二次根式计算题
二次根式的计算200 题

1
√6
÷
3
√2
.
1
6.计算:√72 ÷ 3√2 × √2 .
7.计算:√18 × √2.
2
8.计算:√ × √12.
3
1
2
9.计算:√45 ÷ √ × √2 .
被开方数中不含能开得尽方的因数或因式)
2.合并
将同类二次根式进行合并
易错总结:
① 不是最简二次根式的要化成最简二次根式
② 去括号时括号外如果是负号括号里的符号要变号
③ 注意同类二次根式要合并
例题解析:
1
1
3
3√18 − √32 + 4√ + √−8.
8
2
1
解:原式= 3 × 3√2 − × 4√2 + 4 ×
4
3
38.计算:(√48 − 4√ ) − (3√ − 2√0.5).
39.计算:√8 + 2√3 − (√27 − √2).
2
1
1
40.计算:√125 + 3√ − √24 + 3√ .
27
5
4
\ 5 /
3
1
41.计算: √4 + 2√ − √ + 2√ .
2
2
9
1
1
1
42.计算:(√48 − 4√8) − (3√3 − 2 √8).
3
\ 4 /
1
1
32.计算:3√5 + 2√ − √20 − √32.
2
2
33.计算:√18 − √50 − √8.
1
34.计算:√ + √24 − √600.
二次根式练习题含答案

一、选择题
1.已知 =5﹣x,则x的取值范围是( )
A.为任意实数B.0≤x≤5C.x≥5D.x≤5
2.若 ,则 ( ).
A. B. C. D.
3.下列计算正确的是()
A. B.
C. D.
4.下列计算正确的是()
A. B. C. D.
5.下列算式:(1) ;(2) ;(3) = ;(4) ,其中正确的是()
请模仿小明的方法探索并解决下列问题:
(1)当 为正整数时,若 ,请用含有 的式子分别表示 ,得: , ;
(2)填空: = - ;
(3)若 ,且 为正整数,求 的值.
【答案】(1) , ;(2) ;(3) 或46.
【解析】
试题分析:
(1)把等式 右边展开,参考范例中的方法即可求得本题答案;
(2)由(1)中结论可得: ,结合 都为正整数可得:m=2,n=1,这样就可得到: ;
=-10.
【点睛】
此题主要考查了二次根式的化简,熟练掌握二次根式的性质是解答此题的关键.
25.先观察下列等式,再回答下列问题:
① ;
②
③
(1)请你根据上面三个等式提供的信息,猜想 的结果,并验证;
(2)请你按照上面各等式反映的规律,用含n的等式表示(n为正整数).
【答案】(1) (2) (n为正整数)
【详解】
=
=
= .
【点睛】
此题考查二次根式的混合运算,二次根式的化简,正确掌握二次根式的化简法则是解题的关键.
22.观察下列各式子,并回答下面问题.
第一个:
第二个:
第三个:
第四个: …
(1)试写出第 个式子(用含 的表达式表示),这个式子一定是二次根式吗?为什么?
二次根式计算专题——30题(教师版含答案)

二次根式盘算专题1.盘算:⑴()()24632463+-⑵20(3)(3)2732π++-+-【答案】(1)22; (2)643- 【解析】试题剖析:(1)依据平方差公式,把括号睁开进行盘算即可求出答案.(2)分离依据平方.非零数的零次幂.二次根式.绝对值的意义进行盘算即可得出答案. 试题解析:(1)()()24632463+-=54-32 =22.(2)20(3)(3)2732π++-+- 考点: 实数的混杂运算. 2.盘算(1)﹣×(2)(6﹣2x )÷3.【答案】(1)1;(2)13【解析】试题剖析:先把二次根式化简后,再进行加减乘除运算,即可得出答案. 试题解析:20511235+1=;(2)1(62)34x x x÷13=. 考点: 二次根式的混杂运算.3.盘算:⎛÷⎝【答案】143.【解析】试题剖析:先将二次根式化成最简二次根式,再算括号里面的,最后算除法.试题解析:⎛-÷⎝÷=143=.考点:二次根式运算.4.盘算:322663-+-⨯【答案】22.【解析】试题剖析:先算乘除.去绝对值符号,再算加减.试题解析:原式=23323-+-=22考点:二次根式运算.5.盘算:)23(3182+-⨯【答案】-【解析】试题剖析:先将二次根式化成最简二次根式,再化简.6=-.考点:二次根式化简.6.盘算:2421332--.【答案】22.【解析】试题剖析:依据二次根式的运算轨则盘算即可.-==.考点:二次根式的盘算.7.盘算:)13)(13(2612-++÷-.2. 【解析】试题剖析:先算乘除,再算加减,有括号的先算括号里面的,特此外能应用公式的应用公式简化盘算进程.1)=31-2. 考点:二次根式的化简.8⎝ 【答案】0. 【解析】试题剖析:依据二次根式运算轨则盘算即可.0+=⎝. 考点:二次根式盘算.9.盘算:()0+1π. 【答案】1- 【解析】试题剖析:任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可.试题解析:()0+1π11=-=- 考点:二次根式的化简. 10.盘算:435.03138+-+ 【答案】323223+. 【解析】试题剖析:先化成最简二次根式,再进交运算. 试题解析:原式=2322322+-+=323223+. 考点:二次根式的化简. 11.盘算:(1)(2)()02014120143π-----【答案】(1)1(2)3-【解析】试题剖析:(1)依据二次根式的运算轨则盘算即可;(2)针对有理数的乘方,零指数幂,二次根式化简,.绝对值4个考点分离进行盘算,然后依据实数的运算轨则求得盘算成果. 试题解析:(1)(1== (2)()020141201431133π---=--+=-.考点:1.实数的运算;2.有理数的乘方;3.零指数幂;4.二次根式化简;5.绝对值.12.盘算: 212)31()23)(23(0+---+ 【答案】2.【解析】试题剖析:本题重要考核了二次根式的混杂运算.闇练化简二次根式后,在加减的进程中,有同类二次根式的要归并;相乘的时刻,被开方数简略的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵巧看待.本题中先依据平方差公式盘算乘法以及零指数幂的意义,去掉落括号后,盘算加减法. 试题解析: 解:原式=2123+--=2考点:二次根式的混杂运算. 130(2013)|-+-. 【答案】1. 【解析】0(2013)|+-+-1=.考点:二次根式化简. 14.盘算12)824323(÷+- 【答案】2623. 【解析】试题剖析:先化简二次根式,再归并同类二次根式,最后算除法即可求出答案.试题解析:248)12(62622)23(226)23考点: 二次根式的混杂运算.1511223【答案】232.【解析】试题剖析:把二次根式化简,再归并同类二次根式即可求出答案.11223432223232332考点: 二次根式的运算.16.化简:(1)83250+(2)2163)1526(-⨯-【答案】(1)92;(2)-【解析】试题剖析:(1)先去分母,再把各二次根式化为最简二次根式,进行盘算;(2)直接应用分派律去括号,再依据二次根式乘法轨则盘算即可.试题解析:(1)原式92=; (2)原式==-. 考点:二次根式的混杂运算; 17.盘算(1)2 (2)2【答案】(1)3(2)3.【解析】试题剖析:(1)依据运算次序盘算即可;(2)将括号内化为最简二次根式后归并再平方运算即可. 试题解析:(1)233=-. (2)(2223===.考点:二次根式化简.181)(1+- 【答案】17. 【解析】,应用平方差公式盘算1)(1+,再进行盘算求解.试题解析:原式=18122+--=17考点:实数的运算.19.盘算:231|21|27)3(0++-+--【答案】- 【解析】试题剖析: 本题涉及零指数幂.二次根式的化简.分母有理化.绝对值化简4个考点.在盘算时,须要针对每个考点分离进行盘算,然后依据实数的运算轨则求得盘算成果.试题解析:原式=11-+=-考点:1.实数的运算;2.零指数幂;3.分母有理化. 20.盘算:12⎛⎫+- ⎪⎝⎭②⎛ ⎝⎛- ⎝1+;②143;③a 3-. 【解析】试题剖析:①针对算术平方根,绝对值,零指数3个考点分离进行盘算,然后依据实数的运算轨则求得盘算成果;②依据二次根式运算轨则盘算即可;③依据二次根式运算轨则盘算即可. 01112⎛⎫+-= ⎪⎝⎭.②143⎛⎛=÷= ⎝⎝.1a 2a 63⎛-=-⋅=- ⎝. 考点:1.二次根式盘算;2.绝对值;3.0指数幂. 21.盘算:(1)2012101(1)5()1)2----+(2)【答案】(1)0;(2)【解析】试题剖析:(1)原式=152310-++-=; (2)原式==考点:1.实数的运算;2.二次根式的加减法. 22.盘算与化简 (1(0π (2)2(3(4+-【答案】(1)1;(2)5. 【解析】试题剖析:(1)将前两项化为最简二次根式,第三项依据0指数幂界说盘算,再归并同类二次根式即可;(2)应用完整平方公式和平方差公式睁开后归并同类二次根式即可. 试题解析:(1(011π+-==.(2)((()2344951675+--=+--=.考点:1.二次根式化简;2.0指数幂;3.完整平方公式和平方差公式.23.(1)18282-+ (2)3127112-+ (3)0)31(33122-++(4))2332)(2332(-+【答案】(1)-(3)6;(4)6-【解析】试题剖析:本题重要考核根式的根式的混杂运算和0次幂运算.依据运算轨则先算乘除法,是分式应当先将分式转化为整式,再按运算轨则盘算.试题解析:(1)==-原式试题解析:(2)==原式试题解析:(3)116=+==原式 试题解析:(4)22439212186=-=⨯-⨯=-=-原式((243-【答案】0 【解析】试题剖析:先依据立方根的性质.绝对值的纪律.二次根式的性质化简,再归并同类二次根式即可. 解:原式=25232+--+=0. 考点:实数的运算点评:盘算题是中考必考题,一般难度不大,学生要特殊郑重,尽量不在盘算上掉分. 25.求下列各式的值(1(2)()2331422-⨯--+【答案】⑴12⑵11 【解析】试题剖析:(11132242=-⨯-=(2)()2331422-⨯--+=328211-++=考点:整式运算点评:本题难度较低,重要考核学生对整式盘算常识点的控制.为中考常考题型,要肄业生稳固控制.26.盘算:⎛÷ ⎝2+ 【答案】5【解析】 试题剖析:解:原式13⎛=÷ ⎝ 考点:实数运算点评:本题难度较低,重要考核学生对实数运算常识点的额控制,为中考常考题型,要肄业生稳固控制.27.盘算:(1))3127(12+- (2)()()6618332÷-+- 【答案】(1)334- (2)2 【解析】试题剖析:(1==(2312=-= 考点:实数运算点评:本题难度较低,重要考核学生对平方根实数运算常识点的控制.要肄业生稳固控制解题技能.28.(÷【答案】1【解析】试题剖析:(-÷(32⨯⨯1=考点:二次根式的化简和盘算点评:本题考核二次根式的化简和盘算,症结是二次根式的化简,控制二次根式的除法轨则,本题难度不大29.盘算(每小题4分,共8分)(1(2)【答案】【解析】试题剖析:原式=-(2)原式+= =考点:实数的运算点评:实数运算经常应用的公式:(1)2(0)a a =≥(2),a =(30,0)a b =≥≥(40,0)a b=≥≥. 30.盘算:(1)(2)(3)++-+ (4)14+6a -3a【答案】(1)16,(2)-14,(3)194-13,(4)【解析】本题考核二次根式的二次根式的加减法轨则进行盘算 解:(1)原式=(2)原式=--(3)原式24+=4- (4)原式32。
初中数学二次根式的加减计算专题训练含答案

初中数学二次根式的加减计算专题训练含答案姓名:__________ 班级:__________考号:__________一、计算题(共23题)1、计算:;2、3、计算:()-1+(-1)2-.4、(1)计算:M5、计算:+∣-5∣.6、计算:7、计算:8、计算:9、|| + || +10、11、(6分)12、计算:;13、计算:(﹣1)3++(﹣1)0﹣.14、计算:.15、计算:16、计算;17、计算.18、计算:(4分)19、计算:20、计算:;21、计算:.22、计算23、计算============参考答案============一、计算题1、【答案】解:原式=。
【考点】实数的运算,二次根式化简,绝对值,负整数指数幂。
【分析】针对二次根式化简,绝对值,负整数指数幂3个考点分别进行计算,然后根据实数的运算法则求得计算结果。
2、3、原式=+()2+12-2×-6=2+4-2-6=-2.4、= 1 +-1+4=-25、解:原式=2-1+5=6.6、 17、8、.9、10、解:原式==11、解:原式==新12、计算:(1)解原式=1--=.13、解:原式=﹣1+2+1﹣=14、15、16、原式=2﹣3=﹣117、原式=﹣3+3=018、 -119、解:原式=()2—()2= 2—3= —120、解:原式=4+1-=5-21、解:原式===.22、=2-4+4×= 2-4+2 = 023、 2+。
二次根式计算专题——30题(教师版含答案)

二次根式计算专题之杨若古兰创作1.计算:⑴()()24632463+-⑵20(3)(3)2732π++-+-【答案】(1)22; (2)643-【解析】试题分析:(1)根据平方差公式,把括号睁开进行计算即可求出答案.(2)分别根据平方、非零数的零次幂、二次根式、绝对值的意义进行计算即可得出答案. 试题解析:(1)()()24632463+-=54-32 =22. (2)20(3)(3)2732π++-+-考点: 实数的混合运算. 2.计算(1)﹣×(2)(6﹣2x )÷3.【答案】(1)1;(2)13【解析】试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案. 试题解析:(1)20511235+1=;(2)1(62)34x x x x÷13=.考点: 二次根式的混合运算.3.计算:⎛÷⎝.【答案】143.【解析】试题分析:先将二次根式化成最简二次根式,再算括号里面的,最初算除法.试题解析:⎛÷⎝÷=143=.考点:二次根式运算.4.计算:322663-+-⨯【答案】22.【解析】试题分析:先算乘除、去绝对值符号,再算加减.试题解析:原式=23323-+-=22考点:二次根式运算.5.计算:)23(3182+-⨯【答案】-【解析】试题分析:先将二次根式化成最简二次根式,再化简.6=-考点:二次根式化简.6.计算:2421332--.【答案】22.【解析】试题分析:根据二次根式的运算法则计算即可.-==考点:二次根式的计算. 7.计算:)13)(13(2612-++÷-.2.【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特此外能利用公式的利用公式简化计算过程.1)=31-2. 考点:二次根式的化简.8.计算:⎝ 【答案】0. 【解析】试题分析:根据二次根式运算法则计算即可.0==⎝. 考点:二次根式计算. 9.计算:()+1π.【答案】1【解析】试题分析:任何非零数的零次方都为1,负数的绝对值等于它的相反数,再对二次根式进行化简即可. 试题解析:()+1π11=-=考点:二次根式的化简. 10.计算:435.03138+-+ 【答案】323223+. 【解析】试题分析:先化成最简二次根式,再进行运算. 试题解析:原式=2322322+-+=323223+. 考点:二次根式的化简. 11.计算:(1)(2)()02014120143π---【答案】(1)1+(2)3-.【解析】试题分析:(1)根据二次根式的运算法则计算即可; (2)针对有理数的乘方,零指数幂,二次根式化简,.绝对值4个考点分别进行计算,然后根据实数的运算法则求得计算结果. 试题解析:(1)(1=+(2)()020141201431133π---=--+=-考点:1.实数的运算;2.有理数的乘方;3.零指数幂;4.二次根式化简;5.绝对值. 12.计算: 212)31()23)(23(0+---+ 【答案】2.【解析】试题分析:本题次要考查了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法和零指数幂的意义,去掉括号后,计算加减法. 试题解析: 解:原式=2123+--=2考点:二次根式的混合运算. 130(2013)|-+-. 【答案】1.【解析】0(2013)|+-+-1=.考点:二次根式化简.14.计算12)824323(÷+- 【答案】2623. 【解析】试题分析:先化简二次根式,再合并同类二次根式,最初算除法即可求出答案. 试题解析:248)12(62622)23(226)23考点: 二次根式的混合运算. 151122322. 【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案. 11223432223232332考点: 二次根式的运算. 16.化简:(1)83250+ (2)2163)1526(-⨯- 【答案】(1)92;(2)-.【解析】试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:(1)原式=9=;2(2)原式===-.考点:二次根式的混合运算;17.计算(1))2(2)2【答案】(1)3(2)3.【解析】试题分析:(1)根据运算顺序计算即可;(2)将括号内化为最简二次根式后合并再平方运算即可.试题解析:(1))=-+233(2)(222===.3考点:二次根式化简.181)(1+-【答案】17.【解析】试题分析:先化简和,应用平方差公式计算1)(1+,再进行计算求解.--181=17考点:实数的运算. 19.计算:231|21|27)3(0++-+--【答案】-.【解析】试题分析: 本题涉及零指数幂、二次根式的化简、分母有理化、绝对值化简4个考点.在计算时,须要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=11-=-考点:1.实数的运算;2.零指数幂;3.分母有理化. 20.计算:12⎛⎫+- ⎪⎝⎭②⎛ ⎝⎛- ⎝1;②143;③a 3-. 【解析】试题分析:①针对算术平方根,绝对值,零指数3个考点分别进行计算,然后根据实数的运算法则求得计算结果;②根据二次根式运算法则计算即可;③根据二次根式运算法则计算即可. 01112⎛⎫+-= ⎪⎝⎭.②143⎛⎛=÷⎝⎝.1a2a63⎛--⋅=-⎝.考点:1.二次根式计算;2.绝对值;3.0指数幂.21.计算:(1)2012101(1)5()1)2----++(2)【答案】(1)0;(2)【解析】试题分析:(1)原式=152310-++-=;(2)原式==考点:1.实数的运算;2.二次根式的加减法.22.计算与化简(1)(0π+(2)2(3(4-【答案】(1)1;(2)5.【解析】试题分析:(1)将前两项化为最简二次根式,第三项根据0指数幂定义计算,再合并同类二次根式即可;(2)利用完整平方公式和平方差公式睁开后合并同类二次根式即可.试题解析:(1)(011π==.(2)((()2344951675-=+--=.考点:1.二次根式化简;2.0指数幂;3.完整平方公式和平方差公式.23.(1)18282-+(2)3127112-+(3)0)31(33122-++(4))2332)(2332(-+【答案】(1)-3)6;(4)6- 【解析】试题分析:本题次要考查根式的根式的混合运算和0次幂运算.根据运算法则先算乘除法,是分式应当先将分式转化为整式,再按运算法则计算. 试题解析:(1)==-原式试题解析:(2)==原式试题解析:(3)116==+=原式 试题解析:(4)22439212186=-=⨯-⨯=-=-原式((243【答案】0 【解析】试题分析:先根据立方根的性质、绝对值的规律、二次根式的性质化简,再合并同类二次根式即可. 解:原式=25232+--+=0.考点:实数的运算点评:计算题是中考必考题,普通难度不大,先生要特别慎重,尽量不在计算上失分. 25.求以下各式的值(1)(2)()2331422-⨯--+【答案】⑴12⑵11 【解析】试题分析:(1)1132242-⨯-=(2)()2331422-⨯--+=328211-++=考点:整式运算点评:本题难度较低,次要考查先生对整式计算常识点的把握.为中考常考题型,请求先生牢固把握.26.计算:⎛÷ ⎝2+ 【答案】5 【解析】试题分析:解:原式13⎛=÷ ⎝考点:实数运算点评:本题难度较低,次要考查先生对实数运算常识点的额把握,为中考常考题型,请求先生牢固把握. 27.计算: (1))3127(12+- (2)()()6618332÷-+-【答案】(1)334- (2)2【解析】试题分析:(1)==(2)==312考点:实数运算点评:本题难度较低,次要考查先生对平方根实数运算常识点的把握.请求先生牢固把握解题技巧.28.(【答案】1【解析】试题分析:(⨯⨯÷(32=1考点:二次根式的化简和计算点评:本题考查二次根式的化简和计算,关键是二次根式的化简,把握二次根式的除法法则,本题难度不大29.计算(每小题4分,共8分)(1)(2)【答案】(1)【解析】试题分析:原式=(2)原式+考点:实数的运算点评:实数运算经常使用的公式:(1)2(0)a a =≥(2),a =(3)0,0)a b =≥≥(4)0,0)a b =≥≥. 30.计算: (1)(2)(3)++-+(4)14+6a-3a 【答案】(1)16,(2)-14,(3)194-13,(4)【解析】本题考查二次根式的二次根式的加减法法则进行计算解:(1)原式=(2)原式=-(3)原式=24+=4 (4)原式=32。
二次根式计算专题——30题(教师版含答案)

(2)(两2 ( 73)0V27 |73 21 332 ,34.3考点:实数的混合运算• V20W1-1 ; (2)-32 •计算(1)【答案】(1) 【解析】试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案试题解析:(1).20 .5 .5,6 ; x(一 2x x) x3.x二次根式计算专题1计算:⑴3J6 4J2 3J6 4/2⑵(J3)2( J3)° J 27 |^3 2【答案】(1)22; (2) 6 4,3【解析】试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案(2)分别根据平方、非零数的零次幕、二次根式、绝对值的意义进行计算即可得出答案 试题解析:(1) 3.. 6 4.2 3 6 4.2(3 6)2(4 . 2)2=54 — 32 =22.(3 x 2 -x) 3、x x 3. x[X 丨二 (2)14~34 .计算:..3 6、643试题解析:.324 4.2 亠2 2 .2 鼻2 2 21 3.考点:二次根式的混合运算 3•计算:3、,12 2,1.48 2.3 •14【答案】3【解析】试题分析:先将二次根式化成最简二次根式 ,再算括号里面的,最后算除法. 试题解析. 1 _________ _ _ 2 _ — — 28 —3>/i22V48 2-J3=(6^/3 — V 3 4V3)2/3 —y/3 2J 3考点:二次根式运算.【答案】2,2. 【解析】试题分析:先算乘除、去绝对值符号 ,再算加减.试题解析:原式=3 2,3 ,3 2=2 •. 2考点:二次根式运算 5.计算: 、2 ,18 3(.3 2)【答案】3.3 .【解析】试题分析: 先将二次根式化成最简二次根式,再化简.试题解析: ,2 ,18 3(、一 3 2)=2 3、2 3.3 6 3、3考点:二次根式化简.6.计算:国€令【答案】【解析】试题分析:根据二次根式的运算法则计算即可考点:二次根式的计算(2) 12014 1820147 •计算:,12 ...6 ,2 (,31)(.3 1).【答案】,3 2 .【解析】试题分析:先算乘除,再算加减,有括号的先算括号里面的,特别的能利用公式的应用 公式简化计算过程. 试题解析:、一歪 (、、3 1)(、.3 1) = 2.3 ...3 3 1 = ...3 2 .考点:二次根式的化简. 8•计算:12.2 出 32N2【答案】0. 【解析】试题分析:根据二次根式运算法则计算即可•试题解析:12 232.6 3、6 1;6 0. 2V 22考点:二次根式计算• 9 .计算:+1屁 73 .【答案】1 .3.【解析】试题分析:任何非零数的零次方都为 1,负数的绝对值等于它的相反数,再对二次根式进行化简即可. 试题解析: +1712丽1 2用1.考点:二次根式的化简.10 .计算:..8 3»'3,0.53 4【答案】 3显\3,22【解析】试题分析: 先化成最简二次根式 ,再进行运算.试题解析: 原式=2、23 2空=3,23」2 2 2 2考点:二次根式的化简. 11 .计算:12 .计算:( ..3 '..2)( .3 . 2) (1,3)0【答案】(1) 1 .15; (2) 3 2 .【解析】试题分析:(1)根据二次根式的运算法则计算即可 ;(2)针对有理数的乘方,零指数幕,二次根式化简,.绝对值4个考点分别进行计算,然后根据实数的运算法则求得计算结果 •试题解析:( 1 )27 ,7245 ■1 332J3 3逅1曲3,3 3.5 \頁1 届.3(2)1201418201422 31 3.21 2 233 .2 .考点: 1.实数的运算; 2.有理数的乘方;3.零指数幕;4. 二次根式化简;5.绝对值.【答案】、、2 . 【解析】试题分析:本题主要考查了二次根式的混合运算•熟练化简二次根式后,在加减的过程 中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再 化简;较大的也可先化简,再相乘,灵活对待.本题中先根据平方差公式计算乘法以及 零指数幕的意义,去掉括号后,计算加减法. 试题解析: 解:原式=3 2 12=.2考点:二次根式的混合运算.13 .计算:-27: ( 2013)0 | 2.3|.【答案】4 3 1 . 【解析】试题分析:解:.27 - ( 2013)0| 2 33 3 3 1 2.34.3 1 .考点:二次根式化简、.8) ,12 【答案】(2) ( ..62.15) -.3 6 【解析】试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案 试题解析(3、2 -、.24+、、8) ? .. 12 (、.6 - 2 6 +2.. 2) ? 2、、3 (2 ..2 - , 6) ? 2.3 ,2 .6 —__ + _ -2 3考点:二次根式的混合运算【答案】辽-232【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案 试题解析:卫-」J 1—2、.3-二-空—口-空V 2 V 32 3 3 2考点:二次根式的运算• 16 •化简:(1)50 32J8【答案】(1) 9; (2)6、、5 .【解析】 试题分析: 2(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.试题解析:⑴原式汽严2 ;考点:二次根式的混合运算; 17 •计算(1) 27 .3、3 2(2)•、、12 . 3 2【答案】(1) 3 3; (2) 3.【解析】试题分析:(1)根据运算顺序计算即可(2)原式-,3 2. 15.3 3&32 6.5 32①',82|3a 233个考点分别进行计算,然后根据实数③根据二次根式运算法(2)将括号内化为最简二次根式后合并再平方运算即可 试题解析:(1) • 27,3 3 2 3.3 3 2 3 3 ,3 .____ 2 2 2(2)1232 33 3 3.考点:二次根式化简• 18 •计算:、1 (3 . 2 1)(1 3.2) f【答案】17. 【解析】 试题分析:先化简1和一8,运用平方差公式计算(3. 2 1)(1 3 2),再进行计算求丫24解•试题解析:原式=_1 18 1丄22 2=17考点:实数的运算•19 .计算:(3)0,27 |1213 2【答案】2, 3 .【解析】试题分析: 本题涉及零指数幕、二次根式的化简、分母有理化、绝对值化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. 试题解析:原式=1 3..3、、2 1 .3 , 2 2、、3考点:1 •实数的运算;2 •零指数幕;3 •分母有理化.20 .计算:14②14:③3【解析】试题分析:①针对算术平方根,绝对值,零指数的运算法则求得计算结果;②根据二次根式运算法则计算即可; 则计算即可•试题解析:①罷问2曲血1血1.2 .二次根式的加减法.• 3 ° (2) (3 . 5)2 (4 . 7)(4 V7)0指数幕定义计算,再合并同试题解析:(1) 273、、3八3 1 2-31(2) 3.5 2 4,74.79 6.5 516 76.5 5.0次幕运算.根据运算法则先算乘除②6乔 2^1 448 尿6応 |>/3 4/3 2爲害宾2/3③37 32 2 \23=6芒2;:= 6右i 2ai .考点:1.二次根式计算;2.绝对值;3.0指数幕. 21•计算:(1) ( 1)2012| 5(1)1湎 (罷 1)°(2) 3.12 3 11.48 .27V 3 2【答案】(1) 0; (2) 4、、3 . 【解析】试题分析:(1)原式=1 5 2 3 10 ;(2)原式=6 .一3 ,3 2、、3 3 3 4^ 3 . 考点:1.实数的运算; 22 .计算与化简(1).27 -3_【答案】(1) 2.3 1 ; (2) 6.5 5.【解析】试题分析:(1)将前两项化为最简二次根式,第三项根据类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可考点:1.二次根式化简;2.0指数幕;3.完全平方公式和平方差公式23. (1) 2 .8 2 .18(3)2蔦 3(1.3)0(4) (2.3 3、.2)(2、3 3 一2)【答案】(1) 3、2 ; (2);(3) 6 ; (4)69【解析】试题分析:本题主要考查根式的根式的混合运算和6乜2二2 2七1法,是分式应该先将分式转化为整式,再按运算法则计算。
二次根式混合计算练习(附答案)
【解析】
试题分析:二次根式的加减,首先要把各项化为最简二次根式,是同类二次根式的才能合并,不是同类二次根式的不合并;二次根式的乘除法公式 , ,需要说明的是公式从左到右是计算,从右到左是二次根式的化简,并且二次根式的计算要对结果有要求,能开方的要开方,根式中不含分母,分母中不含根式.
解:(1) =3 ﹣2 + ﹣3 =﹣ ;
(2) =4 × × = .
2.
【解析】
试题分析:先将所给的各式化简成整数或最简二次根式,然后合并同类二次根式即可.
试题解析:原式
考点:二次根式的计算.
【答案】 .
【解析】
试题解析:解:
=
=
=
= .
考点:二次根式的加减
点评:本题主要考查了二次根式的加减运算.首先把二次根式化为最简二次根式,然后再合并同类二次根式.
4.0
【解析】
试题分析:根据实数的运算法则进行计算即可救出答案.
试题解析:
=
=0
考点:实数的混合运算.
5.(1) 2+ ;(2) .
【解析】
试题分析:(1)先计算零次幂、二次根式化简、去绝对值符号、把括号展开,然后进行合并即可求解.
(2)把二次根式化成最简二次根式后,合并同类二次根式即可.
(1)原式=1-1+2 +2-
试题解析:解:原式=18-1+3-4 +4=24-4 .
考点:二次根式的计算.
26. .
【解析】
试题分析:根据二次根式的混合运算顺序和运算法则计算即可.
试题解析:
考点:二次根式的混合运算.
27.(1) .(2)4.
【解析】
试题分析:
二次根式计算专题——30题(教师版含答案)
二次根式计算专题之袁州冬雪创作1.计算:⑴()()24632463+-⑵20(3)(3)2732π++-+-【答案】(1)22; (2)643-【解析】试题分析:(1)根据平方差公式,把括号展开停止计算即可求出答案.(2)分别根据平方、非零数的零次幂、二次根式、相对值的意义停止计算即可得出答案. 试题解析:(1)()()24632463+-=54-32 =22. (2)20(3)(3)2732π++-+-考点: 实数的混合运算. 2.计算(1)﹣×(2)(6﹣2x )÷3.【答案】(1)1;(2)13【解析】试题分析:先把二次根式化简后,再停止加减乘除运算,即可得出答案. 试题解析:20511235+1=;(2)1(62)34x x x x÷ 13=.考点: 二次根式的混合运算.3.计算:⎛÷⎝【答案】143.【解析】试题分析:先将二次根式化成最简二次根式,再算括号外面的,最后算除法.试题解析:⎛÷⎝÷=143=.考点:二次根式运算.4.计算:322663-+-⨯【答案】22.【解析】试题分析:先算乘除、去相对值符号,再算加减.试题解析:原式=23323-+-=22考点:二次根式运算.5.计算:)23(3182+-⨯【答案】-【解析】试题分析:先将二次根式化成最简二次根式,再化简.6=-考点:二次根式化简.6.计算:2421332--.【答案】22.【解析】试题分析:根据二次根式的运算法则计算即可.-==考点:二次根式的计算. 7.计算:)13)(13(2612-++÷-.2.【解析】试题分析:先算乘除,再算加减,有括号的先算括号外面的,特此外能操纵公式的应用公式简化计算过程.1)=31-2. 考点:二次根式的化简.8⎝ 【答案】0. 【解析】试题分析:根据二次根式运算法则计算即可.0==⎝. 考点:二次根式计算. 9.计算:()0+1π.【答案】1【解析】试题分析:任何非零数的零次方都为1,负数的相对值等于它的相反数,再对二次根式停止化简即可. 试题解析:()0+1π11=-=考点:二次根式的化简. 10.计算:435.03138+-+ 【答案】323223+. 【解析】试题分析:先化成最简二次根式,再停止运算. 试题解析:原式=2322322+-+=323223+. 考点:二次根式的化简. 11.计算:(1)(2)()02014120143π---【答案】(1)1(2)3-.【解析】试题分析:(1)根据二次根式的运算法则计算即可; (2)针对有理数的乘方,零指数幂,二次根式化简,.相对值4个考点分别停止计算,然后根据实数的运算法则求得计算成果. 试题解析:(1)(1=+(2)()020141201431133π---=--+=-考点:1.实数的运算;2.有理数的乘方;3.零指数幂;4.二次根式化简;5.相对值. 12.计算: 212)31()23)(23(0+---+ 【答案】2.【解析】试题分析:本题主要考察了二次根式的混合运算.熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,矫捷对待.本题中先根据平方差公式计算乘法以及零指数幂的意义,去掉括号后,计算加减法. 试题解析: 解:原式=2123+--=2考点:二次根式的混合运算. 130(2013)|+-+-. 【答案】1.【解析】0(2013)|+-+-1=.考点:二次根式化简.14.计算12)824323(÷+- 【答案】2623. 【解析】试题分析:先化简二次根式,再合并同类二次根式,最后算除法即可求出答案. 试题解析:248)12(62622)23(226)23考点: 二次根式的混合运算. 151122322. 【解析】试题分析:把二次根式化简,再合并同类二次根式即可求出答案. 11223432223232332考点: 二次根式的运算. 16.化简:(1)83250+ (2)2163)1526(-⨯- 【答案】(1)92;(2)-【解析】试题分析:(1)先去分母,再把各二次根式化为最简二次根式,停止计算;(2)直接操纵分配律去括号,再根据二次根式乘法法则计算即可.试题解析:(1)原式9=;2(2)原式==-考点:二次根式的混合运算;17.计算(1)2(2)2【答案】(1)3(2)3.【解析】试题分析:(1)根据运算顺序计算即可;(2)将括号内化为最简二次根式后合并再平方运算即可.试题解析:(1)=-+233(2)(222===.3考点:二次根式化简.181)(1+【答案】17.【解析】试题分析:先化简和,运用平方差公式计算1)(1+,再停止计算求解.--181=17考点:实数的运算. 19.计算:231|21|27)3(0++-+--【答案】-.【解析】试题分析: 本题涉及零指数幂、二次根式的化简、分母有理化、相对值化简4个考点.在计算时,需要针对每一个考点分别停止计算,然后根据实数的运算法则求得计算成果.试题解析:原式=11-=-考点:1.实数的运算;2.零指数幂;3.分母有理化. 20.计算:12⎛⎫+- ⎪⎝⎭②⎛ ⎝⎛- ⎝1;②143;③a 3-. 【解析】试题分析:①针对算术平方根,相对值,零指数3个考点分别停止计算,然后根据实数的运算法则求得计算成果;②根据二次根式运算法则计算即可;③根据二次根式运算法则计算即可. 01112⎛⎫+-= ⎪⎝⎭.②143⎛⎛=÷⎝⎝.1a2a63⎛--⋅=-⎝.考点:1.二次根式计算;2.相对值;3.0指数幂.21.计算:(1)2012101(1)5()1)2----++(2)【答案】(1)0;(2)【解析】试题分析:(1)原式=152310-++-=;(2)原式==.考点:1.实数的运算;2.二次根式的加减法.22.计算与化简(1(0π(2)2(3(4-【答案】(1)1;(2)5.【解析】试题分析:(1)将前两项化为最简二次根式,第三项根据0指数幂定义计算,再合并同类二次根式即可;(2)应用完全平方公式和平方差公式展开后合并同类二次根式即可.试题解析:(1(011π+-==.(2)((()2344951675-=+--=.考点:1.二次根式化简;2.0指数幂;3.完全平方公式和平方差公式.23.(1)18282-+(2)3127112-+(3)0)31(33122-++(4))2332)(2332(-+【答案】(1)-3)6;(4)6- 【解析】试题分析:本题主要考察根式的根式的混合运算和0次幂运算.根据运算法则先算乘除法,是分式应该先将分式转化为整式,再按运算法则计算. 试题解析:(1)==-原式试题解析:(2)==原式试题解析:(3)116=+==原式 试题解析:(4)22439212186=-=⨯-⨯=-=-原式((243-【答案】0 【解析】试题分析:先根据立方根的性质、相对值的规律、二次根式的性质化简,再合并同类二次根式即可. 解:原式=25232+--+=0.考点:实数的运算点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽可能不在计算上失分. 25.求下列各式的值(1)(2)()2331422-⨯--+ 【答案】⑴12⑵11 【解析】试题分析:(11132242=-⨯-=(2)()2331422-⨯--+=328211-++= 考点:整式运算点评:本题难度较低,主要考察学生对整式计算知识点的掌握.为中考常考题型,要求学生安稳掌握.26.计算:⎛÷ ⎝2+ 【答案】5【解析】 试题分析:解:原式13⎛=÷ ⎝ 考点:实数运算点评:本题难度较低,主要考察学生对实数运算知识点的额掌握,为中考常考题型,要求学生安稳掌握.27.计算:(1))3127(12+- (2)()()6618332÷-+- 【答案】(1)334- (2)2【解析】试题分析:(1==(2=-=312考点:实数运算点评:本题难度较低,主要考察学生对平方根实数运算知识点的掌握.要求学生安稳掌握解题技巧.28.(÷【答案】1【解析】试题分析:(⨯⨯÷(32=1考点:二次根式的化简和计算点评:本题考察二次根式的化简和计算,关键是二次根式的化简,掌握二次根式的除法法则,本题难度不大29.计算(每小题4分,共8分)(1)(2)【答案】【解析】试题分析:(2)原式+原式==考点:实数的运算点评:实数运算常常使用的公式:(1)2(0)a a =≥(2),a =(3)0,0)a b =≥≥(4)0,0)a b =≥≥. 30.计算:(1)(2)(3)++-+ (4)14+6a -3a 2【答案】(1)162)-14,(3)194-13,(4【解析】本题考察二次根式的二次根式的加减法法则停止计算解:(1)原式=(2)原式=-(3)原式(4)原式32。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 2
二次根式的计算
1、 2、(+)2﹣(+)(﹣)
3、
4
5、 6、
8、
12、若,求
13、△ABC的三边长分别是1、k、3,求的值.
14、先化简,再求值:,其中,.
15、先化简,再求值: ÷(2﹣ ),其中x= +1.
16、已知求(1)x2-xy+y2;(2)x3y+xy3的值.
17、化简求值:,其中,.
2 / 2
18、由下列等式=2,=3,=4…所提示的规律,可得出一般性的结论
是 (用含n的式子表示)
19、两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:
与,与互为有理化因式.
试写下列各式的有理化因式:
(1)与______; (2)与______; (3)与______; (4)与______;
(5)与______; (6)与______. (7)_______;(8)_______;
(9) (10) (11)_______.
(12)试计算(n为正整数)的值.
20、阅读材料1:
对于两个正实数,由于,所以,即,所以
得到,并且当时,.
阅读材料2:
若,则,因为,所以由阅读材料1可得,,
即的最小值是2,只有 时,即时取得最小值.
根据以上阅读材料,请回答以下问题:
(1)比较大小: (其中); (其中)
(2)已知代数式变形为,求常数n的值;
(3)当 时,有最小值,最小值为 . (直接写出答案)