制程能力分析

合集下载

X-R控制图及制程能力分析报告(过程能力)

X-R控制图及制程能力分析报告(过程能力)

管理图异常的判断1 观察个点加以判断……管制外(OUT OF CONTROL)2 将复数的点以群体加以观察并判断……连串,周期,趋向等2.1 对于中心线点连续在任何一方出现时,称为“连串”对在中心线的任何一方(上侧或下侧)连续出现时,以以下方式判断:2.1.1 5点连串时:要注意。

2.1.2 6点连串时:要开始调查2.1.3 7点连串时:有异常原因,应该采取措施2.2 中心线的一边出现众多点,应判断为工程异常2.2.1 连续11点中有10点以上2.2.2 连续14点中有12点以上2.2.3 连续17点中有14点以上2.2.4 连续20点中有16点以上2.3 点的“趋势”呈上升或下降时候点的排列逐渐变大或变小时,显示该工程已有某种趋势。

有这种趋势时,应依以下进行判断2.3.1 5点连串时:要注意。

2.3.2 6点连串时:要开始调查2.3.3 7点连串时:有异常原因,应该采取措施通常有趋势时,到第3-4点多半已经是偏离管制。

当趋势呈现而逼近管制界线时,最好及早开始调查原因。

2.4 点呈现“周期性”的变化时这种显示周期性变化的工程,在活用管理图时有必要对分组或抽样的方式下功夫。

例:刀具每2天磨一次,导致某一个特性是每2日的周期变化。

2.5 时常出现点接近管理界限的时候依3σ管理图的性质,点的出现于管理界限附近的几率很小。

点落在中心线到管理界限的宽度2/3以外的机会大约为3%。

因此经常有点落在此范围时,就可判断工程已有某项异常发生。

2.6 点集中于中心线附近的时候点集中于中心线附近,从点的变异情形来看,似乎显出管理界限太宽。

这一点要说工程无异常不如说是分组或层别的不当,对于工程管理并无助益。

此时有必要对分组或层别再下功夫。

CPK制程能力分析

CPK制程能力分析

1
名詞介紹
USL:產品之規格上限 LSL:產品之規格下限 u:規格中心值 N X /N 樣本算術平均(平均值): X Σ i=1 N ( X i )2 / N :母體標準差: i 1 n s:樣本標準差: ( X i )2 / n 1 i 1 T:規格公差=規格上限-規格下限(USL-LSL) 平衡公差:18.0 ±0.5 不平衡公差:18.0 +0.5/–0.2 or 18.0 +0.3/ –0.5 PPM(Parts Per Million):每百萬個單位的不合格數
ቤተ መጻሕፍቲ ባይዱ
Cpk = Min ( Cpku ,Cpkl )
= Cp ( 1 - Ca )
Cpku =
USL -X

LSL
Cpkl =
x u
USL
X - LSL

-∞ -3σ -2σ -1σ TARGET +1σ +2σ +3σ
+∞
6
Ca/Cp/Cpk等級判定
等級
A B
Ca
0 ≦ Ca < 0.0625
0.0625 < Ca ≦ 0.125
(18.4-18.1)2+(17.6-18.1)2+ (17.9-18.1)2 +….+ (18.3-18.1)2
σ=
9
=0.2981
T=18.5 -17.5=1
Ca = (18.1-18.0)/0.5=0.2……………... B級 Cp = 1/(6× 0.2981)=0.559…………….. D級 Cpk = 0.559 × (1-0.2)=0.4472…………D級 結論:此產品須大大的改善才可符合現代化的要求.

6 sigma-制程能力分析

6 sigma-制程能力分析
Variables For Grouping(0-3)处选择shift档位 4. 按下OK,确认其是否符合常态分配
组内组间制程能力分析
规格USL=53 LSL=47 连续测量25卷,每卷测量3个 Stat>Quality Tools>Capability Analysis>Between/within
制程能力等级判断及处置建议-Cpk P%

Cpk制程能力指数

Process Capability
Index
A 1.33≦Cpk
处置建议
制程能力足够
B 1.0≦Cpk<1.33
制程能力尚可,应再努力。
C Cpk<1.0
制程应加以改善。
等 级
P%(综合评价)
处置建议
A P≦0.44%
稳定
B 0.44%<P≦1.22%
B 12.5%<│Ca│≦25%(1/4) 有必要尽可能将其改进为A级。
C 25%<│Ca│≦50%(1/2)
作业员可能看错规格,不按作业标准操作或检讨 规格及作业标准。
D 50%<│Ca│
应采取紧急措施,全面检讨所有可能影响之因素, 必要时停止生产。

Cp制程精密度
级 Capability of precision
数据转换之范例
数据转换之范例
数据转换之范例
数据转换之范例
此种转换要求 数据为正值
左上角为原始资 料之分布
非常态分配与制程能力指标
此种转换不 要求数据为 正值,也不 需要输入样 本大小
转换公式
Stat>Quality Tools> Johnson Transformation
非常态分配与制程能力指标

CPK 制程能力分析

CPK 制程能力分析
• 例如腳長規格 : 3.5mm0.1mm
– 單邊規格 : 品質特性的合格範圍僅定上限或下 限者稱為單邊規格
•1、 中间高,两边低,左右对称;两边伸向无穷远。 •2、与横坐标所围成区域的面积为 1; •8
制程能力分析的基础
正态分布概率:
•0.34 0.34
•P(u-1σ<X<u+1σ)=0.6827 •P(u-2σ<X<u+2σ)=0.9545 •P(u-3σ<X<u+3σ)=0.9973 •P(u-6σ<X<u+6σ)=0.9999966
CPK值越大表示品质越佳。
•Cpk 基础
1. Cpk的中文定义为:制程能力指数,是某个工程或制程水准的
量化反应,也是工程评估的一类指标。 2. 同Cpk息息相关的两个参数:Ca , Cp.
Ca: 制程准确度。 Cp: 制程精密度。 3. Cpk, Ca, Cp三者的关系: Cpk = Cp * ( 1 - |Ca|),Cpk是
(σ),再计算出规格公差(T),及规格中心值(u). 规格公差=规
格上限-规格下限;规格中心值=(规格上限+规格下限)/2;
•Cpk 基础
7. 依据公式:Ca=(X-U)/(T/2) , 计算出制程准确度:Ca值 (x为7
所有取样数据的平均值) 8. 依据公式:Cp =T/6σ , 计算出制程精密度:Cp值 9. 依据公式:Cpk=Cp(1-|Ca|) , 计算出制程能力指数:Cpk值 10. Cpk的评级标准:(可据此标准对计算出之制程能力指数做
{ } (1) CPK = Min CPU ,CPL
(2)
CPK
=
USL - LSL - 2 ±3

制程能力分析

制程能力分析

製程能力製程能力是指「各種條件均充份標準化,製程在統計的管制狀態下群體所呈現之質與量的能力」。

故製程能力以產量、效率表示,也可用成品、半成品、零件等之品質特性來表示更可用不良率或缺點數來表示。

製程解析與製程管制製程能力係數C P 、K 、C PK符號意義首先將一些符號代表意義標示如下:◆ USL (上規格界限): upper specification limit ◆ LSL (下規格界限): lower specification limit ◆ m(規格中心):midpoint of the upper and the lower Specification limits ,2m LSLUSL +=T (目標值): Target指定雙邊規格時 (1)準確度k()LSLUSL μ-m 2k C -==a ,-1≦k ≦1, (2)精密度C p 指標σ6LSLUSL C p -=(3)C pk 指標C pk 指標主要是用以衡量製程之實際成效(process performance),而C pk 製程能力指標定義如下:⎭⎬⎫⎩⎨⎧--=σμσμ3,3USL LSL Min C pk ,或C pk =(1-k )C p指定單邊規格時T (目標值): Target ,如果沒有目標值時,則T=μ(1)準確度kTUSL Tk --=μ,或LSLT T k --=μ,(k 有時以Ca 符號代替,代表製程準確度)(2)精密度C p 指標C p 指標定義為:σ3T USL C p -=,或σ3LSLT C p -=(3) C pk 指標C pk = C p (1-k ) ,或σμ3-=USL C pk ,σμ3LSLC pk -= 如果如果),(LSL T T ->-μ則C pk =0; 如果),(T USL T ->-μ則C pk =0Cp 判定表參考例如果是以X -R Chart 之資料來進行製程能力分析,則製程之標準差σ可由2d R 來估計。

管制图与制程能力分析

管制图与制程能力分析

管制圖與製程能力分析一、管制圖管制圖是指根据统计学原理,通过收集和分析过程数据,以便及时监控和改进过程稳定性的方法。

管制圖可以帮助我们判断过程是否稳定、是否受特殊因素影响,并且能够帮助我们分析过程能力是否符合要求。

下面我们就来介绍一下管制圖的基本原理和应用。

1. 管制界限管制界限是在管制圖上设定的两条中心线,即上管制界限和下管制界限,是用来判断和监控过程是否稳定的参考线。

通常,管制界限是根据数据的变异性和过程能力要求来确定的,一般而言,上管制界限和下管制界限是基于过程的平均值和标准差计算得出的。

2. 管制统计量在管制圖上,通常有两个重要的统计量,分别是过程平均值和过程变异性。

通过对这两个统计量的监控,我们可以了解过程是否处于稳定状态。

3. 常用的管制圖类型常用的管制圖类型有许多种,如平均数控制图(X管制图)、极差控制图(R 管制图)、标准差控制图(S 管制图)、范围与中位数控制图(MR 管制图)等。

这些不同类型的管制圖适用于不同类型的数据,可以帮助我们监控和改进不同的过程。

二、製程能力分析製程能力分析是指通过统计方法来评估製程是否满足客户的需求和要求。

製程能力分析可以帮助我们确定製程的稳定性和一致性,以便进行相应的改进措施。

1. 製程能力指标製程能力指标是对製程能力的度量,一般用于评估製程的稳定性和一致性。

常用的製程能力指标有以下几种:Cp指数、Cpk指数、Pp指数和Ppk指数。

这些指数可以根据数据的分布特征来计算,用于评估製程的长期和短期能力。

2. 製程能力评估通过製程能力评估,我们可以判断製程是否满足要求,并进行相应的改进。

一般而言,当製程能力指标大于1时,说明製程能够满足客户的需求,而当製程能力指标小于1时,说明製程存在一定的问题,需要进行改进。

3. 製程改进当发现製程能力不足时,我们就需要进行相应的製程改进。

常用的製程改进方法有许多种,如采用统计方法来减少过程的变异性、改善生产设备和工艺等。

制程能力分析CPandCpk



.布分态正从服据数程制的制控限下上有数多大�说来般一 • .件条本基的析分力能程过成形是性态正据数 • 的测预可• 性称对 • 据数态正与同不析分的据数态正非 •
.值的内围范某计估来用能值均和差偏准标•
. 析分易容据数态正 •
?据数态正要想们我么什为
E QS
例比的品格合不下值差偏准标和值均前当在出算计可法方种这过通 • 差偏准标倍两值均本样离偏 ,X ,点陷缺么那 ,2 = Z 如 ,如例 •

.出输的备设台一另示表 ’*‘ .出输的备设台一从示表 ’•‘ .出输程过艺工的定假面下查检次再
例示样抽组分
E QS
• •• • • •• • • • •• •• * • • * • • * *• • ** * * * ** * * ** * * * **
•• • • • ••• • • • • • • •* * • • •** ** •* * * * * * * * *** • ** * * * *
LSU > MPP LSL < MPP
1 3.1
ecnam r o f reP dev res bO 3-
0 3.1
y tili ba
4-
*
0 0. 2 2 0. 2 0 0. 2
4
3 m pC
1 0. 2
UPC pC
LPC
k pC
4-
*
9 2.1 1 3.1 0 3.1
9 2.1
y tili ba paC )TS ( lai tne t oP
• • • • •
限制控
E QS
图U
图C 图 PN
图P
RM & rabX 1= 5>

CPK制程能力分析讲解

CPK为什么要定1 , 1.33 , 1.67,这几个值?CPK : Complex Process Capability index 的缩写,是现代企业用于表示制程能力的指标。

现今下产品的质量要求越来越高,产品的质量也不是仅仅能保证在公差范围内就能满足要求,因此对产品的质量关注从原来的被动检查产品尺寸转换到对产品加工过程的控制,那么如何来评价某个过程对产品加工质量的控制能力,利用统计学的原理按照一定的时间规律、抽样方案对加工生产出的产品进行数据统计,通过计算其产品数据的离散度、标准差等数据来表达这个过程中产品的质量波动情况,CPK就在这种情况应运而生。

CPK用数值来表示,该值反映的是制造加工过程控制能力的大小,数值越大表示该过程的控制能力越好,产品的一致性越好,产品的尺寸变化波动越小越靠近中间值;而数值越大表示该过程的控制能力越差,产品的一致性越差,产品的尺寸变化波动越大离散度越大,甚至容易超出两边极限公差。

CPK的计算数据由至少125组数据组成,抽取的数据也有一定的要求(每5件为一组连续数据,每组之间按一定的时间间隔进行),抽取数据时制程必须是无任何异常状态下进行,所以CPK值反应的是某个制程在正常下面分别用4张正态图、柱状图辅助理解这样更直观一些(两侧的竖直线表示产品的尺寸极限,中间的竖直线表示产品的中间值):中回LSL["R S n234 5 679孔Q133030 010 01虧 1.331 er 2 062J3 2 5321 2 a£ 2 31性能性能CP CPU CPL CPK⑥过程能力扌㈱(CP3O打O爲程性魁埶(PPK)Q71300.770能力不足上图的CPK值为0.656 ,接近0.67,从柱状表示可以看出,虽然产品的尺寸都在极限范围以内,但大部分的产品数据分列在靠近极限值的两端,产品的离散度大;如果某过程的CPK计算数值在0.67左右,意味作该过0.67,加工过程中可能已经有超差极限值得程的控制能力并不稳定,具有超出产品极限的风险,如果数值小于 产品存在。

制程能力分析


SPC與持續改進
• 1.收集數據并用統計方法來解釋并不是 1.收集數據并用統計方法來解釋并不是 最終目的, 最終目的,最終目標是對過程的不斷加深 持 理解 2.研究孌差和應用統計知識 研究孌差和應用統計知識來改進性能 續 • 2.研究孌差和應用統計知識來改進性能 的基本概念適用于任何領域 的基本概念適用于任何領域 改 • 3. 應用統計方法來控制輸出僅僅是第一 只有當產出的過程成為我們的努力的 過程成為我們的 步,只有當產出的過程成為我們的努力的 進 目標,才能在改進質量, 目標,才能在改進質量,提高生產率成本上 發揮作用. 發揮作用. • 4.MSA對分析數據很重要 4.MSA MSA對分析數據很重要
PROCESS CAPABILITY ANALYSIS
P管制圖簡介
• 子組容量(50-200)應恆定或差異應在 25%之內。 • 子組數量 25組或更多 • 計算子組內不合格品率 • 計算控制限: • 過程 控制圖之解釋 • 過程能力: P
PROCESS CAPABILITY ANALYSIS
改善與提高
PROCESS CAPABILITY ANALYSIS
基本知識
質 量 管 理 的 發 展
8. 檢驗控制 9. 品質管理系統 10.零缺陷理論
PROCESS CAPABILITY ANALYSIS
SPC與持續改進
SPC

CPK
SPC 統計過程控制 CPK 過程能力指數 PPK 過程性能指數
PROCESS CAPABILITY ANALYSIS
PROCESS CAPABILITY ANALYSIS
X-R應用實例分析
• a.子組大小、頻率、組數
• 1.子組大小:4-5連續的產品 • 2.頻率(換班/人員、材料變更) • 3.組數 :20-25( 樣本>100)

制程能力分析1

制程能力分析制程能力研究在于确认这些特性符合规格的程度,以保证制程成品不符规格的不良率在要求的水平之上,作为制程持续改善的依据。

制程能力研究的时机分短期制程能力研究及长期制程能力研究,短期着重在新产品及新制程的试作、初期生产、工程变更或制程设备改变等阶段;长期以量产期间为主。

制程能力指标 Cp 或 Cpk 之值在一产品或制程特性分配为常态且在管制状态下时,可经由常态分配之机率计算,换算为该产品或制程特性的良率或不良率,同时亦可以几 Sigma 来对照。

计数值统计数据的数量表示缺点及不良(Defects VS. Defectives)缺点代表一单位产品不符要求的点数,一单位产品不良可能有一个缺点或多个缺点,此为计点的质量指针。

例如描述一匹布或一铸件的质量,可用每公尺棉布有几个疵点,一铸件表面有几个气孔或砂眼来表达,无尘室中每立方公尺含微粒之个数,一片PCB有几个零件及几个焊点有缺点,一片按键有几个杂质、包风、印刷等缺点,这些都是以计点方式表示一单位产品的特性值。

不良代表一单位产品有不符要求的缺点,可能有一个或一个以上,此将产品分类为好与坏、良与不良及合格与不合格等所谓的通过-不通过(Go-NoGo)的衡量方式称为计件的质量指针。

例如单位产品必须以二分法来判定质量,不良的单位产品必须报废或重修,这是以计件方式来表示一单位产品的特值。

每单位缺点数及每百万机会缺点数(DPU VS. DPMO)一单位产品或制程的复杂程度与其发生缺点的机会有直接的关系,越复杂容易出现缺点;反之越简单越不容易出现缺点。

因此,以每单位缺点数(DPU)来比较复杂程度不同的产品或制程质量是不公平的,在管理上必须增加一个衡量产品或制程复杂程度的指标,Six Sigma 以发生缺点的机会(Opportunities)来衡量。

DPU 是代表每件产品或制程平均有几个缺点,而DPMO 是每检查一百万个机会点平均有几个缺点。

一个机会点代表一产品或制程可能会出现缺点的机会,它可能是一个零件、特性、作业等等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档