纳米二氧化钛的制备
纳米二氧化钛的制备方法---钛醇盐气相热解法及气相氧化法

一、钛醇盐气相热解法该工艺以钛醇盐为原料,将其加热气化,用氮气、氦气或氧气作载气,把钛醇盐蒸气预热分解炉,进行热分解反应。
其反应式如下:nTi(OC4H9)4(g)===nTiO2(s)+2nH2O(g)+4nC4H8(g)日本出光兴产株式会社利用钛醇盐气相热解法生产球形非晶型的TiO2,这种纳米TiO2可以用作吸附剂、光催化剂、催化剂载体和化状品等。
据称,为提高分解反应速率,载气中最好含有水蒸气,分解温度以250~350℃为合适,钛醇盐蒸气在热分解炉中的停留时间为0.1~10s,其流速为10~1000mm/s,体积分数为0.1%~10%;为提高所生成纳米TiO2的耐候性,可向热分解炉中同时导入易挥发的金属化合物(如铝、锆的醇盐)蒸气,使纳米TiO2粉体制备和无机表面处理同时进行,该工艺的最大缺点是原料成本较高,产物中残炭含量高,难以合成纯金红石型的纳米TiO2。
二、钛醇盐气相氧化法将钛醇盐蒸气导入反应器与氧气反应,由于饱和蒸气压的原因,反应前体一般选用钛酸民丙醇酯(TTIP).Arabi-Katbi等以TTIP为原料,研究了火焰的方位和结构对合成纳米TiO2的影响。
预混合反应器的方位主要影响停留时间,对晶型组成、颗粒尺寸有一定影响,但对粒子的形貌影响不大。
在层流扩散焰反就器中合成纳米TiO2反应器的混合方式和火焰结构可以有效控制产物的平均原始粒径(10~50mm)和晶型组成(金红石型的质量分数为6%~50%)。
为增大粒径和提高产物的金红石型含量,可以通过增加甲烷气体的流量而提高反应温度来实现。
气相合成纳米TiO2的方法,除上述几种以外,还有低温等离子体化学法、激光化学反应法、金属有机化合物气相沉积法、强光离子束蒸法、乳液燃烧法等,虽然这些气相法制得的纳米TiO2粉体纯度高,粒径分布窄,分散性好,团聚少,表面活性大,反应速率快,能实现连续化生产。
但是气相法反应在高温下瞬间完成,要求反应物在极短的时间内达到微观上的均匀混合,对反应器的型式、设备的材质、加热方式、进料方式均有很高的要求,加之生产成本高。
二氧化钛实验

实验目的:1.培养小组自主设计及完成实验的能力和合作能力。
2.了解纳米二氧化钛的粒性和物性。
3.掌握溶胶-凝胶法合成纳米级TiO2的方法和过程。
一、溶胶凝胶法制备二氧化钛1、引言:TiO2是一种n型半导体材料,晶粒尺寸介于1~100 nm,其晶型有两种:金红石型和锐钛型。
比表面积大,表面张力大,熔点低,磁性强,光吸收性能好,特别是吸收紫外线的能力强,表面活性大,热导性能好,分散性好等。
利用纳米TiO2作光催化剂,可处理有机废水,其活性比普通TiO2(约10 μm)高得多;利用其透明性和散射紫外线的能力,可作食品包装材料、木器保护漆、人造纤维添加剂、化妆品防晒霜等;利用其光电导性和光敏性,可开发一种TiO2感光材料。
由于颗粒尺寸的微细化,使得纳米粉体在保持原物质化学性质的同时,与块状材料相比,在磁性、光吸收、热阻、化学活性、催化和熔点等方面表现出奇异的性能。
呈现出许多特有的物理、化学性质,在涂料、造纸、陶瓷、化妆品、工业催化剂、抗菌剂、环境保护等行业具有广阔的应用前景,TiO2半导体光催化剂因光催化效率高、无毒、稳定性好和适用范围广等优点而成为人们研究的热点。
纳米TiO2的制备方法可归纳为物理方法和化学方法。
物理制备方法主要有机械粉碎法、惰性气体冷凝法、真空蒸发法、溅射法等;物理化学综合法又可大致分为气相法和液相法。
目前的工业化应用中,最常用的方法还是物理化学综合法。
目前合成纳米二氧化钛粉体的方法主要有液相法和气相法。
由于传统的方法不能或难以制备纳米级二氧化钛,而溶胶-凝胶法则可以在低温下制备高纯度、粒径分布均匀、化学活性大的单组分或多组分分子级纳米催化剂[1~3],因此,本实验采用溶胶-凝胶法来制备纳米二氧化钛光催化剂。
2、优点:可通过简单的设备,在各种规格和各种形状的机体表面形成涂层;可获得高度均匀的多组分涂层和特定组分的不均匀涂层;可获得粒径分布比较均匀的涂层;可通过多种方法对薄膜的表面结构和性能进行修饰;负载膜催化剂易回收利用,在催化反应中容易处理。
一种黑色二氧化钛纳米管的制备方法

一种黑色二氧化钛纳米管的制备方法
纳米科技在近年来得到了越来越广泛的应用,二氧化钛纳米管就是其中重要的一种。
它具有较小的尺寸和特殊的形态结构,有着应用于光电、传感、催化等领域的广泛前景。
下面将结合实践,介绍一种黑色二氧化钛纳米管的制备方法。
步骤一:原料准备
准备所需原料:氯化钛、盐酸、溴酸钠、十六烷基三甲基溴化铵、三乙醇胺。
步骤二:反应体系组装
将所需的盐酸溶液、氯化钛、溴酸钠、十六烷基三甲基溴化铵混合溶解,并加入少量的三乙醇胺,搅拌均匀。
步骤三:反应条件控制
将反应溶液置于自动加热恒温器中,保持温度在40-60℃,控制pH值在3.0-3.5,反应时间为3-6小时。
在反应过程中可通过紫外-可见光谱监测反应得到的产物并调整反应条件。
步骤四:滤液收集
将反应得到的混合物滤离,滤液收集,洗涤干净后放入水槽用水反复洗涤,直至水洗涤液的pH值为中性。
步骤五:干燥处理
将洗涤干净的收集物置于真空干燥器中进行干燥处理,干燥时间为4-5小时,直至获得黑色粉末。
通过以上步骤,我们可以成功制备出黑色二氧化钛纳米管。
这种制备方法虽然相对简单,但仍有一定的操作难度和一定的技术要求,需要操作人员掌握精细的技术操作,并针对不同的实验要求进行适当的反应条件调整和优化。
总之,随着纳米材料的不断发展和应用,黑色二氧化钛纳米管的制备方法得到不断完善提高,以更好地满足不同领域的需求。
其中,
本文介绍的制备方法有着一定的实践意义和参考价值,值得不断探索和进一步发展。
纳米二氧化钛的制备与光催化性能研究毕业论文

毕业设计(论文)纳米二氧化钛的制备与光催化性能研究1 绪论二氧化钛,化学式为TiO2,俗称钛白粉,多用于光触媒、化妆品,能靠紫外线消毒及杀菌,现正广泛开发,将来有机会成为新工业。
二氧化钛可由金红石用酸分解提取,或由四氯化钛分解得到。
二氧化钛性质稳定,大量用作油漆中的白色颜料,它具有良好的遮盖能力,和铅白相似,但不像铅白会变黑[1];它又具有锌白一样的持久性。
二氧化钛还用作搪瓷的消光剂,可以产生一种很光亮的、硬而耐酸的搪瓷釉罩面。
在过去的研究中,用半导体粉末对水、油和空气中的有毒有机化合物进行光催化降解和完全矿化引起了人们的大量关注。
由于抗光腐蚀性,化学稳定性,成本低,无毒和强氧化性,二氧化钛被作为应用最广泛的光催化剂来光降解水和空气中的有毒化合物。
但是二氧化钛具有较大的带隙(锐钛矿相二氧化钛为3.20ev)因此,只有较小一段太阳光区域,大约为2%~3%紫外光区可被应用[2]。
人们尝试用各种制备方法,如贵金属掺杂、氧化物复合、表面修饰等等方法,防止和减少电子与空穴的复合,提高催化剂的光催化活性。
众所周知,吸附和催化的效率与固体的孔径及表面积有关,因此,对二氧化钛进行修饰、改性及增大比表面积是提高光量子效率和增大反应速率的一个有效的方法与途径。
1.1 TiO2的结构与基本性质1.1.1物理常数及结构特征表1 TiO的物理常数1.1.2 TiO2的结构特征在自然界中,TiO2存在三种晶型结构,即金红石、锐钛矿和板钛矿。
这些结构的区别取决于TiO68-八面体的连接方式,图1-1是TiO68-八面体的两种连接方式,锐钛矿结构是由TiO68-八面体共边组成,而金红石和板钛矿结构则是由TiO68-八面体共顶点且共边组成。
锐钛矿TiO2中的每个八面体与周围8个八面体相连,金红石TiO2中每个八面体与周围10个八面体相连。
事实上锐钛矿可以看做是一种四面体结构,而金红石和板钛矿则是晶格稍有畸变的八面体结构[3]。
简单地认为锐钛矿比金红石活性高是不严谨的,它们的活性受其晶化过程的一些因素影响。
纳米tio2制备

纳米tio2制备
纳米TiO2是一种具有特殊性质的纳米材料,具有较大的比表面积、高的催化活性和稳定性等优点,在许多领域有着广泛的应用。
纳米TiO2的制备方法主要包括溶胶-凝胶法、水热法、气相法、水相法等多种方法。
其中,溶胶-凝胶法是一种较为常用的制备方法,通过溶解钛酸酯或钛酸盐,并加入适量的催化剂、表面活性剂等,经过水解、缩合、干燥等步骤制备出纳米TiO2。
水热法则是通过高温高压水的反应将钛酸酯或钛酸盐转化为纳米TiO2。
气相法是将金属钛或其衍生物在高温高压下转化为气相物质,再通过沉积等方法制备纳米TiO2。
水相法则是将钛酸酯或钛酸盐溶解于水中,并加入还原剂、表面活性剂等,经过还原、沉淀等步骤制备纳米TiO2。
纳米TiO2的制备方法选择应根据具体需求和实际情况进行选择,不同方法制备的纳米TiO2在性质和应用方面存在差异。
- 1 -。
实验三_水热法制备纳米二氧化钛

水热法制备纳米二氧化钛一、实验目的1、了解水热法制备纳米二氧化钛的原理、方法和操作2、掌握根据实验原理选择实验装置的一般方法。
选择理由:优势:直接制备结晶良好且纯度高的粉体,需作高温灼烧处理,避免形成粉体硬团聚,粒径分布均匀。
缺点:反应时间长、杂质离子难以除去、纯度不高。
二、实验原理TiO2在自然界中存在三种晶体结构:金红石型、锐钛矿型和板钛矿型,其中金红石型和锐钛矿型TiO2均具有光催化活性,尤以锐钛矿型光催化活性最佳,两种晶型结构如图1.1所示。
OTi图1 二氧化钛的晶体结构二氧化钛的用途极为广泛,目前已经用于化工、环保、医药卫生、电子工业等领域。
纳米二氧化钛具有良好的紫外线吸收能力,且具有很好的光催化作用,因而可以用做织物的抗紫外和抗菌的整理剂。
纳米二氧化钛制备原理如下:Ti(OC4H9)4+2H2O TiO2+4C4H9OH可分为两个独立的反应,即:Ti(OC4H9)4+xH2O Ti(OC4H9)4-x OH x+xC4H9OHTi(OC4H9)4-x OH x+Ti(OC4H9)4(OC4H9)4-x TiO x Ti(OC4H9)4-x+xC4H9OHa = 4.593Åc = 2.959ÅEg=3.1eVρ= 4.250 g/cm30212.6fG∆=-a = 3.784 Åc = 9.515ÅEg=3.3eVρ= 3.894 g/cm30211.4/fG kcal mol∆=-当x=4时水解完全,反应为可逆反应,因此在反应过程中保持足够量的水保证醇盐水解完全。
三、主要仪器与药品1.仪器磁力加热反应器,水热反应釜(60ml),250ml烧杯,100ml量筒,电子分析天平, pH试纸。
2.试剂钛酸丁酯(化学纯); 二乙醇胺、十二胺(化学纯); 氨水(稀释至30%)、无水乙醇(分析纯),去离子水。
四、操作步骤在盛有0.5g表面活性剂十二胺的烧杯中加入20ml二次蒸馏水, 在磁力搅拌下使之充分溶解(可以适当加热), 然后加入氨水调节pH值至10。
溶胶-凝胶法制备纳米二氧化钛的工艺研究

溶胶-凝胶法制备纳米二氧化钛的工艺研究
近年来,随着材料技术的发展,无论是对环境、科学、和社会经济都有着重要意义的纳米二氧化钛被越来越多地用于药物和生物分子的药物分离和纳米材料的制备。
本文就是介绍了一种绿色、低成本、耐受性好的溶胶-凝胶法来制备纳米二氧化钛。
(一)试剂配制
首先,熔融亚乙基三氧化钛(TTA)的相关分子量的物质和反应剂被称为原料。
然后,将反应剂和氯化钠(NaCl)加入到一定的比例(即大约1:1)中。
(二)溶胶制备
溶胶法使用TTA和NaCl,将溶解物加入到强酸性或强基性溶剂中,在热沸水中直到溶解,浓度为1mol/L。
然后加水混合,调节浓度成为需要的天然浓度(1g/L)。
(三)凝胶制备
凝胶法则是将溶解物加入到强酸性或强基性溶剂中,然后将其加热至50℃,使其在电解质水溶液中溶解,并做出必要的调节。
而在室温,通过添加溶液到沉淀剂中,使之均匀混合,形成凝胶体。
(四)制备二氧化钛纳米粒
将溶胶法制备好的溶液,用超声波振荡处理5min,使二氧化钛以纳米
颗粒的形式分散悬浮。
之后,可以将凝胶制法处理过的溶液,用紫外
可见分光光度计进行测定,以观察纳米粒的分散度及其表面形态特性。
(五)纳米颗粒分析
最后,纳米颗粒分析主要有紫外光谱、电镜、扫描电镜和 X射线衍射
等方法,用于观察纳米颗粒的分散度、表面形态以及均匀性等。
综上所述,溶胶-凝胶法是一种通用的绿色纳米二氧化钛的低成本工艺,该工艺可以简单、有效地制备出纳米粒,从而解决微纳米材料制备的
技术难题,并有助于促进药物分离和重要的热流导体的发展。
二氧化钛的制备方法

纳米 !"#$光催化剂的制备方法方世杰徐明霞(天津大学材料学院,天津%&&&’$)摘要介绍了二氧化钛粉体和薄膜的制备技术,比较了各种方法的优缺点。
其中对液相法作了较为全面的介绍。
关键词纳米 !"#$催化剂气相法液相法国家自然科学基金资助项目((&&’$&)*);天津市自然科学基金资助(&)%+&%,)))作者简介:方世杰()-’+ . ),男,硕士/)引言纳米 !"#$光催化剂是一种新型的并且正在迅速发展的高效光谱催化剂,成为近年来环保技术中的一个研究热点。
一种良好的催化剂必须具有很大的催化表面,并且有很高的光子利用率。
当 !"#$达到纳米时,会表现出更优良的光催化降解性能。
关于纳米 !"#$的制备技术已有很多论述,本文试图对近年来纳米二氧化钛的制备技术作一个综述。
$!"#$纳米粉体的制备目前制备 !"#$纳米微粒的方法有很多种,根据对所要求制备微粒的性状、结构、尺寸、晶型、用途,采用不同的制备方法。
按照原料的不同大致分为 $ 类:气相法和液相法。
但无论采用何种方法,制备纳米粒子都有如下要求[)]:表面光洁;粒子的形状及粒径、粒度分布可控,粒子不易团聚;易于收集;热稳定性优良;产率高。
!/"气相法气相法是直接利用气体或通过各种手段将物质变为气体,使之在气态下发生物理变化或化学变化,最后在冷却过程中凝聚长大形成纳米粒子的方法。
气相法的特点是粉体纯度高、颗粒尺寸小、颗粒团聚少、组分更易控制。
$/)/)化学气相沉积法(012)[$]化学气相法制备纳米 !"#$的初级过程包括:气相化学反应、表面反应、均相成核、非均相成核、凝结聚集或融合。
气相反应所需的母体有 $ 类:!"03*和钛醇盐。
化学反应可分为 * 类。
())!"03*与 #$氧化,化学反应方程式为:!"03* (4)5 #$ (4)6 !"#$5 $03$7 !"#$ (4)6(!"#$)7 (8)($)钛醇盐直接热裂法[%],化学反应方程式为:!" (#9)*6 !"#$5 *07:$75 $:$#(%)钛醇盐气相水解法(气溶胶法),化学反应方程式为:!" (#9)*5 $:$# 6 !"#$5 *9#:(*)气相氢火焰法,化学反应方程式为:!"03*5 $:$5 #$6 !"#$5 *:03$/$/$激光 012 法激光 012 法也是一种很好的制备方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米二氧化钛的制备及其光催化活性的评价 实验报告
班级: 组别: 指导老师: 小组成员: 实验目的: 1.培养小组自主设计及完成实验的能力和合作能力。 2. 了解纳米二氧化钛的粒性和物性。
3.掌握溶胶-凝胶法合成TiO2 的方法。 4.研究二氧化钛光催化降解甲基橙和亚甲基蓝水溶液的过程和性质。 5.通过实验,进一步加深对基础理论的理解和掌握,做到有目的合成,提高实验思维与实验技能。 一、溶胶凝胶法制备二氧化钛
1、实验原理:纳米粉体是指颗粒粒径介于1~100 nm之间的粒子。由于颗粒
尺寸的微细化,使得纳米粉体在保持原物质化学性质的同时,与块状材料相比,在磁性、光吸收、热阻、化学活性、催化和熔点等方面表现出奇异的性能。 纳米TiO2具有许多独特的性质。比表面积大,表面张力大,熔点低,磁性强,光吸收性能好,特别是吸收紫外线的能力强,表面活性大,热导性能好,分散性好等。基于上述特点,纳米TiO2具有广阔的应用前景。利用纳米TiO2作光催化剂,可处理有机废水,其活性比普通TiO2(约10 μm)高得多;利用其透明性和散射紫外线的能力,可作食品包装材料、木器保护漆、人造纤维添加剂、化妆品防晒霜等;利用其光电导性和光敏性,可开发一种TiO2感光材料。如何开发、应用纳米TiO2,已成为各国材料学领域的重要研究课题。目前合成纳米二氧化钛粉体的方法主要有液相法和气相法。由于传统的方法不能或难以制备纳米级二氧化钛,而溶胶-凝胶法则可以在低温下制备高纯度、粒径分布均匀、化学活性大的单组分或多组分分子级纳米催化剂[1~3],因此,本实验采用溶胶-凝胶法来制备纳米二氧化钛光催化剂。 制备溶胶所用的原料为钛酸四丁脂(Ti(O-C4H9)4)、水、无水乙醇(C2H5OH)以及冰醋酸。反应物为Ti(O-C4H9)4和水,分相介质为C2H5OH,冰醋酸可调节体系的酸度防止钛离子水解过速。使Ti(O-C4H9)4在C2H5OH中水解生成Ti(OH)4,脱水后即可获得TiO2。在后续的热处理过程中,只要控制适当的温度条件和反应时间,就可以获得金红石型和锐钛型二氧化钛。 钛酸四丁脂在酸性条件下,在乙醇介质中水解反应是分步进行的,总水解反应表示为下式,水解产物为含钛离子溶胶。 Ti(O-C4H9)4+4H2O
Ti(OH)
44C4H9OH
+
一般认为,在含钛离子溶液中钛离子通常与其它离子相互作用形成复杂的网状基团。上述溶胶体系静置一段时间后,由于发生胶凝作用,最后形成稳定凝胶。 Ti(OH)4+Ti(O-C4H9)42TiO2+
4C4H9OH
Ti(OH)4Ti(OH)
4+2TiO
24H2O
+
2、仪器及试剂
试剂:钛酸正四丁脂,无水乙醇,冰醋酸,盐酸,去离子水 仪器:电热炉、恒温水浴箱、50mL量筒和10 mL量筒各一个、烧杯(100 mL)两个、玻璃棒、抽滤瓶、布氏漏斗、滤纸、PH试纸、标准比色卡、洗瓶、蒸发皿。
3、实验步骤:室温下用完全干燥的量筒量取10mL钛酸丁酯,缓慢滴入到35mL
无水乙醇中,并用磁力搅拌器强力搅拌10min,混合均匀,形成黄色澄清溶液A。将4 mL冰醋酸和10mL蒸馏水加到另35mL无水乙醇中,剧烈搅拌,得到溶液B,滴入1-2滴盐酸,调节pH值使pH≤3。室温水浴下,在剧烈搅拌下将已移入恒压漏斗中的溶液A缓慢滴入溶液B中,滴速大约10 mL/min。滴加完毕后得浅黄色溶液,继续搅拌半小时后,80℃水浴加热,1h后得到微黄色凝胶。转至布氏漏斗中抽滤(若形成的胶体没有分层可不抽滤)。将滤饼置于蒸发皿中在电热路上烘干,得到淡黄色粉末。由老师放到马弗炉中焙烧、活化。 4、实验现象: 溶液A 溶液A与溶液B混合水浴加热一小时后得到的 淡黄色溶胶
烘干过程中粉末炭化变黑 继续加热由黑色变成淡黄色 继续加热至不变 5、实验结果记录: 经老师焙烧活化后的二氧化钛质量为m=2.21g 二、二氧化钛光催化活性的评价
1、实验原理:根据TiO2 能降解有机物的性质,TiO2 能催化降解亚甲基蓝和甲基橙,其降解速度与二氧化钛活性有关,可以通过测量单位时间内被降解有机物浓度降低量来确定二氧化钛的活性,而有机物的浓度可以通过分光光度计测得。 2、仪器和试剂: 仪器:研钵、鼓泡机、紫外光灯、离心机、电子太平、分光光度计。
试剂:甲基橙水溶液(公用)、亚甲基蓝水溶液的(公用)、已制备的二氧
化钛。 3、实验步骤:1.分别取80毫升已配置好的亚甲基蓝溶液(吸光度是A0)和80
毫升甲基橙溶液(吸光度是A*0),置于两个量杯中。 2.将二氧化钛导入研钵中充分研磨,分别称取0.11g和0.22g 加入到步骤一中的量杯中。 3.将鼓泡机的通气管用紫外光灯固定在量杯底部,将两个量杯在紫外灯照射40分钟。 4.上述反应完毕后, 将溶液静置,然后分别取上层溶液于两个离心管中,离心后,分别测吸光度A1,A2
。
3.根据公式(A0-A)/A0计算亚甲基蓝和甲基橙的分解率。 4、实验注意事项:
1.钛酸正四丁酯在在空气中迅速吸潮而分解,对水有非常高的化学活性,水解生成Ti(OH)4。所以取用时仪器必须是完全干燥的。 2.由于钛酸丁酯具有吸潮性质,用过的吸管等仪器都要及时清洗。 3.进行光催化分解时,要把通气管固定住,防止光解过程中因通气不畅导致二氧化钛在底部沉积。 5、实验数据记录与处理: 二氧化钛质量m1=0.11g m2=0.21g 光催化前 甲基橙溶液A=0.633 亚甲基蓝溶液A=0.933 紫外光催化40分钟后 甲基橙溶液A=0.386 亚甲基蓝溶液A=0.273 甲基橙的光降解率 W%=(0.633-0.386)/0.633×100%=39.0% 亚甲基蓝的光降解率 W%=(0.933-0.273)/0.933×100%=70.7% 6、实验现象:
二氧化钛光催化前的亚甲基蓝和甲基橙溶液
经二氧化钛光催化后的亚甲基蓝和甲基橙溶液
三、分析及结论: 制备纳米二氧化钛结论如下: (1)水作为反应物之一,它的加入量主要影响钛醇盐的水解缩聚反应,是一个关键的影响参数,而且为保证得到稳定的凝胶采用了分次加入的方式。 (2) 冰醋酸作用是抑制钛酸丁酯的水解速度。 (3) 乙醇可以溶解钛酸丁酯,并通过空间位阻效应阻碍氢链的生成,从而使水解反应变慢,因此需要控制反应中乙醇的加入量。 (4) pH值是影响凝胶时间的有一个因素,通过实验取pH在2~3为宜。 影响二氧化钛光催化活性的因素主要有: (1)制备方法,通过与同一实验室其他小组的比较发现,用均匀沉淀法制备的纳米二氧化钛的光催化效果普遍好于用溶胶凝胶法制备的,原因在于不同方法制得的Ti02粉末的粒径不同,其光催化效果也不同。同时在制备过程中有无复合,有无掺杂等对光降解也有影响。 (2)颗粒粒径的影响 催化剂粒径的大小直接影响光催化活性。当粒子的粒径越小时,单位质量的粒子数越多,比表面积越大。对于一般的光催化反应,在反应物充足的条件下,当催化剂表面的活性中心密度一定时,表面积越大吸附的OH-越多,生成更多的高活性的·OH,从而提高了催化氧化效率。当粒子的大小在1-100nm级时,就会出现量子效应,成为量子化粒子,使得h+-e-对具有更强的氧化还原能力,催化活性将随尺寸量子化程度的提高而增加。另外,尺寸的量子化可以使半导体获得更大的电荷迁移速率,使h+与e-复合的几率大大减小,因而提高催化活性。 (3)对于不同的有机物二氧化钛作为光催化降解的效率不同。 (4)有机物的降解率与二氧化钛的用量有关 Ti02在光催化降解反应中,反应前后几乎没有消耗。Ti02的用量对整个降解反应的速率是有影响的,研究表明有机物的降解率开始随Ti02用量的增加而提高,当量增加到一定时降解速率不再提高,反而有所下降。 四、思考题: 1:将溶液A滴加到溶液B中时为什么要缓慢滴加? 防止钛酸丁酯的水解速度过快,水解生成的聚合物来不及溶于乙醇而直接发生快速缩聚反应,试验过程中会有大量的块状絮凝物生成,得不到稳定的透明溶胶。 2:二氧化钛作为光催化降解有机物的的原理及为什么要用紫外灯照射。 TiO2属于一种n型半导体材料,它的禁带宽度为3.2ev(锐钛矿),当它受到波长小于或等于387.5nm的光(紫外光)照射时,价带的电子就会获得光子的能量而越前至导带,形成光生电子(e-);而价带中则相应地形成光生空穴(h+),如图1-1所示。
如果把分散在溶液中的每一颗TiO2粒子近似看成是小型短路的光电化学电池,则光电效应应产生的光生电子和空穴在电场的作用下分别迁移到TiO2表面不同的位置。TiO2表面的光生电子e-易被水中溶解氧等氧化性物质所捕获,而空穴h+则可氧化吸附于TiO2表面的有机物或先把吸附在TiO2表面的OH-和H2O分子氧化成 ·OH自由基,·OH自由基的氧化能力是水体中存在的氧化剂中最强的,能氧化水中绝大部分的有机物及无机污染物,将其矿化为无机小分子、CO2和H2O等无害物质。 反应过程如下: 反应过程如下: TiO2 + hv → h+ +e- (3) h+ +e- → 热能 (4) h+ + OH- →·OH (5) h+ + H2O →·OH + H+ (6) e- +O2 → O2- (7) O2 + H+ → HO2· (8) 2 H2O·→ O2 + H2O2 (9) H2O2 + O2 →·OH + H+ + O2 (10) ·OH + dye →···→ CO2 + H2O (11) H+ + dye →···→ CO2 + H2O (12)