反照率表观测规范
从NOAA卫星AVHRR资料反演中国区域地表反照率

生成 地 表 反 照率 产 品[ 8 ] , 而 迄今 为 至 国内没 有 气象
卫 星的地 表反 照率 产 品 , 对 于 卫 星遥 感 地 表 反 照率 的研 究近 年来 多为 利用 MO DI S资 料 做 中 国局 部地 区 的短期 地 表 反 照率 计 算 , 或 直 接 用 MOD I S产 品 做 中 国区域 地 表反 照率 的特 征 分 析 , 缺 少 利 用 气象 卫星 系统地 处 理长 时间序 列地 表反 照率数 据 的 先例 。本 文利 用 已有 的 3个 AVHR R 地 表 反 照 率 反演模 式 和 NO AA AVHRR 1 B资 料 , 计算 生成 了
第4 1卷第 5 期 2 0 1 3 年 1 O月
气 象
科 技
Vo1 .4 1, No .5 0c t . 2O1 3
M ETEOROLOGI CA L SCI ENCE AND TECHNOLOGY
从N O A A 卫星 A V HR R资 料 反演 中 国 区 域 地 表 反 照率
吴 晓 郑 照军 。 杨 昌军
( 1中 国气 象局 中 国 遥 感 卫 星 辐 射 测 量 和 定 标 重 点 开 放 实 验 室 , 北京 1 0 0 0 8 1 ; 2国 家 卫 星 气 象 中 心 , 北京 1 0 0 0 8 1 )
摘 要 由 N 0AA 卫 星 AVHRR短 波 通 道 1 、 2反 射 率 反 演 地 表 反 照 率 需 要 3个 反 演 模 式 , 分 别 是 窄 一 宽 波 段 反 射
表 反照 率 是 目前 国 际 上 最 接 近 真 值 的 产 品 。此 外
2 1 个 中 国地 面气 象 一 级 辐 射 站 的 观 测 测 值 作 对 比 , 结 果是 : R MS为 0 . 0 5 3 、 相 关系数 为 0 . 8 8 。反 演 模 式 系统 误 差
能见度观测规范

中国气象局气象探测中心
CMA Meteorological Observation Centre
三、能见度自动观测方法——透射式能见度观测
Vaisala LT31
透射能见度仪测定气象光 学视程是根据准直光束的 散射和吸收导致光的损失 的原理,所以它与气象光 学视程的定义密切相关。
优点:不用对大气作任何假 设以探测大气透过率或 消光系数,其采样体积 大,测量精度高。
过气象观测员培训的年青飞行员组成的小组的平均对比率阈 值是0.033。 Sheppard(1983)曾指出当把Middleton 的数据在对数坐标上 绘出时结果表明与高斯分布吻合得很好。若Middleton 的数 据代表正常的观测条件,则白天能见度的估计将比MOR 约平 均高出14%,其标准偏差为MOR 的20%。 这些计算与WMO 第一次能见度测量相互比对(WMO,1990b) 的结果非常一致。后者发现在白天,观测者对能见度的估计 值比MOR 的仪器测量值高出大约15%。在观测员和仪器之间的 差异大约是MOR 测量值的30%。若为高斯分布,相应的标准偏 差为22%。
中国气象局气象探测中心
CMA Meteorological Observation Centre
一、能见度相关定义
四个光度测定量标准定义
光通量(Luminous flux)(符号:F(或φ)) 是由辐射通量导出的量,按其对国际照明委员会(ICI)标 准光度观测仪的作用确定的辐射量。单位:lm(流明) 发光强度(Luminous intensity)(符号:I) 每单位立体角中的光通量。单位:cd(坎德拉)或lm sr-1(流明
ln0.05 P a lnT
a:透射表的基线
中国气象局气象探测中心
中高分辨率地表反照率反演算法

中高分辨率地表反照率反演算法毋杰;张虎;刘朋飞【摘要】为了在中高分辨率地表反照率遥感反演算法中体现地表反射各向异性特征,以两景Landsat-8地表反射率数据为例,利用在时空对应的MODISBRDF产品中提取的地表反射各向异性先验知识,反演得到30m空间分辨率的地表反照率产品,并将结果与朗伯假设地表反照率和地面站点实测反照率数据进行比较.结果表明:①基于朗伯假设所得地表反照率与地表实测反照率存在明显差异,这种差异会随太阳天顶角的变化而变化,最大相对差异约为4%;②基于MODIS BRDF产品提取的地表反射各向异性先验知识可以较好地改善地表反照率的反演精度,与地面实测数据具有更好的一致性.【期刊名称】《天津师范大学学报(自然科学版)》【年(卷),期】2017(037)002【总页数】5页(P45-49)【关键词】各向异性特征;地表反照率;先验知识;反演精度;两景Landsat-8数据;MODIS BRDF产品【作者】毋杰;张虎;刘朋飞【作者单位】天津师范大学城市与环境科学学院,天津300387;天津师范大学城市与环境科学学院,天津300387;天津师范大学城市与环境科学学院,天津300387【正文语种】中文【中图分类】P46;TP701地表反照率是研究地表能量收支平衡和全球气候变化的重要参数之一,也是地面对太阳短波辐射反射能力的体现,其定义为地表反射入射的太阳辐射能量与入射太阳辐射能量的比值[1].地球表面对入射太阳辐射的反射是各向异性的,即反射不仅具有方向性,而且这种方向性还依赖于入射和出射的方向而异[2].反照率是方向反射率在入射和出射半球空间的积分,因此由遥感反射率数据精确反演地表反照率需要考虑地表反射的各向异性特征.目前的研究中,通常采用二项性反射函数(BRDF)描述地表反射的各向异性特性,BRDF为来自入射方向的地表辐照度的微增量与其所引起的反射方向的反射辐射亮度增量间的比值[3].精确地由地表反射率数据反演地表BRDF和反照率需要以数量充足且能够描述地表反射各向异性特征的多角度数据为基础[4].目前,低分辨率地表反照率产品多依赖于时间和空间上累积获取的多角度数据[2],而大部分中高分辨率遥感卫星的重返周期长且一景图像的覆盖能力有限,同时地表经常被云层覆盖,很难在短时间内获得数量充足的多角度数据.中高分辨率遥感可以提供丰富的地表信息,是人类了解地面覆盖情况的有利工具,但一般情况下,这些数据仅有一个靠近天顶方向的观测.为了充分利用中高分辨率遥感数据,提高地表反照率的空间分辨率,通常需要借助于先验知识[5-6].从历史BRDF产品数据集中有效地提取地表反射各向异性先验信息,改善中高分辨率地表反照率的反演精度是目前研究的热点和难点问题之一.Shuai等[7]利用Landsat地表反射率数据和时空对应的MODIS数据,通过对Landsat数据进行分类,并从相应的MODIS纯像元中提取地表反射各向异性先验知识,最终反演了30 m空间分辨率地表反照率产品.Vermote等[8]在2009年提出衡量不同地表类型的BRDF中体散射和几何光学散射强度的参数R和V均与NDVI呈线性关系.基于这一方法,Franch等[9]利用Landsat数据及MODIS CMG数据反演得到了30 m地表反照率产品.中高分辨率地表反照率数据对研究人类活动对地表特征的影响以及全球地表类型和气候变化等具有重要意义.本研究基于Landsat-8提供的单一方向反射率数据,利用由与其时空对应的MODIS BRDF粗分辨率产品提取的地表反射各向异性先验知识,反演30 m空间分辨率地表反照率,并将反演所得结果分别与朗伯假设及地表实测反照率结果进行对比和验证.1.1 核驱动模型核驱动模型用具有一定物理意义的核的线性组合描述地表的二向性反射特征,常用于从多角度观测数据反演地表反照率.核驱动模型将地表的散射特征表示为各向同性散射、体散射和几何光学散射的加权和的形式[10-12]:式(1)中:R为二向反射率;θi为太阳天顶角;θr为观测天顶角;φ为相对方位角;λ为波长;Kvol和Kgeo分别为体散射核和几何光学散射核,均是关于入射角和观测角的函数;fiso、fvol和fgeo均为与波长相关的常系数,分别用以表示各向同散射、体散射和几何光学散射在二向反射率中所作的贡献.核仅与太阳及观测角度有关,与待反演参数无关.核的积分可预先求出,将核的积分以fiso、fvol和fgeo为权重相加,即可求出相应的黑天空反照率αbsa和白天空反照率αwsa[10].将2种反照率以天空直射光和散射光各自所占的比例为权重相加,即可得到真实地表反照率[13]式(2)中:S(θi,τ(λ))为天空散射光所占的比例,是关于气溶胶光学厚度τ、太阳天顶角θi和波长λ的函数.除太阳天顶角较大时,式(2)均可以精确地模拟地表真实反照率.1.2 数据处理陆地卫星Landsat-8地表反射率数据由美国地质调查局提供,数据的空间分辨率为30 m,其大气校正由LEDAPS(Landsat ecosystem disturbance adaptive processing system,LEDAPS)系统实现.两景Landsat数据的分幅号分别为045035和023036,为研究太阳天顶角及不同下垫面对反照率的影响,选用了2015年不同生长季的数据进行研究.所选两景Landsat数据涵盖了地表辐射能量收支观测网(SURFRAD)的2个地面观测站点[7],站点名分别为DRA(desert rock station,DRA)和GWN(goodwill creek,GWN),2个站点的经度和纬度分别为36.623°N、116.019°W和34.255°N、89.873°W,相应的地表类型分别是裸地和草地.地面观测站点的实测反照率数据被用于验证卫星数据反演结果的精度.MODIS是搭载在两颗极地轨道环境遥感卫星Terra和Aqua上的中分辨率成像光谱仪,传感器可实现每日上、下午分别对同一地点观测一次,其最大观测天顶角可达70°.根据半经验线性核驱动模型拟合16 d观测周期内累积的MODIS多角度观测数据,美国国家航空航天局提供了自2000年以来的全球BRDF/反照率产品(MCD43A1),其时间分辨率为8 d,空间分辨为500 m[2,14].在空间范围内,与所选两景Landsat数据对应的MODIS BRDF产品的分幅号分别为H08V05和H10V05.MODIS BRDF产品在本研究中被用于提取地表反射各向异性先验知识,为了保证时间一致,所选MODIS BRDF产品在时间范围上涵盖了相应Landsat数据的观测日期.将由MODIS BRDF产品提取的地表反射各向异性先验知识应用于Landsat地表反射率反演地表反照率时,首先需要用MRT(MODIS reprojection tool,MRT)工具将MODIS BRDF产品由正弦投影转换为横轴墨卡托(universal transverse mercator,UTM)投影;然后根据Landsat的空间范围对MODIS数据进行裁减;最终基于核驱动模型,利用地表反射各向异性先验知识模拟所得方向反射率与Landsat地表反射率间的关系,反演得到地表反照率.此外,Landsat数据和MODIS数据的空间分辨率存在较大差异,本研究主要探索从粗分辨率的MODIS BRDF产品中快速提取地表反射各向异性先验知识,并将其应用于改善中高分辨率地表照率遥感反演精度的方法,因此暂不考虑地表反射各向异性特征的尺度效应.对于地面站点的实测反照率数据,为了尽可能消除随机噪声的影响,使地面实测数据更有代表性,本研究将卫星过境前后10 min实测数据的均值与通过Landsat卫星数据反演所得结果进行比较.1.3 基于先验BRDF知识的反照率反演算法地表反照率的反演过程中需要考虑地表反射各向异性特征,本研究以核驱动模型为基础,将与研究区对应的MODIS BRDF产品的均值作为地表反射各向异性先验知识,通过Landsat天顶方向反射率数据对其进行调整,最终反演得到30 m空间分辨率的地表反照率[5].Landsat仅具有天顶方向附近的反射率数据,假设Landsat的方向反射率为ρ,基于从MODIS BRDF产品中提取的地表反射各向异性先验知识,根据核驱动模型前向计算与实测反射率ρ具有相同观测几何的模拟反射率数据ρ′.参考根据多角度数据和最小二乘法对地表反射各向异性先验知识进行调整的方法[6],当仅有一个方向反射率时,调整系数a可以直接根据具有相同观测几何的实测和模拟方向反射率的比值求出[7].地表反射各向异性先验知识(BRDF′)与调整系数a相乘后所得BRDF,BRDF在Landsat反射率数据观测方向上的结果等于ρ,同时BRDF还能够体现整个空间范围内的反射各向异性特征.调整系数a及待反演的BRDF的计算公式为将反演所得地表BRDF在空间范围内进行积分后即可得到相应的地表黑、白天空反照率,再根据直射光与散射光的比例最终确定真实地表反照率.由于遥感卫星的测量在分离的、波段较窄的不连续波长区域内进行,因此通过上述方法所得反照率为窄波段地表反照率,为了描述真实地表反照率,还需要将其向宽波段(0.3~4.0 μm)反照率进行转换.基于Liang等[15]的研究,Landsat-8窄波段反照率向宽波段反照率的转换方程为式(5)中:α为宽波段地表反照率;αi为第i个波段的窄波段地表反照率.基于Landsat地表反射率数据和与其时空对应的MODIS BRDF产品中提取的地表反射各向异性先验知识,反演得到30 m空间分辨率地表反照率,结果如图1和图2所示.其中,图1给出了2015年2月5日和2015年7月15日,分幅号为045035的Landsat数据及由MODIS BRDF产品提取的地表反射各向异性先验知识反演所得地表反照率产品.图2为基于朗伯假设反演所得地表反照率,即将方向反射率直接作为地表反照率.由图1和图2可以看出,中高分辨率地表反照率可以提供更多的地表细部特征,如山谷的沟壑、地形的起伏等.从时间上来看,2月份研究区域内反照率间的相对差异明显大于7月份的相对差异,主要原因有:①2月份的太阳天顶角较大,在山区形成了较大面积的阴影,造成这些区域对应的反照率较小;②随着时间的变化,2月份的部分裸地在7月份被植被覆盖,造成7月份部分区域地表反照率下降.由图1和图2还可以看出,基于地表反射各向异性先验知识反演所得地表反照率与朗伯假设条件下所得地表反照率具有相似的空间分布特征,但由于朗伯假设没有考虑地表反射的各向异性特征,其反演结果明显大于借助于地表反射各向异性先验知识反演所得地表反照率.此外,朗伯假设对反照率的影响与太阳天顶角有关,图1和2中,2月份和7月份的太阳天顶角分别约为56°和25°,当太阳天顶角较大时,朗伯假设的结果明显大于基于地表反射各向异性先验知识反演所得地表反照率.为了验证基于地表反射各向异性先验知识反演所得地表反照率的精度,利用地表实测反照率数据对反演结果作进一步验证.地面站点的观测范围约为90 m,而Landsat数据的空间分辨率为30 m.地面站点的观测范围在空间内对应了Landsat 数据3×3个像元的范围.为保证不同数据空间范围的一致性,将与地面站点对应的Landsat像元附近3×3个像元的反照率均值与地表实测数据进行对比.图3为DRA站点和GWN站点在2015年2月、4月、7月和10月中4个时间点时,基于先验知识反演所得反照率、基于朗伯假设反演所得反照率与地表实测数据间的对比结果.由图3中对比结果可以看出,在DRA站点,根据地表反射各向异性先验知识所得反照率与地面实测反照率一致性较高,而朗伯假设条件下所得反照率要明显大于地表实测反照率,且这一差异随时间不同而有所改变,最大相对差异约为4%.此外,DRA站点附近春、秋季反照率高于夏季反照率,这是因为春、秋季地表没有或少有植被覆盖,而夏季植被增多造成地表反照率变小.GWN站点的地表类型主要为草地,由于植被对太阳辐射的吸收作用,造成同一时间段该站点处地表反照率数据比地表类型为裸地的DRA站点的反照率低.GWN站点反照率对比结果与DRA站点的相似,即朗伯假设的结果明显大于实测数据,与实测数据间的最大相对差异约为4%,而由地表反射各向异性先验知识反演所得地表反照率与地表实测数据一致性较高.为了研究太阳天顶角对反演结果的影响作用,图3还给出了各Landsat数据的观测太阳天顶角大小.由图3可知,当太阳天顶角较大时,基于朗伯假设反演所得地表反照率明显高于地表实测数据,而基于地表反射各向异性先验知识反演所得地表反照率与地表实测数据一致性较高,这与图1和图2所得结论一致.反照率的反演精度与地表反射各向异性特征及反射率的空间分布位置等密切相关,由于在选取地面站点时,通常要求站点周围地物较为均一,导致朗伯假设在这些位置处的影响并不十分显著,但在其他地表反射各向异性较显著的区域,朗伯假设可能会引入更大的误差.而基于地表反射各向异性先验知识的反演方法考虑了地表反射各向异性特征,可以有效改善地表反照率的反演精度,提供更精确的地表反照率产品.地表反射通常是各向异性的,因此在利用遥感数据反演地表反照率时需要考虑地表反射各向异性特征对地表反照率反演的影响作用.中高分辨率地表反照率产品不仅可以提供下垫面主要的空间分布特征,还可以提供丰富的地表细部特征.本研究从MODIS BRDF产品中快速提取地表反射各向异性先验知识,即以MODIS BRDF产品的均值作为地表反射各向异性先验知识,通过Landsat-8地表反射率数据反演30m地表反照率产品,并将反演所得结果与朗伯假设地表反照率及地面站点实测反照率进行对比,结果表明:(1)基于朗伯假设所得地表反照率与地表实测反照率的差异与太阳天顶角的大小及下垫面的反射各向异性特征密切相关,当太阳天顶角较大时,二者的最大相对差异可达4%左右.(2)基于从MODIS BRDF产品提取的地表反射各向异性先验知识反演所得反照率明显优于朗伯假设所得结果,与地面站点实测数据具有较高的一致性.将MODIS BRDF产品的均值作为地表反射各向异性先验知识,能够在一定程度上改善高分辨率地表反照率的反演精度.中高空间分辨率卫星遥感技术在近几年得到快速发展,对现有反照率产品的验证及其反演算法的改进成为近几年研究的热点.本研究反演算法简单高效,为大规模反演地表反照率提供了方法和思路,在未来研究人类活动对地表特征的影响以及全球地表类型和气候变化等方面具有重要意义.在以后的研究中,将深入研究地表各向异性反射特征对地表反照率的影响作用,从历史BRDF产品中快速、精确地提取地表反射各向异性先验知识,从而改善中高分辨率地表反照率的反演精度.【相关文献】[1] DICKINSON R nd surface processes and climate surface albedos and energy balance[J].Advances in Geophysics,1983,25:305-353.[2] SCHAAF C B,GAO F,STRAHLER A H,et al.First operational BRDF,albedo nadir reflectance products from MODIS[J].Remote Sensing of Environment,2002,83(1/2):135-148.[3] NICODEMUS F E,RICHMOND J C,HSIA J J,et al.Geometrical considerations and nomenclature for reflectance[J].Applied Optics,1977,9:1474-1475.[4]JIN Y F,SCHAAF C B,GAO F,et al.Consistency of MODIS surface bidirectionalreflectance distribution function and albedo retrievals:1. Algorithmperformance[J].Journal of Geophysical Research:Atmospheres,2003,108:4158.[5]LI X W,GAO F,WANG J D,et al.A priori knowledge accumulation and its application to linear BRDF model inversion[J].Journal of Geophysical Research:Atmospheres,2001,106:11925-11935.[6]STRUGNELL N C,LUCHT W.An algorithm to infer continental-scale albedo from AVHRR data,land cover class,and field observations of typical BRDFs[J].Journal of Climate,2001,14:1360-1376.[7]SHUAI Y M,MASEK J G,GAO F,et al.An algorithm for the retrieval of 30-m snow-free albedo from Landsat surface reflectance and MODIS BRDF[J].Remote Sensing of Environment,2011,115:2204-2216.[8] VERMOTE E,JUSTICE C O,BREON F M.Towards a generalized approach for correction of the BRDF effect in MODIS directional reflectances[J].Geoscience and Remote Sensing,2009,47:898-908.[9] FRANCH B,VERMOTE E F,CLAVERIE M.Inter-comparison of Landsat albedo retrieval techniques and evaluation against in situ measurements across the US SURFRADnetwork[J].Remote Sensing of Environment,2014,152:627-637.[10]LUCHT W,SCHAAF C B,STRAHLER A H.An algorithm for the retrieval of albedo from space using semi-empirical BRDF models[J]. IEEE Transactions on Geoscience and Remote Sensing,2000,38:977-998.[11]ROUJEAN J,TANRÉ D,DEUZÉ J,et al.Retrieval of land surface parameters from airborne POLDE R bidirectional reflectance distribution function during HAPEX-Sahel[J].Journal of Geophysical Research:Atmospheres,1997,1021(D10):11201-11218.[12]WANNER W,LI X W,STRAHLER A H.On the derivation of kernels for kernel-driven models of bidirectional reflectance[J].J Geophys Res,1995,100:21077-21089.[13]LEWIS P,BARNSLEY M J.Influence of the sky radiance distribution on various formulations of the Earth surface albedo[C].International Symposium on Physical Measurements&Signatures in Remote Sensing,Isprs,Val d’Isère,France:Centre National d’Etudes Spatiales,1994:707-715.[14]WANNER W,STRAHLER A H,HU B,et al.Global retrieval of bidirectional reflectance and albedo over land from EOS MODIS and MISR data:Theory and algorithm[J].Journalof Geophysical Research:Atmospheres,1997,102:17143-17161[15]LIANG S L.Narrowband to broadband conversions of land surface albedo I:Algorithms[J].Remote Sensing of Environment,2001,76:213-238.。
新版地面气象观测规范

本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载,另外祝您生活愉快,工作顺利,万事如意!第一编总则第1章地面气象观测组织工作气象观测是气象业务工作的基础。
地面气象观测是气象观测的重要组成部分,它是对地球表面一定范围内的气象状况及其变化过程进行系统地、连续地观察和测定,为天气预报、气象信息、气候分析、科学研究和气象服务提供重要的依据。
地面气象观测是每个气象观测站的基本工作任务之一,必须严肃、认真、负责地做好。
由于近地面层的气象要素存在着空间分布的不均匀性和随时间变化的脉动性,因此地面气象观测记录必须具有代表性、准确性、比较性。
代表性--观测记录不仅要反映测点的气象状况,而且要反映测点周围一定范围内的平均气象状况。
地面气象观测在选择站址和仪器性能,确定仪器安装位置时要充分满足观测记录的代表性要求。
准确性--观测记录要真实地反映实际气象状况。
地面气象观测使用的气象观测仪器性能和制订的观测方法要充分满足本规范规定的准确度要求。
比较性--不同地方的地面气象观测站在同一时间观测的同一气象要素值,或同一个气象观测站在不同时间观测的同一气象要素值能进行比较,从而能分别表示出气象要素的地区分布特征和随时间变化的特点。
地面气象观测在观测时间、观测仪器、观测方法和数据处理等方面要保持高度统一。
本规范是从事地面气象观测工作的业务规则和技术规定,观测工作中必须严格遵守。
地面气象观测仪器和业务软件的技术、操作手册是对本规范的必要补充,编制时必须以本规范为依据,其内容不得与之相违背。
地面气象观测人员在认真贯彻执行本规范的同时,也要熟练掌握地面气象观测仪器和业务软件的技术、操作手册中的有关内容,确保正确顺利地完成地面气象观测任务。
本规范的制定、修改和解释权属国务院气象主管机构。
1.1 观测站的分类以及观测方式和任务1.1.1 观测站分类地面气象观测站按承担的观测业务属性和作用分为国家基准气候站、国家基本气象站、国家一般气象站三类,可根据需要设置无人值守气象站。
中国地区近10年地表反照率变化趋势

MC 4 C D 3 3数 据 时 间 分 辨 率 为 8天 , 间 分 辨 空 率 为 0 0 。是 经 过 大 气 校 正 的 基 于 双 向 反 射 函 数 .5, ( R F 模 型 计 算 的 反 照 率 。J n ta B D ) o ah n等 的 研 究 表 明 双 星 数 据 更 为 精 确 。 其 是 在 秋 冬 季 节 的 表 现 更 尤
模 式 计算 的地 表 反 照 率 进 行 了 埘 比 , 分 析 了模 式 并 计 算 存 在 误 差 的可 能 原 冈 。研 究 发 现 模 式 计 算 的 反
照 率 存 植 被 稀 疏 地 区 偏 差 较 大 , 积 雪 变 化 的 复 杂 对 性 难 以应 对 , 式 中 对 下 垫 面 类 型 的 划 分 包 含 了 许 模 多 先 验 的 预 定 参 数 , 杂 的 计 算 过 程 中 使 用 了 许 多 复
对 积分而来 , 实 的谱 反照 率 可 由二 者 的线性 真
组 合计算 :
d + ) ( — ) [(7, + ( ( = 1 — 口1 ( ) a ) 、 ( 1)
率变 化趋势 的分析 , 准确估计 气候变化 的趋势 , 对 提
高 中 长 期 的气 候 预 报 水 平 有 重 要 的 意 义 。 以 往 的研 究 针 对 不 同 下 垫 面 状 况 进 行 一 定 的 分 析 , 青 藏 如 高 原 地 区 的 反 照 率 四 季 分 布 和 干 旱 半 f 旱 地 区 的 反
的 特 性 上 取 得 了许 多 进 展 。 。但 是 对 于 大 范 围反 照 率 较 长时 间 的 变 化 趋 势 相 关 研 究 还 较 少 , 多 数 研 大
地面气象观测规范

Contents第一编总则第 1 章地面气象观测组织工作1.1 观测站的分类和观测方式、任务1.2 观测项目1.3 观测程序1.4 时制、日界和对时1.5 地面气象观测员第 2 章地面气象观测场2.1 环境条件要求2.2 观测场2.3 观测场内仪器设施的布置2.4 站址迁移及其对比观测要求2.5 观测值班室第 3 章地面气象观测仪器3.1 地面气象观测仪器的一般要求3.2 地面气象观测仪器的基本技术性能3.3 维护和检验3.4 换用不同技术特性的仪器及平行观测要求第二编气象要素的观测第 4 章云4.1 概述4.2 云状4.3 云量4.4 云高4.5 夜间及特殊情况下云的观测和记录第 5 章能见度5.1 概述5.2 白天能见度的观测5.3 夜间能见度的观测5.4 能见度观测仪第 6 章天气现象6.1 概述6.2 天气现象的特征和符号6.3 观测和记录6.4 天气现象观测仪6.5 纪要栏的记载第 7 章气压7.1 概述7.2 水银气压表7.3 气压计7.4 电测气压传感器7.5 计算海平面气压第 8 章空气温度和湿度8.1 概述8.2 百叶箱8.3 干湿球温度表8.4 最高温度表8.5 最低温度表8.6 温度计8.7 铂电阻温度传感器8.8 毛发湿度表8.9 湿度计8.10 湿敏电容湿度传感器8.11 通风干湿表第 9 章风向和风速9.1 概述9.2 EL型电接风向风速计9.3 EN型系列测风数据处理仪9.4 海岛自动测风系统9.5 轻便风向风速表9.6 单翼风向传感器和风杯风速传感器 9.7 螺旋桨式风向风速感应器第 10 章降水10.1 概述10.2 雨量器10.3 翻斗雨量计10.4 虹吸式雨量计10.5 双阀容栅式雨量传感器第 11 章雪深和雪压11.1 概述11.2 观测地段11.3 雪深观测11.4 雪压观测第 12 章蒸发12.1 概述12.2 E601B型蒸发器12.3 小型蒸发器第 13 章辐射13.1 概述13.2 总辐射的观测13.3 净全辐射的观测13.4 太阳直接辐射的观测13.5 散射辐射与反射辐射的观测 13.6 长波辐射的观测13.7 辐射自动观测仪第 14 章日照14.1 概述14.2 暗筒式日照计14.3 聚焦式日照计14.4 自动观测日照传感器第 15 章地温15.1 概述15.2 玻璃液体地温表15.3 铂电阻地温传感器第 16 章冻土16.1 概述16.2 冻土器第 17 章电线积冰17.1 概述17.2 电线积冰架和观测辅助工具 17.3 观测和记录17.4 注意事项第 18 章地面状态18.1 概述18.2 场地的选择18.3 观测记录第三编自动气象观测系统第 19 章自动气象观测系统19.1 概述19.2 结构及工作原理19.3 硬件19.4 系统软件19.5 采样和算法19.6 安装19.7 日常工作19.8 维护19.9 自动气象站网第四编记录处理和报表编制第 20 章月地面气象记录处理和报表编制20.1 月报表的编制要求20.2 月报表的填写规定20.3 观测记录的计算机处理20.4 观测记录的统计方法20.5 三次观测站02时记录的统计规定20.6 夜间不守班站天气现象的填写方法和统计规定20.7 月报表格式第 21 章月气象辐射记录处理和报表编制21.1 月报表的填写规定21.2 观测记录的计算机处理21.3 观测记录的统计方法21.4 月报表格式第 22 章年地面气象资料处理和报表编制22.1 年报表的编制要求22.2 年报表的填写规定22.3 观测资料的计算机处理22.4 观测资料的统计方法22.5 三次与四次观测、白天守班与昼夜守班观测资料合并统计的规定22.6 站址迁移前后观测记录的统计22.7 年报表的格式第 23 章缺测记录的处理和不完整记录的统计23.1 疑误记录的处理方法23.2 缺测记录的处理方法23.3 不完整记录的统计规定附录附录1 地面气象观测仪器的基本技术性能表1-1 地面气象观测业务准确度要求与常用仪器性能表1-2 人工观测气象仪器技术性能表附录2 湿度参量的计算公式附录3 风力等级表附录4 气象辐射观测常用的公式附录5 气象辐射量新旧符号与单位换算附录6 月观测记录质量检查方法和内容附录7 辐射观测中常用的附表表7-1 时差EQ表表7-2 赤纬DE表表7-3 大气质量m查算表表7-4 日地平均距离修正表表7-5 日出时间(TR)表(地平时)表7-6 日落时间(TS)表(地平时)表7-7 遮光环订正系数CQ2附录8 日照量别日数时数值表第一编总则第1章地面气象观测组织工作气象观测是气象业务工作的基础。
混凝土路面反光性能检测技术规程

混凝土路面反光性能检测技术规程一、前言混凝土路面作为重要的交通设施之一,其反光性能对行车安全至关重要。
因此,为了保障公路交通的安全和畅通,对混凝土路面反光性能的检测必不可少。
本文将从路面反光性能的定义、测试设备、测试方法等方面进行详细介绍,以期为相关人员提供可行的技术规程。
二、路面反光性能的定义路面反光性能是指路面对车辆前灯发出的光线的反射效果。
当车辆在夜间行驶时,路面反光性能良好的路面能将车灯的光线有效地反射回来,使得驾驶员能够更好地看清路面,从而提高行车安全性。
三、测试设备1. 全自动反射仪:全自动反射仪是一种测试路面反光性能的主要设备,它能够测量路面的反光系数、反光角度、反光强度等参数。
使用反射仪测试路面反光性能,能够保证测试结果的准确性和可靠性。
2. 摄像机:摄像机可以用来记录测试结果,以备后续分析和比对。
对于一些需要长期观察的路面,可以使用摄像机进行实时监测,以便及时发现问题并采取相应措施。
3. 其他辅助设备:如电源、数据线等。
四、测试方法1. 测试前的准备工作(1)测试前,应对测试设备进行检查和校准,确保测试设备的正常工作。
(2)选取测试路段:选择具有代表性的路段进行测试,可选取不同交通流量、路面类型、施工工艺等不同条件的路段进行测试。
(3)测试前,应清理测试路段,保证路面表面干净无尘,以免影响测试结果。
2. 测试过程(1)测试前,应按照测试设备的操作说明,对测试设备进行正确设置和校准。
(2)测试方法:使用全自动反射仪,按照设备操作说明,将测试仪器放置在测试路面上,进行测试并记录测试结果。
(3)测试过程中,应注意测试仪器的放置和移动,以保证测试结果的准确性和可靠性。
3. 测试结果的处理(1)测试结果的处理应根据测试设备的操作说明进行。
(2)测试结果的处理应包括反光系数、反光角度、反光强度等参数的计算和比对。
(3)测试结果的处理应结合实际情况进行分析,对测试结果进行合理解释和说明。
4. 测试报告的编写(1)测试报告应包括测试路段的基本情况、测试方法、测试结果、测试结论等内容。
民用航空气象地面观测规范第4章 能见度

第四章能见度与能见度有关的用语有好几种,彼此很容易混淆。
作为气象用语时是指“白天是指正常视力的人(视觉对比阈值为0.05),在当时天气条件下,能从天空背景中看到或辨认出大小适度的黑色目标物的最大距离;夜间则是指假定总体照明增加到正常白天水平,适当大小的黑色目标物能被看到和辨认出的最大距离或中等强度的发光体能被看到和识别的最大距离”。
所谓“能见”,严格地讲是指在白天用肉眼能辨认出黑色目标物(视角大于0.5°但小于5°)的最大距离,实际工作中指能辨认出目标物是什么物体并能清楚地看出它的轮廓;在夜间,则是指假设亮度和白天相同的情况下,能够辨认出目标物的最大距离,实际工作中则指能够清楚地看见目标灯的发光点。
凡是看不清目标物的轮廓或只能看见目标物的部分轮廓,分不清是什么物体,或者所见目标灯的发光点模糊、灯光散乱,都不能算“能见”。
因此,作为气象用语,能见度是指大气的浑浊程度或是大气的透明度。
不论是昼间还是夜间,只要大气的浑浊度相同,能见度就是一样的。
所以,也可以给气象能见度一个简单的定义:用距离来表示大气浑浊程度的量称为能见度。
国际民用航空公约附件三—《国际航空气象服务》中给出的航空能见度为下面的较大者:一、当在明亮的背景下观测时,能够看到和辨认出位于近地面的一定范围内的黑色目标物的最大距离;二、在无光的背景下,能够看到和辨认出1000cd(1000堪德拉)左右的灯光的最大距离。
该定义中,在给定的大气消光系数下,两个距离具有不同的值,后者随背景亮度而变化,前者用MOR来表示。
这说明,气象能见度与交通部门等单位使用的能见度存在一定差异。
作为气象能见度,它的好坏,在一定程度上反映了大气的稳定度和气团的性质。
气层稳定时,水汽杂质多分布在低层大气中,使能见度变坏;气层不稳定时,由于对流和乱流的作用,将水汽杂质带至高层,使近地面能见度转好。
一般情况下,在冷空气中因水汽杂质较少,能见度较好;在暖空气中,水汽杂质较多,能见度较差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“黑河综合遥感联合试验”中游试验简明观测规范
反照率表观测规范
一、准备工作
反照率观测需要准备一下物品:短波表、电压表、记录表、铅笔、橡皮、卷尺、GPS(如果没有其它组定位)、水准棒、电子表或者手表、三角架、自制横杆(带固定螺丝)、马扎、整理箱。
二、仪器架设
1.打开三角架,初步固定,连接横杆各部分,固定到三角架上。
2.将探头安装到横杆的顶端(指向太阳),小心谨慎,防止探头脱手,不要接触探头玻璃部分。
3.连接数据线,可以将数据线缠绕横杆几圈,注意数据线连接电压表部分不可以短路。
4.利用探头上的水平水柱或者水平棒调整探头水平。
5.为下垫面拍摄相片1-2张,并记录照片号。
三、操作流程
1.按以上步骤架设好仪器。
2.连接数据线,用护套鳄鱼夹连接数据线保证完全接触。
电压表的黑色表笔插入COM口,另一端
接数据线蓝色电线,红色表笔插入V/Ω口,另一端接数据线红色电线。
3.用卷尺测量探头距地面高度(如有植被,还需测量探头距冠层高度),尽量控制探头距冠层高度
为1米,以探头向上时上表面(不包括玻璃罩部分)为准。
4.记录测量日期、样地号、测量人、记录人、短波表编号和天气状况等相关信息。
5.按要求记录电压表读数。
单表与双表测量说明:
1.观测分分为单表测量与双表测量,对应不同的记录表。
2.单表测量法在进行观测时需要先后测量向上与向下两个方向,两次观测时间间隔越短越好。
转
换方向时需要人工使用转杆改变方向,之后重复3-6步骤。
3.双表测量时注意是测量两次探头高度。
四、注意事项
为了防止仪器设备损坏,杜绝不规范操作,获得高精度的观测数据,请牢记以下注意事项:1.三角架必须安置稳当,不要用力拉扯连接探头和电压表的数据线,注意试验人员不要跨数据线
行走而绊到数据线,防止三角架倒下损坏探头。
2.探头方向应指向太阳。
3.测量人员衣物尽量为深色。
4.注意数据线连接电压表部分不可以短路,防止烧坏探头,连接电压表时要完全接触,否则读数
不稳定。
5.不要随意改变电压表的设置,不可以反接数据线,按步骤进行读数和记录的操作,防止误操作
损坏探头和电压表(万用表或电压表设置为mv即可)。
6.不要用手直接接触探头的玻璃罩部分。
7.观测时间最好在上午10点到下午5点之间。
8.在太阳辐射相对稳定的时刻观测,读数变化太快时不宜观测。
9.观测时以探头的高度×8的半径范围内尽量不要有人或者其它物品的干扰。
10.尽量保持地表的原始状态,架设仪器时尽量减少对地表的破坏。
11.将电压表设置在离探头尽可能远的地方,减小读数时对探头造成的影响。
12.注意探头必须保持水平。
13.观测完毕后将仪器整理好装入整理箱内,注意清点所有物品,防止丢失。
14.每天晚上必须及时将数据录入电脑,分析数据。