高考状元必备笔记_盐类水解的应用规律

合集下载

【高中化学】盐类水解的应用化学知识点

【高中化学】盐类水解的应用化学知识点

【高中化学】盐类水解的应用化学知识点盐类水解的应用化学知识点盐水解的应用是盐离子与水电离的氢离子或羟基离子发生反应,形成弱电解质,称为盐水解。

其一般规律是:谁弱谁水解,谁强显谁性;两强不水解,两弱更水解,越弱越水解。

在什么情况下应考虑盐水解?1.分析判断盐溶液酸碱性时要考虑水解。

2.在确定盐溶液中离子的类型和浓度时,应考虑盐的水解。

如na2s溶液中含有哪些离子,按浓度由大到小的顺序排列:c(na+c(s2-)c(oh-)c(hs-)c(h+)或:c(na+)+c(h+)=2c(s2-)+c(hs-)+c(oh-)3.在制备一些盐溶液时,应考虑盐的水解配制fecl3,sncl4,na2sio3等盐溶液时应分别将其溶解在相应的酸或碱溶液中。

4.在制备某些盐时,应考虑到Al2S3、MGS、Mg3N2等物质的水解很容易与水相互作用,并且它们不能稳定地存在于溶液中。

因此,在制备这些物质时,不能在溶液中通过复分解反应制备,只能通过干法制备。

5.某些活泼金属与强酸弱碱溶液反应,要考虑水解镁、铝、锌和其他活性金属与NH 4CL、CuSO 4、AlCl 3和其他溶液反应3mg+2alcl3+6h2o=3mgcl2+2al(oh)3+3h26.在中和滴定终点判断溶液的酸碱度时,选择指示剂并在pH=7时判断酸或碱的过量时,应考虑盐的水解,例如,当CH3COOH和NaOH刚刚反应时,pH为7。

如果反应后溶液的pH值为7,则CH3COOH过量。

指示剂选择的一般原则是,所选指示剂的变色范围应与滴定后盐溶液的pH范围一致。

也就是说,当强酸和弱碱相互滴注时,应选择甲基橙;弱酸强碱互滴时应选用酚酞。

7.制备氢氧化铁胶体时要考虑水解.fecl3+3h2o=fe(oh)3(胶体)+3hcl8.分析盐和盐之间的反应时,应考虑水解。

两种盐溶液的反应应分三步进行分析和考虑:(1)能否发生氧化还原反应;(2)能否发生双水解互促反应;(3)如果不发生上述两种反应,则应考虑复分解反应的可能性9.加热蒸发和浓缩盐溶液时,对最后残留物的判断应考虑盐类的水解(1)当加热和浓缩未水解的盐溶液时,通常可获得原料(2)加热浓缩na2co3型的盐溶液一般得原物质.(3)加热并浓缩fecl3盐溶液,最终得到fecl3与Fe(OH)3的混合物,燃烧得到fe2o3。

高中化学 盐类的水解及应用

 高中化学  盐类的水解及应用

课时39盐类的水解及应用知识点一盐类的水解及影响因素【考必备·清单】1.盐类的水解2.水解离子方程式的书写(1)多元弱酸盐水解:分步进行,以第一步为主。

如Na2CO3水解的离子方程式:CO2-3+H2O⇌HCO-3+OH-,HCO-3+H2O⇌H2CO3+OH-。

(2)多元弱碱盐水解:方程式一步完成。

如FeCl3水解的离子方程式:Fe3++3H2O⇌Fe(OH)3+3H+。

(3)阴、阳离子相互促进水解:水解程度较大,书写时要用“===”“↑”“↓”等。

如NaHCO3与AlCl3溶液混合反应的离子方程式:Al3++3HCO-3===Al(OH)3↓+3CO2↑。

[名师点拨]①盐类发生水解后,其水溶液往往显酸性或碱性,但也有特殊情况,如CH3COONH4溶液显中性。

②NH+4与CH3COO-、HCO-3、CO2-3等在水解时相互促进,其水解程度比单一离子的水解程度大,但仍然水解程度比较弱,不能进行完全,在书写水解方程式时用“”。

3.水解的规律有弱才水解,越弱越水解;谁强显谁性,同强显中性。

4.影响盐类水解平衡的因素(1)内因:形成盐的酸或碱越弱,其盐就越易水解。

如水解程度:Na 2CO 3>Na 2SO 3,Na 2CO 3>NaHCO 3。

(2)外因⎩⎪⎨⎪⎧溶液的浓度:浓度越小,水解程度越大温度:温度越高,水解程度越大外加酸碱⎩⎪⎨⎪⎧酸:弱酸根离子的水解程度增大,弱碱阳离子的水解程度减小碱:弱酸根离子的水解程度减小,弱碱阳离子的水解程度增大(3)以FeCl 3水解为例[Fe 3++3H 2O ⇌Fe(OH)3+3H +],填写外界条件对水解平衡的影响。

[名师点拨] (1)相同条件下的水解程度:①正盐>相应的酸式盐,如CO 2-3>HCO -3。

②水解相互促进的盐>单独水解的盐>水解相互抑制的盐。

如NH+4的水解程度:(NH4)2CO3>(NH4)2SO4>(NH4)2Fe(SO4)2。

盐类物质的水解规律及相关应用

盐类物质的水解规律及相关应用

盐类物质的水解规律及相关应用作者:李有忠来源:《甘肃教育》2009年第13期〔关键词〕盐类物质;水解规律;相关应用〔中图分类号〕 G633.8〔文献标识码〕 C〔文章编号〕 1004—0463(2009)07(A)—0062—02盐类物质的规律:①有弱电解质的离子必然发生水解,生成相应的弱电解质,但程度较小;②谁弱谁水解,谁强呈谁性,越弱越水解,都弱都水解,两强不水解;③多元弱酸正盐弱离子的水解大于酸式盐弱离子的水解;水解的实质:破坏水的电离平衡。

特别说明:对于三元中强酸H3PO4有三步电离。

H3PO4=H++H2PO4- (1)H2PO4-=H++HPO42- (2)HPO42-=H++PO43- (3)它同时也有三步水解:PO43-+H2O=HPO42-+OH-(1)HPO42-+H2O=H2PO4-+OH-(2)H2PO4-+H2O=H3PO4+OH-(3)通过以上六步反应我们可知,在Na3PO4溶液中,PO43-是第1步水解,第3步电离,所以溶液呈碱性(即水解在前);NaH2PO4溶液中,由于H2PO4-是第2步电离,第3步水解,所以溶液呈酸性(即电离在前);而在Na2HPO4溶液中,由于HPO42-是第3步电离,第2步水解,所以溶液呈碱性(即水解在前)。

对NaHCO3来讲,由于HCO3-同时第2步电离和第2步水解,但由于水解趋势大于电离趋势,所以溶液pH>7(主要因为H2CO3是二元弱酸所致);对于NaHSO3来讲,电离趋势大于水解趋势,所以溶液呈酸性(主要因为H2SO3是二元中强酸所致)。

而对于NaHSO4来说,道理同上,因此溶液一定呈酸性。

1. 强碱弱酸水解(K2CO3、Na2CO3)CO32-+H2O=HCO3-+OH-。

结论:强碱弱酸盐的溶液呈碱性。

2. 强酸弱碱盐的水解(NH4)2SO4=2NH4++SO42-;NH4++H2O?葑NH4OH+H+。

结论:强酸弱碱盐的溶液呈酸性。

盐类水解原理的应用-高考化学知识点

盐类水解原理的应用-高考化学知识点

盐类水解原理的应用-高考化学知识点
在水溶液中盐电离出来的离子跟水电离出来的氢离子或氢氧根离子结合生成弱电解质的反应,叫做盐类水解。

2.实质:生成弱电解质,使得水的电离平衡被破坏而建立新的平衡。

化学平衡状态的判断条件,对水解的程度的判断有一定的影响。

3.条件:盐中必须有弱酸根离子或弱酸阳离子,盐溶于水
4.特点:可逆性,写水解离子方程式时要用双向箭头。

水解是吸热过程,是中和反应的逆过程。

一般水解程度较小,写离子方程式时,不能用“↑”或“↓”符号。

多元弱酸根分布水解,以第一步为主。

多元弱碱阳离子一步水解。

5.规律:有弱才水解,无弱不水解;谁弱谁水解,谁强显谁性;越弱越水解,都弱都水解。

其中盐硫酸铜就属于强电解质,是完全电离的,不存在水解的。

二、盐类水解原理的应用
盐类水解的应用在高二同步课程中就有详细的讲解。

1.判断盐溶液的酸碱性或解释某些盐溶液呈酸性或呈碱性的原因。

2.比较盐溶液中离子种类多少,离子数多少或离子浓度大小。

3.配置易水解溶液时,需要考虑盐的水解。

4.实验室保存某些试剂时,需要考虑盐类水解,如保存Na2CO3(aq)、Na3PO4(aq)等不能配磨口玻璃塞的玻璃瓶,保存NH4F溶液不能用玻璃瓶。

高二化学盐类的水解笔记

高二化学盐类的水解笔记

高二化学:盐类水解学习笔记——酸碱平衡的微观调控
以下是一份高二化学盐类的水解笔记的内容,供参考:
一、盐类的水解
1.定义:盐类的水解是指盐电离出的弱酸或弱碱离子,在溶液中与水电离出
的氢离子或氢氧根离子结合,生成弱电解质的过程。

2.盐类水解的实质:盐类水解的实质是弱酸或弱碱的酸根离子或碱离子与水
电离出的氢离子或氢氧根离子结合,生成弱电解质,使溶液中水的电离平衡被破坏,从而促进了水的电离。

二、盐类水解的规律
1.“有弱才水解,无弱不水解;谁强显谁性,同强显中性”。

2.弱酸根离子水解,溶液显碱性;弱碱离子水解,溶液显酸性。

3.强酸弱碱盐水解呈酸性,强碱弱酸盐水解呈碱性。

4.多元弱酸根离子分步水解,以第一步水解为主。

三、影响盐类水解的因素
1.温度:盐类水解是吸热反应,升高温度促进盐类水解。

2.浓度:盐溶液浓度越小,水解程度越大。

3.酸碱度:加入酸或碱溶液可以抑制或促进盐类水解。

四、盐类水解的应用
1.判断溶液的酸碱性:根据盐类水解的规律,可以判断溶液的酸碱性。

2.分离和提纯物质:通过控制溶液的酸碱性,可以分离和提纯物质。

3.除去某些物质:通过控制溶液的酸碱性,可以除去某些物质。

4.制备某些物质:通过控制溶液的酸碱性,可以制备某些物质。

以上是高二化学盐类的水解笔记的主要内容。

在记忆过程中,需要注意区分不同的知识点和概念,并理解其内在联系和规律。

同时,需要多做练习题来加深对知识点的理解和掌握。

盐类水解规律知识点总结

盐类水解规律知识点总结

盐类水解规律知识点总结
以下是盐类水解规律的知识点总结:
1. 盐的定义:盐是由金属离子和非金属离子(或羧基)通过化学键结合而成的化合物,通常在水中溶解后会分解成阳离子和阴离子。

2. 阳离子和阴离子的水解:在盐类水解中,阳离子和阴离子的水解是分别进行的。

阳离子水解会产生酸性物质,而阴离子水解会产生碱性物质。

例如,氯化铵(NH4Cl)在水中会发生水解反应,产生NH4+和Cl-离子。

NH4+离子会与水分子发生反应,生成NH4OH和H+离子,从而产生酸性溶液;而Cl-离子会与水分子发生反应,生成OH-离子,从而产生碱性溶液。

3. 盐类水解的影响因素:盐类水解的速度和程度受到多种因素的影响,主要包括盐类的离子性和极性、水的性质、温度和压力等。

离子性和极性较强的盐类更容易发生水解反应,而水的性质、温度和压力则会影响水解反应的速率和平衡位置。

4. 盐类的水解平衡:盐类的水解反应会达到一个动态平衡状态,即反应速率的正向和反向反应同时发生,并达到一定的平衡位置。

平衡位置受到水解反应速率的影响,取决于反应物的浓度、温度和压力等因素。

当平衡位置发生偏移时,会影响溶液的酸碱性质。

5. 盐类水解的应用:盐类水解在化学工业和生活中有着广泛的应用。

例如,盐类水解反应可以用来制备酸碱溶液、调节土壤酸碱性、净化废水等。

此外,盐类水解规律的研究也为化学反应动力学和平衡化学等领域提供了重要的理论基础。

总之,盐类水解是化学领域中重要的概念之一,它在酸碱中和反应、化学平衡、工业生产和环境保护中都有着重要的应用价值。

对盐类水解规律的深入理解可以为相关领域的研究和应用提供重要的理论支持。

【高中化学】2021年高考化学知识点:盐类水解的应用规律

【高中化学】2021年高考化学知识点:盐类水解的应用规律

【高中化学】2021年高考化学知识点:盐类水解的应用规律本文主要为考生提供“2021年高考化学常用知识点”,希望对考生朋友有所帮助!盐水解的应用规律盐的离子跟水电离出来的氢离子或氢氧根离子生成弱电解质的反应,称为盐类的水解。

一般规律是:谁弱,谁水解,谁强,谁有性;两个强的不水解,两个弱的水解更多,弱的水解更多。

哪么在哪些情况下考虑盐的水解呢?1.分析和判断盐溶液的酸碱度时,应考虑水解。

2.确定盐溶液中的离子种类和浓度时要考虑盐的水解。

例如,Na2S溶液中包含的离子按浓度从大到小的顺序排列:c(na+)>;c(s2-)>;c(oh-)>;c(hs-)>;c(h+)或:C(Na+)+C(H+)=2C(S2-)+C(HS-)+C(OH-)3.配制某些盐溶液时要考虑盐的水解例如,制备FeCl 3、SnCl 4、Na 2SiO 3等盐溶液时,应分别溶解在相应的酸或碱溶液中。

4.制备某些盐时要考虑水解al2s3,mgs,mg3n2等物质极易与水作用,它们在溶液中不能稳定存在,所以制取这些物质时,不能用复分解反应的方法在溶液中制取,而只能用干法制备。

5.当一些活性金属与强酸和弱碱溶液反应时,应考虑水解如mg,al,zn等活泼金属与nh4cl,cuso4,alcl3等溶液反应。

3mg+2alcl3+6h2o=3mgcl2+2al(oh)3↓+3h2↑6.在中和滴定终点判断溶液的酸碱度,选择指示剂,并在pH=7时判断酸或碱的过量时,应考虑盐的水解。

例如,当ch 3cooh与NaOH反应时,pH>;7.如果反应后溶液的pH值为7,则CH3COOH过量。

指示剂选择的一般原则是,所选指示剂的变色范围应与滴定后盐溶液的pH范围一致。

也就是说,当强酸和弱碱相互滴注时,应选择甲基橙;弱酸强碱互滴时应选用酚酞。

7.制备氢氧化铁胶体时要考虑水解。

fecl3+3h2o=fe(oh)3(胶体)+3hcl8.分析盐和盐之间的反应时,应考虑水解。

高中化学知识点盐类的水解及应用-

高中化学知识点盐类的水解及应用-

高中化学知识点盐类的水解及应用-高中化学知识点:盐类的水解及应用!-掌门1对1同学们,在线一对一小编给大家分享一些干货,快来看看吧。

一、水解的原理、规律及应用1.原理:在水溶液中盐电离出来的离子跟水所电离出来的H+或OH-结合生成弱电解质的反应,叫做盐类的水解。

通式为:盐+水酸+碱如:醋酸钠溶液中总的化学方程式:CH3COONa+H2OCH3COOH+NaOH;总的离子方程式:CH3COO-+H2OCH3COOH+OH-。

2.规律:(1)盐类水解反应可以看成是酸碱中和反应的逆反应,通式为:盐+水酸+碱。

由于中和反应进行程度较大,因而水解反应进行程度较小,为可逆反应。

中和反应为放热反应,因而盐类水解反应为吸热反应。

(2)盐类水解规律有弱才水解,无弱不水解,越弱越水解,都弱都水解,谁强显谁性,同强显中性。

(3)强酸的酸式盐只电离不水解,溶液显酸性,如:NaHSO4;而弱酸的酸式盐,既电离又水解,此时必须考虑其电离和水解程度的相对大小:若电离程度大于水解程度,则溶液显酸性,如:NaHSO3、NaH2PO4;若水解程度大于电离程度,则溶液显碱性,如:NaHCO3、NaHS、Na2HPO4等。

例题:相同条件下,测得①NaHCO3 ②CH3COONa ③NaAlO2三种溶液的pH值相同。

那实验么它们的物质的量浓度由大到小的顺序是_____________。

3.水解平衡的移动(1)温度对平衡的影响:由于水解为吸热变化,升温可使水解平衡向右移动,从而增大水解的程度。

如:把FeCl3饱和溶液滴入沸水中制取胶体,就是利用升温增大水解程度的实例。

(温度对水解平衡的影响是通过改变水解常数Kh实现的)(2)浓度对平衡的影响:越稀越水解指的是溶液浓度越小,弱离子的水解程度越大,并不是水解常数越大。

如下以醋酸钠水解具体分析:a、向一定浓度的醋酸钠溶液中加水时,水解平衡____移,C (OH-)______,水解程度______,C(OH-)/C(CH3COO-)_____。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

盐类水解的应用规律
高中化学
2011-05-04 18:33


盐的离子跟水电离出来的氢离子或氢氧根离子生成弱电解质的
反应,称为盐类的水解。

其一般规律是:谁弱谁水解,谁强显谁性;两强不水解,两弱更水
解,越弱越水解。

哪么在哪些情况下考虑盐的水解呢?
1.分析判断盐溶液酸碱性时要考虑水解。
2.确定盐溶液中的离子种类和浓度时要考虑盐的水解。
如Na2S溶液中含有哪些离子,按浓度由大到小的顺序排列:
C(Na+ )>C(S2-)>C(OH-)>C(HS-)>C(H+)
或:C(Na+) +C(H+)=2C(S2-)+C(HS-)+C(OH-)
3.配制某些盐溶液时要考虑盐的水解
如配制FeCl3,SnCl4 ,Na2SiO3等盐溶液时应分别将其溶解在相
应的酸或碱溶液中。

4.制备某些盐时要考虑水解 Al2S3 ,MgS,Mg3N2 等物质极易与水
作用,它们在溶液中不能稳定存在,所以制 取这些物质时,不能
用复分解反应的方法在溶液中制取,而只能用干法制备。

5.某些活泼金属与强酸弱碱溶液反应,要考虑水解
如Mg,Al,Zn等活泼金属与NH4Cl,CuSO4 ,AlCl3 等溶液反
应.3Mg+2AlCl3 +6H2O=3MgCl2+2Al(OH)3↓+3H2↑
6.判断中和滴定终点时溶液酸碱性,选择指示剂以及当pH=7时
酸或碱过量的判断等问题时,应考虑到盐的水解.如CH3COOH与
NaOH刚好反应时pH>7,若二者反应后溶液pH=7,则CH3COOH过
量。指示剂选择的总原则是,所选择指示剂的变色范围应该与滴
定后所得盐溶液的pH值范围相一致。即强酸与弱碱互滴时应选
择甲基橙;弱酸与强碱互滴时应选择酚酞。

7.制备氢氧化铁胶体时要考虑水解.FeCl3+3H2O=Fe(OH)3(胶
体)+3HCl

8.分析盐与盐反应时要考虑水解.两种盐溶液反应时应分三个
步骤分析考虑:

(1)能否发生氧化还原反应; (2)能否发生双水解互促反应;
(3)以上两反应均不发生,则考虑能否发生复分解反应.
9.加热蒸发和浓缩盐溶液时,对最后残留物的判断应考虑盐类
的水解

(1)加热浓缩不水解的盐溶液时一般得原物质.
(2)加热浓缩Na2CO3型的盐溶液一般得原物质.
(3)加热浓缩FeCl3 型的盐溶液.最后得到FeCl3和Fe(OH)3 的
混合物,灼烧得Fe2O3 。

(4)加热蒸干(NH4)2CO3或NH4HCO3 型的盐溶液时,得不到固体.
(5)加热蒸干Ca(HCO3)2型的盐溶液时,最后得相应的正盐.
(6)加热Mg(HCO3)2、MgCO3 溶液最后得到Mg(OH)2 固体.
10.其它方面
(1)净水剂的选择:如Al3+ ,FeCl3等均可作净水剂,应从水解的
角度解释。
(2)化肥的使用时应考虑水解。如草木灰不能与铵态氮肥混合
使用。

(3)小苏打片可治疗胃酸过多。
(4)纯碱液可洗涤油污。
(5)磨口试剂瓶不能盛放Na2SiO3,Na2CO3等试剂.
凡此种种,不一而举。学习中要具体情况具体分析,灵活应用
之。


(2011-05-01 21:11:28)

(2011-04-29 09:58:50)

(2011-04-28 12:30:12)

(2011-04-24 07:47:26)

(2011-03-29 09:30:47)

(2011-03-21 10:57:34)

(2011-03-17 19:49:54)

(2011-03-14 11:45:21)

(2011-03-14 11:08:45)

(2010-05-26 20:21:19)

相关文档
最新文档