大,最大值为21 -n n C 或21 +n n C . (3)各二项式系数和:C 0 n +C 1n +C 2n +…+C n n =2n , C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2 n -1.

(完整版)二项式定理学生讲义

二项式定理 【2013年高考会这样考】 1.二项式定理是高考重点考查内容之一.分值一般为5~9分.考查比较稳定,试题难度起伏不大;题目一般为选择、填空题. 2.高考主要考查二项展开式和通项的应用,具体会涉及到求特定的项或系数,以及二项式系数等问题,是高考的必考点之一。 【复习指导】 二项式定理的核心是其展开式的通项公式,复习时要熟练掌握这个公式,注意二项式定理在解决有关组合数问题中的应用. 基础梳理 1.二项式定理 (a +b )n =C 0 n a n +C 1 n a n -1 b +…+C r n a n -r b r +…+C n n b n (n ∈N * )这个公式所表示的定理叫二项式定理,右边的多项式叫(a +b )n 的 .其中的系数C r n (r =0,1,…,n )叫 系数. 式中的C r n a n -r b r 叫二项展开式的 ,用T r +1表示,即通项T r +1=C r n a n -r b r . 2.二项展开式形式上的特点 (1)项数为 . (2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为 _______ (3)字母a 按 排列,从第一项开始,次数由n 逐项减1直到零;字母b 按 排列,从第一项起,次数由零逐项增1直到n . (4)二项式的系数从C 0 n ,C 1 n ,一直到C n -1n ,C n n . 3.二项式系数的性质 (1)对称性:与首末两端“等距离”的两个二项式系数 .即C r n =C n -r n . (2)增减性与最大值:二项式系数C k n ,当k < n +1 2 时,二项式系数逐渐 .由对称性知它的后 半部分是逐渐减小的;当n 是偶数时,中间一项T 12 +n 二项式系数取得最大值;当n 是奇数时, 中间两项1 2 1 2 1n ,+++n T T 的二项式系数相等且最大。 (3)各二项式系数和:C 0 n +C 1 n +C 2 n +…+C r n +…+C n n =_____; C 0 n +C 2 n +C 4 n +…=C 1 n +C 3 n +C 5 n +…=________.

【高考数学】6.3考点2 等比数列的判断与证明

高考真题 (2019?全国II 卷(理))已知数列{a n }和{b n }满足a 1=1,b 1=0, ,. (1)证明:{a n +b n }是等比数列,{a n –b n }是等差数列; (2)求{a n }和{b n }的通项公式. 【解析】(1)由题意可知,,,, 所以,即, 所以数列是首项为、公比为的等比数列,, 因为, 所以,数列是首项、公差为的等差数列,。 (2)由(1)可知,,, 所以,。 【答案】(1)见解析;(2),。 (2019?全国I 卷(理))为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求的分布列; (2)若甲药、乙药在试验开始时都赋予4分,表示“甲药的累计得分为时,最终认为甲 药比乙药更有效”的概率,则,,,其中, 1434n n n a a b +-=+1434n n n b b a +-=-1434n n n a a b +-=+1434n n n b b a +-=-111a b 111a b -=1 144323442n n n n n n n n a b a b b a a b 1 112n n n n a b a b {}n n a b +11 2 1 12 n n n a b 11443434 448n n n n n n n n a b a b b a a b 1 1 2n n n n a b a b {}n n a b -1221n n a b n 1 12 n n n a b 21n n a b n 1 112 2 2n n n n n n a a b a b n 11122 2n n n n n n b a b a b n 112 2n n a n 112 2n n b n 1-1-X (0,1, ,8)i p i =i 00p =81p =11i i i i p ap bp cp -+=++(1,2, ,7)i =(1)a P X ==-

二项式定理中的特殊项问题

《二项式定理中的特殊项问题》导学案 学习目标: 1. 进一步熟悉二项式定理及二项展开式的通项公式; 2. 学会利用“赋值”的方法解决有关问题。 学习重点:二项式系数性质的应用; 学习难点:二项式系数性质的应用。 学习过程: 学习提纲: n n n r r n r n n n n n n b b a b a a b a C C C C )(110+++++=+--ΛΛ,是二项式展开式定理, 主要研究了以下几个方面的问题: (1)展开式;(2)通项公式;(3)二项式系数及其有关性质。 1.求5 2 3 )12()1(+-x x 的展开式中2 x 项的系数。 变式1:9()a x x -的展开式中3x 的系数是84-,求a 的值。 2. 求二项式3 5 2 1()x x - 的展开式中的常数项。 3. 求11 的展开式中的有理项。 4. 已知22)()n n N x ∈*的展开式中第五项的系数与第三项的系数的比是10:1。 (1) 求展开式中各项系数的和; (2) 求展开式中含32 x 的项; (3) 求展开式中系数最大的项和二项式系数最大的项。 5. 若82 80128()x a a a x a x a x -=++++g g g ,且556a =,求0128a a a a ++++g g g 的值。 当堂检测:

1.(2011 陕西高考)6 (42)()x x x R --∈的展开式中的常数项是( ) .20A - .15B - .15C .20D 2.若4234 01234(1)x a a x a x a x a x -=++++,则024a a a ++的值为 。 3.若(0)x ∈+∞,,则15 (12)x +的二项展开式中系数最大的项为 。 4.已知(1)n x -的展开式中所有项的系数的绝对值之和为32,则(1)n x -的展开式中系数最小的项是 。 5.若1(3)n x x +的展开式中各项系数和为1024,试确定展开式中含x 的整数次幂的项。 作业:课本 40P A 组1~9题;B 组1~5题 附加题:若4 1()2n x x +展开式中前三项系数成等差数,求展开式中系数最大项. 补充作业: 1.若016 6777a +x a +....+x a +x a =)1-x 3(,求 (1)1237a a a a ++++g g g ; (2)7531a +a +a +a ; (3)01237||||||||||a a a a a +++++L 2.在25(32)x x ++的展开式中x 的系数为( ) A .160 B .240 C .360 D .800 3.已知2()n i x x - 的展开式中第三项与第五项的系数之比为314-,其中21i =-,则展开式 中系数为实数且最大的项为( ) A .第3项 B .第4项 C .第5项 D .第5项或第6项 4.设()(1)(1)m n f x x x =+++(m 、n ∈N*),若其开展式中关于x 一次项的系数和为11,问m 、n 为何值时,含x 项的系数取最小值并求这个最小值.

高中数学二项式定理全章复习

第十一讲 二项式定理 课程类型:□复习 □预习 □习题 针对学员基础:□基础 □中等 □优秀 1.二项式定理的定义; 2.二项式定理的通项公式; 3.二项式定理的应用. 1.能用计数原理证明二项式定理(重点); 2.能记住二项式定理和二项展开式的通项公式(重点); 3.能解决与二项式定理有关的简单问题(重点、难点). 【知识与方法】 一.二项式定理的定义 在44443 444421个 n n b a b a b a b a )())(()(+???++=+中,每个括号都能拿出a 或b ,所以每个括号有2种选择,n 个括号 就是n 2种情况.22-n b a 这一项,表达的意思是_________________________;所以,22-n b a 共有________个.

(a +b )n 的二项展开式本来共有_______项,合并之后共有_______项,其中各项的系数______________叫做二项式系数. 二.二项展开式的通项 (a +b )n 的二项展开式的通项公式为__________.. 注意:1.r n r C T 与1+的关系,例如第5项,应该是4n C ; 2.二项式的展开式是按照前项降幂排列,例如10)1(+x 与10)1(x +中的第4项是不同的; 3.a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的次数和等 于n ; 4.注意正确区分二项式系数与项的系数. 三.二项式系数的基本性质 四.展开式的二项式系数和 1.(a +b )n 展开式的各二项式系数和:C 0n +C 1n +C 2n +…+C n n =_______. 2.偶数项的二项式系数的和等于奇数项的二项式系数的和,即C 0 n +C 2 n +C 4 n +…=C 1 n +C 3 n +C 5 n +…=_______. 五.展开式的系数和 若f (x )=a 0+a 1x +a 2x 2 +…+a n x n ,则 f (x )展开式中各项系数之和为_______,奇数项系数之和为a 0+ a 2+a 4+…= 2 ) 1()1(-+f f ,偶数项系数之和为a 1+a 3+a 5+…=________________. 【例题与变式】 题型一 通项公式及其应用 类型一 二项式定理的原理应用 【例1】(2015·全国卷Ⅰ)(x 2 +x +y )5 的展开式中,x 5y 2 的系数为( ) A .10 B .20 C .30 D .60 【例2】(2018?滨州二模)52)32(--x x 的展开式中,x 的系数为________. 【变式1】(2018?濮阳一模)82017 )11(++ x x 的展开式中,x 3 的系数为________. 【变式2】(2018?龙岩模拟)已知二项式4)21 1(x x -+ ,则展开式的常数项为( ) A .-1 B .1 C .-47 D .49 类型二 单括号型 【例4】(2018?内江三模)4)2 (x x -展开式中的常数项为( )

等差数列与等比数列的证明方法

等差数列与等比数列的证明方法 证明或判断等差(等比)数列的方法常有四种:定义法、等差或等比中项法、数学归纳法、反证法。 一、 定义法 01.证明数列是等差数列的充要条件的方法: {}1()n n n a a d a +-=?常数是等差数列 {}2222()n n n a a d a +-=?常数是等差数列 {}3333()n n n a a d a +-=?常数是等差数列 02.证明数列是等差数列的充分条件的方法: {}1(2)n n n a a a d n --=≥?是等差数列 {}11(2)n n n n n a n a a a a +--=-≥?是等差数列 03.证明数列是等比数列的充要条件的方法: {}1 (00)n n n a q q a a +=≠≠?1且为常数,a 为等比数列 04.证明数列是等比数列的充要条件的方法: 1 n n a q a -=(n>2,q 为常数且≠0){}n a ?为等比数列 注意事项:用定义法时常采用的两个式子1n n a a d --=和1n n a a d +-=有差别,前者必须加上“2n ≥”,否则1n =时0a 无意义,等比中一样有:2n ≥时,有 1 n n a q a -== (常数0≠);②

n *∈N 时,有 1 n n a q a +== (常数0≠) . 例1. 设数列12,,,,n a a a 中的每一项都不为0。 证明:{}n a 为等差数列的充分必要条件是:对任何n ∈N ,都有 1223111 111n n n n a a a a a a a a +++++= 。 证明:先证必要性 设{}n a 为等差数列,公差为d ,则 当d =0时,显然命题成立 当d ≠0时, ∵ 111111n n n n a a d a a ++?? =- ??? 再证充分性: ∵ 122334 111 a a a a a a ++???1111n n n n a a a a ++++= ?? ………① ∴ 122334 111 a a a a a a ++???11212111n n n n n n a a a a a a ++++++++= ??? ………② ②﹣①得: 121211 11n n n n n n a a a a a a +++++=- ??? 两边同以11n n a a a +得:112(1)n n a n a na ++=+- ………③ 同理:11(1)n n a na n a +=-- ………④ ③—④得:122()n n n na n a a ++=+ 即:211n n n n a a a a +++-=- {}n a 为等差数列 例2. 设数列}{n a 的前n 项和为n S ,试证}{n a 为等差数列的充要条件是

相关文档
最新文档