金属凝固组织的细化方法和机理1

金属凝固组织的细化方法和机理1
金属凝固组织的细化方法和机理1

课程名称:金属凝固指导老师:宋长江,翟启杰教授

金属凝固组织的细化方法和机理

摘要:金属组织细化细化是提高材料性能的一种有效手段。在材料科学领域里,控制金属的凝固过程以细化金属凝固组织是提高铸件性能的重要途径之一,在已有的研究中,控制金属凝固过程以细化凝固组织的方法主要有两类:一是物理细化法,如低温浇注、电磁搅拌、机械振动、超声波细化等,二是化学细化法,如添加形核剂和长大抑制剂等。物理细化方法处理材料纯净度高,不会对金属熔体带来外来夹杂,细化效果好;化学添加剂法细化效果稳定、作用快、操作方便、适应性强,是目前最普遍的细化方法。

关键词:组织细化;细化方法;细化剂;变质剂

Refinement methods and mechanism of solidification structure of metals Abstract: Metal microstructure refinement is an effective means to improve the

properties of materials.In the field of meterial science, To contol the metal solidification process to refine the metal solidification structure is an important way of improving the casting performance. There are two main ways in the previous study: the first one is Physical refining method,such as cast cold, electromagnetic stirring, mechanical vibration, ultrasonic Refining and so on. The other one is chemical method, like the addition of nucleating agents and growth inhibitors. Physical refining method can make the material more pure,and there is no inclusion along with. The chemical method is the most common method of refinement because it’s faster and more stable and easy to operate. Key words:structure refinement; refine method; refiners; modifier

1前言

金属的性能在很大程度上取决于其凝固组织,因此细化凝固组织一直是材料科学领域的重要研究内容,而控制金属凝固过程以细化金属凝固组织是改善铸件性能的重要手段之一。在材料科学领域里,控制金属的凝固过程以细化金属凝固组织是提高铸件性能的重要途径之一,在现有的研究中,控制金属凝固过程以细化凝固组织的方法主要有两类: 一是物理细化法,如低温浇注、电磁搅拌、机械振动、超声波细化等;二是化学细化法,如添加形核剂和长大抑制剂等。1984年,印度学者A K Misra[1~2]在三元合金Pb-15%Sb-7%Sn凝固过程中施加直流电,电流密度为30~40mA/cm2,电压约为30 V,结果发现凝固后的组织得到了细化,

并且第二相分布均匀1990年,M Nakada[3]等首次使用脉冲电流作用于Sn-Pb合金的凝固过程,试验发现,凝固后的组织大部分为球状等轴晶。2007年,翟启杰等[4]研究了脉冲电流对纯铝凝固组织的影响,认定在凝固形核阶段施加脉冲电流可以显著细化纯铝凝固组织,而在液相线以上或晶粒长大阶段施加脉冲电流则没有明显细化效果。目前人们采用了许多办法细化金属的晶粒。细化晶粒的方法按照细化手段可以分为物理和化学两大类。物理方法主要包括形变处理细化法、物理场细化、快速冷却法、机械物理细化法;化学方法可分为添加细化剂与添加变质剂方法。

2.物理细化法

2.1 形变处理细化法

形变处理细化利用各种塑形变形工艺,如轧制、挤压、锻造等,在加工过程中,通过温度、应变、应变速率等参数的配合,利用再结晶或者相变来控制变形态晶粒的尺寸。由于传统的机械变形方法生产微米晶和微米晶材料往往受工件尺寸的限制,不能获得很大的变形量,例如,要求产品厚度为1mm, 则最大真应变量仅能达到 3 ~ 4 mm,当制备亚微米细晶材料时就更加困难了。为了突破总应变量的限制,很多不改变工件形状而获得大变形量的方法被开发出来,并得到了越来越多人的关注。

2.1.1 轧制细化

轧制过程除了使轧件获得一定形状和尺寸之外,还必须使轧件具有一定的组织和性能。温度是金属轧制过程中重要的工艺参数,然而轧制温度偏高,晶粒容易长大而使板材热脆倾向增大。轧制温度偏低,高的应力集中可导致切变断裂;所以轧制温度应保证合金具有最大的塑性而不使其发生碎裂。比如通过控制轧制快速冷却(TMCP)处理低碳钢,得到约5μm的细小α晶粒。TMCP工艺由再结晶γ区轧制、未再结晶γ区轧制、( α +γ ) 二相区轧制和加速冷却4个阶段组成。如图1所示TMCP各阶段是将α晶粒细化法妙地组合在一起,即在第一阶段(再结晶γ 区轧制),粗大的初始γ晶粒经反复轧制,再结晶细化;第二阶段(未再结晶γ区轧制)获得含位错和形变带的加工硬化状态γ组织;第四阶段通过加速冷却,使α相变在尽可能低的温度下进行。其中,能最有效细化α晶粒的方法是在第二阶段的9 00~950 ℃轧制,以获得加工硬化的γ 组织。TMCP 在热轧状态也能获得细小的α晶粒,然而,最小的α晶粒直径也在5 μ m左右。

图1 低碳钢TMCP(控轧、加速冷却)四个阶段及各阶段的组织

Fig.1 Four stages during TMCP(controlled rolling accelerated colling)

and their microstructures for low carbon steel

刘长瑞等人[ 5 ]研究了AZ31镁合金板材在常温下的塑性变形行为,通过挤压-轧制方法获得了晶粒尺寸5 . 2 μ m的镁板。研究结果表明:随着冷轧变形量的增加,晶粒尺寸减小;反之,晶粒的细化也可以使冷变形程度增加,两者存在相互依赖关系。同时他们还发现小变形量、多道次冷轧可以提高板材两次退火间的总变形程度。杨平等人[ 6 ]研究了利用道次间退火改善AZ31镁合金的成形性,在变形速率0 . 0 1 /s 的实验条件下,确定合理的终轧温度为180 ~260℃,并获得了晶粒尺寸为6 . 9 μ m的A Z31镁合金。

2.1.2 挤压细化法

挤压是对放在挤压模内的锭坯一端施以挤压力,在强烈的三向压应力作用下,使之从挤压模孔中流出,从而成为具有一定形状、尺寸和性能的金属制品的一种压力加工方法。挤压可以按金属的流向、挤压制品的形状、挤压时锭坯的温度以及挤压金属的种类进行分类。按照在挤压时金属的流动方向与挤压杆的运动方向的关系,挤压主要分为正向挤压和反向挤压两种。黄光胜[ 7 ]等在研究AZ 31镁合金挤压工艺时发现在挤压过程中均发生了动态再结晶,组织以绝热剪切条纹和细小的α再结晶等轴晶为基本特征,呈现出良好的力学性能,其抗拉强度为2 75 ~285 N/mm2,屈服强度为220 ~225 N/ mm2伸长率为15 %~17 %。重庆大学的汪凌云[ 8 ]等人研究表明再结晶晶粒大小除了与温度有关,还与应变速率有关。随着应变速率增高,变形过程中产生的位错来不及抵消,增加了再结晶形核位置,即位错的增加是晶粒细化的原因。

2.1.3 锻造细化

影响产品韧性的重要因素之一是材料内部的微观组织结构。当成分确定之后,在生产过程中,锻造是能够有效细化晶粒的重要途径。充分利用锻造高温形变的再结晶软化机制,利用合适的变形温度、均匀的变形分布以及其它热力学参数,可以获得满足产品性能要求的均匀细晶。王淑云[ 9 ]等将T i - 47A l - 2Cr - 1 N b 经两次等温锻造和退火处理,使显微组织显著细化,得到晶粒尺寸为15 ~20 μ m 的细小、均匀的组织将7075[ 10 ]合金经多向反复热锻后可使7075铝合金的晶粒尺寸细化到1~2 μ m,由于晶粒的细化,锻件的力学性能有很大提高。退火状态,其室温强度的增幅较大;淬火时效状态,塑韧性的提高十分显著,在保持较高强度的情况下,室温拉伸伸长率高于标准规定值的2倍,接近退火态水平。X ing J 等[ 11 ]利用逐步降温多向锻造 ( multi -direction forging , MDF) 技术,在3 × 10-3s S -1的应变速率条件下,锻造温度从350 ℃逐步降低到150 ℃,使晶粒细化到了230 nm,得到了组织均匀的高性能AZ 31镁合金。

2.2 物理场细化法

物理场对金属凝固作用的研究始于20世纪30年代,但由于当时物理、电子、材料技术的落后,物理场细化凝固组织的研究没有太大的发展。20世纪末期后,随着科技的进步,特别是物理、电子、材料等领域的快速发展,使得大功率电流、磁场、超声波的产生变成可能,目前利用物理场控制凝固组织、细化铸件晶粒、提高铸件质量的研究主要在三个方面:( 1 ) 脉冲电流处理;( 2 )磁场处理;( 3 ) 超声波处理。

2.2.1 脉冲电流处理

脉冲电流可有效地促进金属液生核(装置如图2所示),脉冲电流可以减少形核势垒而增大形核率,从而细化凝固组织。脉冲电流的充放电过程还可以在金属液中造成收缩力,而且在金属液的不同位置,这种收缩力大小不一样,从而使得熔体不同位置的流动速度不同。根据牛顿粘性定律,速度梯度的形成会导致产生剪切应力,当对凝固过程中的金属液施加高压脉冲电流或高频脉冲电流时,产生的剪切力将会撕裂凝固过程中出现的柱状晶,使其成为等轴晶的晶核[ 12 ]。速度梯度形成的对流作用会使其弥散分布于熔体中,从而得到细小均匀的晶粒组织。试验表明,脉冲电流的频率和电压对凝固细晶效果均有影响,且凝固细

晶效果随着脉冲电流频率和电压的提高而增强,但是二者哪个起主导作用,因合金材料及频率和电压范围的不同而异。

图2 电脉冲实验装置示意图

Fig.2 Schematic diagram of experimental apparatus electropulsing

回顾以往研究者对脉冲电流作用下的金属凝固研究,对于凝固组织细化的现象和规律的认识已取得长足进展。在型腔中加入金属网的试验将为深入研究凝固组织细化机理提供崭新思路。可以预见,随相关研究的深入,脉冲电流凝固细晶技术必将广泛应用于工程实践。

2.2.2 磁场处理

电磁处理(如图3所示)是一种没有污染的工艺,而且操作方便,越来越受到人们的重视。液态金属作为载流导体,在外加的交变磁场作用下产生电磁力 , 这种电磁力可以促使载流液体流动。在磁场中,导体的运动产生电动势,从而产生感应电流,导体本身也产生磁场。电磁搅拌就是利用电磁力搅拌正在凝固的液态金属,使己凝固的枝晶破碎并遍布在熔体中,形成更多的有效晶核,并限制晶粒的长大,使熔液凝固过程中固液界面前沿的温度分布趋于一致,从而获得均匀细化的等轴晶组织[13]。訾炳涛[ 14 ]首次研究了用强脉冲磁场改善L Y12 铝合金。结果表明,脉冲磁场能将铝合金的凝固组织从粗大的树枝晶细化为等轴晶,而且磁场愈强,细化效果愈显著。此外,对纯铝进行脉冲磁场处理[ 15],当脉冲频率f 的范围为0 . 1~10 H z,磁感应强度为0 . 3 ~ 3 . 0 T时,纯铝金相组织特性发生了明显变化,不但由原来的粗大柱状晶变成细小均匀的等轴晶,而且对力学性能、耐蚀性、导电性均有很大改善。

图3.磁场处理细化晶粒装置示意图

Fig.3 Experimental set-up of the magnetic field treatment

2.2.3 超声波处理

超声波处理合金熔体使得合金晶粒细化、组织均匀化,这主要是声空化效应和声流效应共同作用的结果。超声波在熔体中传播时,液体分子受到周期性交变声场的作用。在声波稀疏相内,液体受到拉应力,若功率足够大,则液体被拉裂而产生空化泡或空穴,在随后来临的声波正压相内,这些空化泡或空穴将以极高的速度闭合或崩溃,从而在局部熔液中产生瞬时高压(约1010P a )、高温( 约104K )和强烈的冲击波[ 16]。在声空化泡形成长大过程中,空化泡的增大和内部液体的蒸发会从周围吸收热量,这将导致空化泡表面的金属熔液温度降低,造成局部过冷,因此在空化泡附近形成大量晶核。在空化泡崩溃过程中,产生的强烈冲击波会击碎正在长大的晶体,使之成为新的晶体质点。此外,当声空化泡崩溃时在气泡的附近会产生高速的微射流,这种瞬时高速声流具有搅拌作用。声流的搅拌作用可使破碎枝晶弥散分布于熔体的熔池中,从而增加了合金熔体中的晶粒数量。超声波处理细化金属晶粒装置如图4所示。

图4. 超声波实验装置示意图

Fig.4 Schematic diagram of experimental apparatus ultrasonic 国内外均有人研究过超声波对金属凝固的影响,比如Abramov[17]用超声波处理碳钢细化了晶粒,北京科技大学的陈琳等[18 ]采用频率为20 k Hz ,最大电功率为600 W(可调)的超声波发生器,研究了纯铝在熔体直至凝固全过程进行超声处理对铸态组织和性能的影响。研究表明以合适的超声波处理时间和功率对熔融金属处理时,会得到最大的铸锭细化率和细小的等轴晶。随着超声波处理时间的延长,晶粒变得细小;超声波功率增加,晶粒变细,但功率继续增加时晶粒并不明显减小,而是有一最佳值。因此,超声波处理金属熔体,可很好地细化晶粒。

总之,电脉冲、磁场和超声波对金属凝固组织有显著的细化效果,与添加细化剂技术相比,应用这些物理手段控制和细化金属凝固组织可以避免对金属材料本身的污染;随着对材料品质要求的提高,电流、磁场和超声波等物理场凝固细晶技术将会受到广泛的关注,具有更加广阔的应用前景。

3.化学细化法

一般来说细化的化学方法包括添加细化剂和添加变质剂两种方法。添加细化剂(也称孕育剂) 通过增加外来晶核使晶粒细化;添加变质剂是通过加入变质剂合金的共晶组织形态或者第二相的形态来实现细化。

3.1 添加细化剂

金属熔炼时,可以通过向熔体中添加细化剂来形成晶核,使粗大的铸态组织变成细小的等轴晶,从而实现晶粒细化,提高合金的铸造性能、物理性能、力学性能和加工性能。细化剂主要有以下3类[19]。

( 1 )同成分的合金细粉在合金熔体流入锭模或铸型的过程中,把合金粉末加入熔体,从而使整个熔体强烈的冷却。这种方法是控制结晶过程,特别对厚铸件或铸锭结晶过程很有效。这些合金粉末的加入像众多的小冷铁均匀分布在熔体中,使整个熔体得到强烈的冷却,同时形成大量的晶核,并以很大的速度成长。( 2 )通过反应可形成异质晶核的合金元素如向铝熔体中加入少量钛时,它会与铝熔体发生反应,形成与α - A l 具有良好匹配关系的TiA l3,然后,T iAl3与液相发生包晶反应形成A l相,即L +T iA l3→ α - A l,此处T iA l3作为α - A l 的晶核能细化铝合金组织。若向铝合金熔体中加入B,也能形成大量与α - A l有良好匹配关系的TiB2,它们在铝合金中具有很高的稳定性,也可以起到异质核心的作用而细化铝合金的组织。

( 3 ) 具有异质晶核的合金这是一种常用的方法。如向铝合金熔体中加入具有T iB2和T iC 微粒的A l - T i - B、A l -Ti - C,可以使铝合金组织显著细化。由于A l4 C3 为高熔点高稳定性化合物,并且A l4 C3与α - M g均为六方晶系,且晶格常数相近,可作为M g原子的非均质晶核。因此含有高熔点A l4 C3和T iC 颗粒的A l -T i - C中间合金是一种很好的镁及镁合金用的细化剂。

3.2 添加变质剂细化

所谓变质是指加入的合金元素在凝固过程中靠自身形貌或性能的变化而影响晶体生长的现象。在合金中,第二相晶体有三种基本形态,即粒状( 球状、块状和点状等)、棒状( 条状、纤维状等) 和片状。不同的合金中第二相晶体的结构不同,它们的自然生长形态也不同,而晶体的自然生长形态往往是人们不希望得到的弱化合金性能的形状,所以必须通过变质处理改变,获得所需要的第二晶体形态。有变质细化能力的合金元素如稀土、S r、Ca、T i等,偏析能力良好,导致枝晶生长的液-固界面前沿产生成分过冷区,从而阻碍枝晶的生长。

研究最多的变质型中间合金主要是指A l - S i合金中的共晶S i,因为S i未变质时呈粗大的针状或片状,合金的韧性较低;S i变质时改变了形貌和尺寸,由粗大的针状或片状变成细小的纤维状或层片状,从而提高韧性达到改善力学性能的目的。目前,对共晶S i变质的方法主要有钠盐变质、纯金属变质、磷变质和中间合金变质4种。钠盐变质应用广泛,效果较稳定,但产生的有毒气体对环境及人体污染严重;纯金属变质如纯S r,加入铝熔体时易烧损,实际吸收率不高;磷变质一般指赤磷,它烧损大,烟雾污染环境[ 20]。中间合金变质主要指A l

- S r、A l - P、A l -RE、A l - B、A l - S i - S r 等,它们加入量少,吸收率高,变质效果好,对环境污染轻,正逐渐得到铝工业重视,成为其他变质剂的取代者。用化学方法细化,由于其效果稳定,作用快,操作方便,适应性强,是目前使用最广泛的细化方法。

4.结语

近年来,金属细化的研究呈迅速发展趋势,通过晶粒细化等方法改善金属的性能对金属的发展至关重要。目前,晶粒细化的研究已得到了很大发展,但研究过程中尚有认识不明的机理。传统的塑性变形方法,如轧制、挤压、锻造等方法在晶粒细化方面已取得工业应用,但是还需进一步发掘其潜力。等径角挤压技术是制得细晶粒的最有希望投入实际应用的手段,但目前还处于实验室研究阶段或小批量应用阶段。超声波、磁场处理及脉冲电流处理是细化金属凝固组织的有效手段,并且脉冲电流处理还能细化金属再结晶晶粒,但离具体工业应用还存在较大的距离,这些都有待进一步研究,是今后工程技术发展的重点。快速冷却和机械物理细化方法是传统的细化方法,具有一定的生产应用价值。

相对于物理细化方法来说,化学细化的方法简便易行,在实际生产中应用广泛。但是金属凝固组织的变质细化行为对化学成分十分敏感,对一种合金有效的元素对另一种合金可能全无效果,因此有必要针对具体的合金来寻找适当的细化剂,同时以往的研究大都是定性的研究,对合金元素细化晶粒机理的研究涉及较少,有必要对其作用规律和机理两方面进行综合分析。

参考文献:

[1] MISRA A K. A novel solidification technique of metals and alloys : under the influence of applied potential [ J ]. Metallurgical Transactions A.1985,16A:1 354-1 355.

[2] MISRA A K. Effect of electic potentials on solidification of near eutectic Pb-Sb-Sn alloy [J]. Materials Letters. 1986,4(3): 176-177.

[3] NAKADA M , SHIOHARA Y ,FLEMINGS M C. Modification of solidification structure by pulse electric discharging [J]. ISIJ International .1990 ,30(1) : 27-33 .

[4] LIAO Xiliang , ZHAI Qijie,LUO Jun, et al.Refining mechanismof the electric current pulse on the solidification structure of pure aluminum[J]. Acta Materialia. 2007,55(9): 3 103-3 109.

[5] 刘长瑞,等. [ J ] . 轻合金加工技术, 2005 ( 3 ) : 43 .

[6] 杨平, 等. [ J ] . 材料热处理学报, 2005 , ( 2 ) : 34 ~38.

[7] 黄光胜, 等. [ J ] . 金属成形工艺, 2002 , 20 ( 5 ) : 41.

[8] 汪凌云, 等. [ J ] . 中国有色金属报, 2003 , ( 3 ) : 594.[9] 王淑云, 等. [ J ] . 航空材料学报, 2002 , 22 ( 1 ) , 51.

[10] 张小明, 等. [ J ] . 稀有金属材料与工程, 200 3 , 32 ( 5 ) : 28.

[11] X ing J , et a l . [ J ] .Jo ur na l o f Ja pan I ns tit ut e o f Lig h t M e ta ls , 2004 , 54 ( 11 ) : 527.

[12] N a kada M , e t a l . [ J ] . I SI J I nt er na t io na l , 1990 , 3 0( 1 ) :7.

[13] 韩至成. 电磁冶金学[ M] . 北京: 冶金工业出版社, 2001.

[14] 訾炳涛, 等. [ J ] . 物理学报, 2000 , ( 5 ) : 101 0.

[15] 翟启杰, 等. 一种细化纯金属铝凝固组织的方法[ P] . 中国专利,

CN 200410016842 . 2 , 2005 -01-05.

[16] L i X ina o , e t a l . [ J] . U lt r a so nics So no c hemi st r y , 2006 , 13( 2) : 121.

[17] A br a mo v . [ J ] . U l t r a so ni c , 1987 , 25 ( 2 ) : 73.

[18] 陈琳, 等. [ J ] . 物理测试, 2007 , 25 ( 5 ) : 1 4.

[19] 郭景杰, 傅恒志. 合金熔体及其处理[ M] . 北京: 机械工业出版

社, 2005.

[20] 姚书芳, 等. [ J ] . 特种铸造及有色合金, 20 00 , ( 5 ) : 13.

金属凝固原理思考题

金属凝固原理思考题 1.表面张力、界面张力在凝固过程的作用和意义。 2.如何从液态金属的结构特点解释自发形核的机制。 3.从最大形核功德角度,解释0 /= ?dr G d的含义。 4.表面张力、界面张力在凝固过程和液态成形中的意义。 5.在曲率为零时,纯镍的平衡熔点喂1723K,假设镍的球形试样半径是1cm,1μm、μm,其 熔点温度各为多少已知△H=18058J/mol,V m =606cm3/mol,σ=255×107J/cm2 6.证明在相同的过冷度下均质形核时,球形晶核与立方形晶核哪种更易形成。 7.用平面图表示,为什么晶体长大时,快速长大的晶体平面会消失,而留下长的速度较慢的平面。 8.用相变热力学分析为何形核一定要在过冷的条件下进行。 9.证明在相同的过冷度下均质形核时,球形晶核与立方形晶核哪种更易形成。 8.试导出平衡凝固及液相完全混合条件下凝固时T*与f s 的关系。 9.Ge-Ga锭中含有Ga10ppm(质量分数),凝固速度R为8×10-3J/s,无对流现象,试绘出凝 固后锭长度上的成分分布图,给出最初成分、最后过渡区的长度。设D L =5×10-5cm2/s, k = 10.从溶质再分配的角度出发,解释合金铸件中宏观偏析形成的原因及其影响因素。 12.根据成分过冷理论,阐述工艺和合金两个方面的因素对结晶形貌的影响方式。 13.在揭示铸件内部等轴晶的形成机制和控制铸件凝固组织方面,大野美的实验有何意义。14.在片层状规则共晶的生长过程中,界面上各组元原子的扩散运动规律及其与生长速度的关系。 15.在长大速度一定的条件下,温度梯度G L 是否影响规则共晶的片层间距原因何在 16.如何认识液态金属的结构特征,液态金属的结构特征对形核有何影响。 17.试分析表面张力和界面张力形成的物理原因及其与物质原子间结合力的关系。 18.证明在相同的过冷度下均质形核时,体积相同的球形晶核与立方形晶核哪种更易形成。 试导出平衡凝固及液相完全混合条件下T* L 与f L 的关系。19。Al-Cu(w C =1%)合金于单向 凝固中生长速度为3×10-4cm/s,完全没有对流(合金相图中C E =33%(Cu),C Sm =%(Cu),

自然辩证法课后习题答案

自然辩证法 第一章马克思主义自然观 1、如何理解朴素唯物主义自然观、机械唯物主义自然观和辩证唯物主义自然观的辩证关系? 2、如何认识机械唯物主义自然观的局限性? 3、如何把握系统自然观、人工自然观和生态自然观对认识人与自然辨证关系的意义和作用? 4、如何理解马克思主义自然观形成和发展的价值和意义? 5、如何认识生态自然观和生态文明建设之间的辩证关系? 第二章马克思主义科学技术观 1、如何理解18、19世纪科学技术发展与马克思、恩格斯科学技术思想产生的关系? 2、怎样认识马克思、恩格斯的科学技术思想在马克思主义理论体系中的重要地位? 3、马克思、恩格斯和国外学者关于技术本质的分析有何主要差异? 4、如何理解科学技术一体化的特征? 5、为什么说科学发展表现为继承与创新的统一? 6、怎样认识技术发展的动力? 第三章马克思主义科学技术方法论 1、如何理解马克思主义科学技术方法论与科学研究中的具体方法的关系? 2、如何理解辩证思维渗透在科学研究的全部过程中? 3、如何把握创造性思维特性? 4、数学方法的运用对于科学研究是否有创造性的作用? 5、注意多学科的交叉与融通有何方法论意义? 6、掌握系统科学和复杂性科学的方法对于科学研究有何积极意义? 7、观察是否渗透信念? 8、实验有自己独立的生命,是否不需要理论的指导?理论对实验如有指导,是否实验就没有自己独立的生命? 9、技术构思、技术设计和技术试验三者的关系如何? 第四章马克思主义科学技术社会论 1、为什么说“科学是一种在历史上起推动作用的、革命的力量”? 2、如何看待科学技术对人的异化和对自然的异化? 3、科学技术的社会体制和组织机构对科学技术的发展有何意义? 4、为什么要对科学技术工作者进行伦理规范? 5、如何保障科学技术在社会中健康、持续地运行? 6、如何理解科学技术文化与人文文化之间的冲突与协调? 第五章中国马克思主义科学技术观与创新型国家 1、怎样认识毛泽东、邓小平、江泽民、胡锦涛科学技术思想的与时俱进? 2、如何理解胡锦涛“大力发展民生科技”的重要思想? 3、为什么说中国马克思主义科学技术观是一个科学、完整的思想理论体系? 4、如何理解中国马克思主义科学技术观的理论精髓?

金属材料的强化方法

第五章金属材料的强化方法 一、金属材料的基本强化途径 许多离子晶体和共价晶体受力后直到断裂,其变形都属于弹性变形。 而金属材料的应力与应变关系如图5-1所示。 它在断裂前通常有大量塑性变形。它是晶体的一部分相对于另一部分沿一定晶面晶向的相对滑动。但是,晶体的实际滑移过程并不是晶体的一部分相对于另一部分的刚性滑移。 如果是刚性的滑移,则滑移所需的切应力极大,其数值远高于实际测定值。如,使铜单晶刚性滑移的最小切应力(计算值)为1540MPa, 而实际测定值仅为1MPa。各种金属的这种理论强度与实际测定值均相差3~4个数量级。这样的结果,迫使人们去探求滑移的机理问题,即金属晶体滑移的机理是什么?20世纪20年代,泰勒等人提出的位错理论解释了这种差异。 位错是实际晶体中存在的真实缺陷。现已可以直接观察到位错。 图5-2 位错结构

图5-3 位错参与的滑移过程 位错在力τ的作用下向右的滑移,最终移出表面而消失。由于只需沿滑移面A —A 改变近邻原子的位置即可实现滑移,因此,所需的力很小,上述过程很易进行。 由上述的分析可知,金属晶体中的位错数量愈少,则其强度愈高。现已能制造出位错数量极少的金属晶体,其实测强度值接近理论强度值。这种晶体的直径在1μm 数量级,称之为晶须。 由位错参与的塑性变形过程似乎可得到另一结论,即金属中位错愈多,滑移过程愈易于进行,其强度也愈低。事实并不是这样。如图5-4所示。 图5-4 强度和位错与其它畸变 可见,仅仅是在位错密度增加的初期,金属的实际强度下降;位错密度继续增大,则金属晶体的强度又上升。这是因为位错密度继续增加时,位错之间会产生相互作用:1)应力场引起的阻力,如位错塞积,当大量位错从一个位错源中产生并且在某个强障碍面前停止的时候就构成了位错的塞积;2)位错交截所产生的阻力;3)形成割阶引起的阻力(两个不平行柏氏矢量的位错在交截过程中在一位错上产生短位错);4)割阶运动引起的阻力。 金属受力变形达到断裂之前,其最大强度由两部分构成:一是未变形金属的流变应力σl ,即宏观上为产生微量塑性变形所需要的应力。流变应力的大小决定于位错的易动性:晶体内部滑移面上的位错源越容易动作,运动位错在扫过晶体滑移面时所受的阻力越小,则流变应力越低;其二是因应变硬化产生的附加强度,它由塑性变形过程中应变硬化速率 εσd d 和塑性变形量l f εε-来决定。所以,在断裂前的最大强度大致可按下式计算: ?+=f l d d d l εεεε σσσ)(max 工程结构材料主要是在弹性范围内使用的,因此,在构件的设计和使用中,流变应力的重要性更为突出。 对流变应力有贡献的阻力主要是两类:

金属凝固原理思考题解答.docx

金属凝固原理思考题 1.表面张力、界面张力在凝固过程的作用和意义。 2. 如何从液态金属的结构特点解释自发形核的机制。 答:晶体熔化后的液态结构是长程无序,而短程内却存在不稳定的、接近有序的原子集团。由于液态中原子运动较为强烈,在其平衡位置停留时间甚短,故这种局部有序排列的原子集团此消彼长,即结构起伏和相起伏。当温度降到熔点以下,在液相中时聚时散的短程有序原子集团,就可能成为均匀形核的晶胚,从而进行均匀形核。 3.从最大形核功的角度,解释 d G / dr 0 的含义。 4.表面张力、界面张力在凝固过程和液态成形中的意义。 5. 在曲率为零时,纯镍的平衡熔点为 1723K ,假设镍的球形试样半径是 1cm ,1μm 、μ m , 3 7 2 其熔点温度各为多少已知△ H=18058J/mol , V m =606cm/mol ,σ =255×10 J/cm 6.(与第 18 题重复)证明在相同的过冷度下均质形核时,球形晶核与立方形晶核哪种更易 形成。 答:对于球形晶核:过冷液中出现一个晶胚时,总的自由能变化为 G=( 4πr 3 V ) G/3 2 σ。临界晶核的半径为 * ,由 d * =-2 σ / v mm T ,则临界形 +4πr r G/dr=0 求得: r G=2σT /L 核的功及形核功为: * 3 /3 2 3 2 2 G 球=16πσ G v =16πσ T m /3(L m T) . 对于立方形晶核:同理推得临界半径形 r * =-4 σ/ G v ,形核功 * 3 / 2 。 G 方 =32σ G v * * 则 G 球 < G 方,所以在相同的过冷度下均质形核时,球形晶核比立方形晶核更容易。 7.用平面图表示,为什么晶体长大时,快速长大的晶体平面会消失,而留下长的速度较慢的 平面。 8.用相变热力学分析为何形核一定要在过冷的条件下进行。 答:在一定温度下,从一相转变为另一相的自由能变化: G= H-T S 。令液相到固相 转变的单位体积自由能变化为: G V =G S -G L ,(G S 、G L 分别为固相和液相单位体积自由能) 。由 G=H-S 可知, G V =(H S -H L ) —T(S S -S L ) 。由于恒压下, H P =H S -H L =—L m , S m =S S -S L =— L m /T m ,(L m 为熔化热, S m 为熔化熵)。整理以上各式得: G V L m T ,其中 m -T 。由上式可知: T m T=T 要使 G V <0,必须使 T>0,即 T

金属材料的强化机理讲解

材料结构与性能读书报告--金属材料的强化机理

摘要 综合论述金属材料强化原理,基本途径,文章从宏观性能—微观组织结构—材料强化三者的相互依存关系,叙述了材料强化的本质、原理与基本途径作了论述。金属的强化可以改善零件的使用性能,提高产品的质量,充分发挥材料的性能潜力,延长工件的使用寿命,在实际应用中,有着非常重要的意义。对工程材料来说,一般是通过综合的强化效应以达到较好的综合性能。具体方法有固溶强化、形变强化、沉淀强化和弥散强化、晶界强化、位错强化、复相强化、纤维强化和相变强化等。 关键词:强化;细晶;形变;固溶;弥散;相变

Abstract In this paper a summary is made on the principle of material strengthening,basis way and new technology of heat treatment.The essence,principle and basis ways of strengthening various materials were expounded in terms of their microscope properties,microstructure and material strengthening technology.:Metal strengthening can improve the performance of parts, improve the quality of products, give full play to the properties of materials, extend the use of workpiece potential life, in practical applications, has a very important significance. A systematic discussion was made about the explantation of the potential of materials.For engineering materials, it is usually by the strengthening effect comprehensive to achieve good comprehensive performance. Specific methods have solid-solution strengthening,distortion and deposition strengthening ,he complex phase strengthening,fiber reinforced and phase change aggrandizement, etc. Keywords:strengthen; fine grain; deformation; solution; dispersion; phase transition

金属凝固习题答案

《液态金属成型原理》习题一 (第一章 第三章) 1. 根据实验现象说明液态金属结构。描述实际液态金属结构。 实验依据: 1)多数金属熔化有约3-5%的体积膨胀,表明原子间距增加1-1.5%; 2)熔化时熵增大,表明原子排列混乱程度增加,有序性下降; 3)汽化潜热远大于熔化潜热, 比值=15-28,液态结构更接近固态; 4)衍射图的特征可以用近程有序概括;仅在几个原子间距范围内,质点的排列与固态相似,排列有序; 液态金属结构:液体是原子或分子的均质的、密集的、“短程有序”的随机堆积集合体。其中既无晶体区域,也无大到足以容纳另一原子的空穴。与理想结构不同,实际金属含有杂质和合金元素,存在着能量起伏、结实验数据 液体结构定性推论 熔化时,约 3-5%的体积膨 胀。 原子间距增加1-1.5%,排列松散 Lb>>Lm 与固态相比,金属原子的结合键破坏很少部分 熔化时熵增大 排列的有序性下降,混乱度增加 气、液、固相比较,液态金属结构更接近固态

构起伏和成分起伏。 2.估计压力变化10kbar引起的铜的平衡熔点的变化。已知液体铜的摩尔 体积为8.0?10-6m3/mol,固态为7.6?10-6m3/mol,熔化潜热Lm=13.05kJ/mol,熔点为1085?C。 41.56K 3.推导凝固驱动力的计算公式,指出各符号的意义并说明凝固驱动力的本 质。 本质:凝固驱动力是由过冷度提供的,过冷度越大,凝固驱动力越大。 4.在环境压力为100kPa下,在紧靠熔融金属的表面处形成一个直径为2μm 的稳定气泡时,设气泡与液体金属的σ=0.84N/m,求气泡的内压力。 P=100kPa +( 2*0.84N/m)/(1*10-6m)=1780kPa 5.如何区分固—液界面的微观结构? 界面结构判据:Jackson因子α≤2,X=0.5时,?G=min,粗糙界面; α≥3,X→ 0或1时,?G=min,光滑界面; 6.推导均质形核下临界晶核半径和临界形核功,并说明过冷度对二者的影 响

(完整版)自然辩证法课后思考题题答案整理

e a n d A l l e i 2012《自然辩证法概论》 第一章 马克思主义自然观 1.如何理解朴素唯物主义自然观、机械唯物主义自然观和辩证唯物主义自然观的辩证关系? 2. 如何认识机械唯物主义自然观的方法论意义? 3. 如何理解马克思主义自然观形成和发展的价值和意义? 4. 如何把握系统自然观、人工自然观和生态自然观对认识人与自然辩证关系的意义和作用? 5. 如何认识中国马克思主义自然观的理论意义和实践价值?第二章 马克思主义科学技术观 1.怎样认识马克思、恩格斯的科学技术思想在马克思主义理论体系中的重要地位? 2.马克思、恩格斯和国外学者关于技术本质的分析有何主要差异? 3.如何理解科学技术一体化的特征? 4.为什么说科学发展表现为继承与创新的统一? 5.如何理解18、19世纪科学技术发展与马克思、恩格斯科学技术思想产生的关系? 6.怎样认识技术发展的动力?第三章 马克思主义科学技术方法论1.如何把握创造性思维特性? 2.数学方法的运用对于科学研究是否有创造性的作用? 3.掌握系统科学和复杂性科学的方法对于科学研究有何积极意义? 4.实验有自己独立的生命,是否不需要理论的指导?理论对实验如有指导,是否实验就没有自己独立的生命? 5.如何理解马克思主义科学技术方法论与科学研究中的具体方法的关系 6.如何理解辩证思维渗透在科学研究的全部过程中 7.注意多学科的交叉与融贯有何方法论意义8.观察是否渗透信念 9.技术构思、技术设计和技术试验三者的关系如何? 第四章 马克思主义科学技术社会论 1.如何看待科学技术对人的异化和对自然的异化? 2.为什么要对科学技术工作者进行伦理规范?

金属材料的强化方法和位错的关系

陶瓷材料和聚合物材料虽然比较脆,但也有滑移面的存在。金属材料的变形主要是通过滑移实现的,位错对于理解金属材料的一些力学行为特别有用。而位错理论可以解释材料的各种性能和行为,特别是变形、损伤和断裂机制,相应的学科为塑性力学、损伤力学和断裂力学。另外,位错对晶体的扩散和相变等过程也有较大影响。 首先,滑移解释了金属的实际强度与根据金属键理论预测的理论强度低得多的原因。此外,金属材料拉伸断裂时,一般沿450截面方向断裂而不会沿垂直截面的方向断裂,原因在于材料在变形过程中发生了滑移。 其次,滑移赋予了金属材料的延性。如果材料中没有位错,铁棒就是脆性的,也就不可能采用各种加工工艺,如锻造等将金属加工成有用的形状。 第三,通过干预位错的运动,进行合金的固溶强化,控制金属或合金的力学性能。把障碍物引入晶体就可以阻止位错的运动,造成固溶强化。如板条状马氏体钢( F12钢)等。 第四,晶体成型加工过程中出现硬化,这是因为晶体在塑性变形过程中位错密度不断增加,使弹性应力场不断增大,位错间的交互作用不断增强,因而位错运动变得越来越困难。 第五,含裂纹材料的疲劳开裂和断裂、材料的损伤机理以及金属材料的各种强化机制都是以位错理论为基础。 金属的强化 strengthening of metals 通过合金化、塑性变形和热处理等手段提高金属材料的强度,称为金属的强化。所谓强度是指材料对塑性变形和断裂的抗力,用给定条件下材料所能承受的应力来表示。随试验条件不同,强度有不同的表示方法,如室温准静态拉伸试验所测定的屈服强度、流变强度、抗拉强度、断裂强度等(见金属力学性能的表征);压缩试验中的抗压强度;弯曲试验中的抗弯强度;疲劳试验中的疲劳强度(见疲劳);高温条件静态拉伸所测的持久强度(见蠕变)。每一种强度都有其特殊的物理本质,所以金属的强化不是笼统的概念,而是具体反映到某个强度指标上。一种手段对提高某一强度指标可能是有效的,而对另一强度指标

金属凝固原理复习思考题-2011

凝固过程模型的作用。(1)物理模型和数学模型可以定性和定量的描述凝固现象。(2)通过电子计算机数值模拟对凝固过程的研究,有效的控制凝固过程,保证铸件的质量。 为什么说液态金属的结构更接近固态而非气态。(1)能量角度:以面心立方结构其汽化潜热比熔化潜热约大28倍。(2)液态与固态相比,其原子结合键的削弱是不大的。(3)金属由固态转变为液态过程中熵的增值小,可以再次说明,在熔点附近金属的液态结构与固态结构相差不会太大。 液态金属的微观结构有何特点。(1)液体金属原子以近程有序排列排列(2)有能量起伏现象:由于液体中原子热运动的能量较大,每个原子在三维方向都有相邻的原子,经常相互碰撞,交换能量。(3)存在结构起伏:液体中存在的能量起伏造成每个原子集团内具有较大动能的原子能克服邻近原子的束缚,(除了在集团内产生很强的热运动外)还能成簇地脱离原有集团而加入到别的原子集团中,或组成新的原子集团。 液态金属的性质对铸件质量有何影响。 ①粘度对铸坯质量的影响(1)对液态金属流动状态的影响:液态金属流动状态分为紊流和层流。受粘度影响液态金属的流动阻力流动状态。而流动状态直接影响铸坯宏观质量,如气孔等。(2)对液态金属对流的影响:运动粘度越大,对流强度越小。近期研究表明,铸坯的宏观偏析主要受对流的影响。(3)对液态金属净化的影响:粘度越大,夹杂物上浮速度越小,越容易滞留在铸坯中。 ②表面张力对铸坯质量的影响(1)表面张力产生附加压力P=2σ/r,提高金属液中气体析出的阻力。(2)表面张力产生附加压力P=2σ/r,影响金属液与铸型的相互作用。附加压力为正值时(润湿),铸坯表面光滑,但反映铸型型腔的能力较差。附加压力为负值时(不润湿),金属液能很好地反映铸型型腔,但是容易与铸型粘结(粘砂),阻碍收缩,甚至产生裂纹。宽、窄结晶温度范围合金流动停止的机理和特点。 纯金属和窄结晶温度范围:(a)过热量未完全散失前为纯液态流动。(b)冷的前端在型壁上凝固结壳。(c)后边的金属液在被加热的管道中流动,冷却强度下降。由于液流通过I 区终点时,尚有一定的过热度,将已经凝固的壳重新熔化,为第II区。所以,该区是先形成凝固壳,又被完全熔化。第III区是末被完全熔化而保留下来的一部分固相区,在该区的终点金属液耗尽了过热热量。在IV区,液相和固相具有相同的温度——结晶温度。由于在该区的起点处结晶开始较早,断面上结晶完毕也较早,往往在它附近发生堵塞。前端液态金属凝固收缩,形成吸力,产生喇叭状缩孔。 宽结晶温度范围合金:(a)有过热,纯液态流动。(b)温度低于液相线,析出晶体。析出的晶体顺流前进,并不断长大。前端冷却快,晶粒粗大。(c)前端晶粒达到一定数量,结成一个连续的网络,阻碍后边的液态金属流动,流动停止。所联成的网受到后面液态金属向前的推力,造成前突特征。

自然辨证法课后重点

自然辨证法的性质、学科地位。 课程性质:是马克思主义哲学的重要组成部分。 学科地位:他在哲学认识的层面上,处于马哲和科学技术(具体学科)的中间环节。爱因斯坦:它是“全部科学之母”。 自然辨证法的研究对象和内容。 研究对象和范围领域:自然界—科学—技术—社会。与之相适应,自然辩证法的体系和内容是:自然观—科学观—技术观—科学技术与社会。自然辩证法是对科学技术的发展及其社会发展的相互关系进行考察的研究领域。 内容:辩证唯物主义自然观、科学观与科学方法论、技术观与技术方法论、科学技术与社会。古希腊自然哲学的主要问题。 万物的本原 泰勒斯—水;阿那克西米尼—气;赫拉克利特—火;恩培多柯勒“四元素说,火土气”;留基伯和德谟克利特—原子论。 原子论的基本思想:原子是最小不可分、运动不停息的物质微粒;原子在性质上相同,在大小和形状上是多种多样的;原子在无限虚空中彼此吸引和排斥、分离和结合,构成了自然界的多种对象和万物的运动。 近代:道尔顿化学原子论现代:原子结构理论 (2)宇宙的起源和演化恩培多克勒《论自然》,写宇宙 (3)“自然”的含义 是一个自身有生命的、不断的生长发育的有机体。 关于生命起源的一些猜测:生命起源于泥潭;人是鱼变的;心脏是人体中心;脑室思想和感觉的器官。 古代朴素辩证法自然观的基本特点。 特点:直观性、思辨性、猜测性 把自然界当作一个统一的有机体,力图在某种有固定形体的东西中去寻找统一。自然界的一起东西都在运动、变化、产生和消失。对自然界作直观的考察。 机械唯物主义自然观的贡献和局限性。 贡献:摒弃了古代朴素辩证自然观的直观性、思辨性和猜测性,具有较坚定的自然科学基础,在对自然界细节的认识上高于古代,是巨大的进步。 局限性: (1)机械性:以机械的观点看待自然界和人。用力学的尺度去衡量一切,把一切运动的原因归结为力。恩格斯批判:“滥用力的概念。” (2)形而上学性:与当时自然科学研究所运用的分析方法密切相关。 (3)不彻底性:必然导致自然观与历史观的割裂,陷入神学目的论。 林耐:动植物物种和人是上帝创造的;牛顿:上帝是“第一推动力。” 阐述辩证唯物主义自然观创立的自然科学基础。 (1)生产方式的发展与理论自然科学的产生 从18世纪下半叶开始,以蒸汽机为标志的近代以来的第一次技术革命以及随之而来的产业革命促进了资本主义的发展,推动了自然科学的发展。 (2)18世纪末—19世纪中叶,理论科学地主要成就:牛顿,机械自然观;康德 ①天体演化的“星云说” 1755年,康德发表《自然通史与天体论》,提出了太阳起源的星云假说。1796年,法国的

金属材料的强化方法

金属材料的强化方法 金属材料的强化途径,主要有以下几个方面; (1)结晶强化。结晶强化就是通过控制结晶条件,在凝固结晶以后获得良好的宏观组织和显微组织,从而提高金属材料的性能。它包括: 1)细化晶粒。细化晶粒可以使金属组织中包含较多的晶界,由于晶界具有阻碍滑移变形作用,因而可使金属料得到强化。同时也改善了韧性,这是其它强化机制不可能做到的。 2)提纯强化。在浇注过程中,把液态金属充分地提纯,尽量减少夹杂物,能显著提高固态金属的性能。夹杂物对金属材料的性能有很大的影响。在损坏的构件中,常可发现有大量的夹杂物。采用真空冶炼等方法,可以获得高纯度的金属材料。 (2)形变强化。金属材料经冷加工塑性变形可以提高其强度。这是由于材料在塑性变形后位错运动的阻力增加所致。 (3)固溶强化.通过合金化(加入合金元素)组成固溶体,使金属材料得到强化称为固溶强化。 (4)相变强化。含金化的金属材料,通过热处理等手段发生固态相变,获得需要的组织结构.使金属材料得到强化,称为相变强化。相变强化可以分为两类: 1)沉淀强化(或称弥散强化)。在金属材料中能形成稳定化合物的合金元素,在一定条件下,使之生成的第二相化合物从固溶体中沉淀析出,弥散地分布在组织中,从而有效地提高材料的强度,通常析出的合金化合物是碳化物相。在低合金钢(低合金结构钢和低合金热强钢)中,沉淀相主要是各种碳化物,大致可分为三类。一是立方晶系,如TiC、V4C3.NbC 等,二是六方晶系,如M02、W2C、wc等,三是正菱形,如Fe3C。对低合金热强钢高温强化最有效的是体心立方晶系的碳化物。 2)马氏体强化。金属材料经过淬火和随后同火的热处理工艺后,可获得马氏体组织,使材料强化。但是,马氏体强化只能适用于在不太高的温度下工作的元件,工作于高温条件下的元件不能采用这种强化方法。 (5)晶界强化。晶界部位的自由能较高,而且存在着大量的缺陷和空穴,在低温时,晶界阻碍了位错的运动,因而晶界强度高于晶粒本身:世在高温时,沿晶界的扩散速度比晶内扩敞速度大得多,晶界强度显著降低。因此强化品界对提高钢的热强性是很有效的。硼对晶界的强化作用,足由于硼偏集于晶界上,使晶界区域的品格缺位和空穴减少,晶界自由能降低;B还减缓了合金元素沿晶界的扩放过程;硼能使沿晶界的析出物降低,改善了晶界状态,加入微量硼、锆或硼+锆能延迟晶界上的裂纹形成过程;此外,它们还有利于碳化物相的稳定。 (6)综合强化。在实际生产上,强化金属材料大都是同时采用几种强化方法的综合强化,以充分发挥强化能力。例如: 1)固溶强化十形变强化,常用于固溶体系合金的强化。 2)结晶强化+沉淀强化,用于铸件强化。 3)马氏体强化+表面形变强化。对一些承受疲劳裁荷的构件,常存调质处理后再进行喷丸或滚压处理。 4)固溶强化+沉淀强化。对于高温承压元件常采用这种方法,以提高材料的高温性能。有时还采用硼的强化晶界作用.进一步提高材料的高温强度。

《金属凝固原理》思考题解答

金属凝固原理思考题 1. 表面张力、界面张力在凝固过程的作用和意义。 2. 如何从液态金属的结构特点解释自发形核的机制。 答:晶体熔化后的液态结构是长程无序,而短程内却存在不稳定的、接近有序的原子集团。由于液态中原子运动较为强烈,在其平衡位置停留时间甚短,故这种局部有序排列的原子集团此消彼长,即结构起伏和相起伏。当温度降到熔点以下,在液相中时聚时散的短程有序原子集团,就可能成为均匀形核的晶胚,从而进行均匀形核。 3. 从最大形核功的角度,解释0/=?dr G d 的含义。 4. 表面张力、界面张力在凝固过程和液态成形中的意义。 5. 在曲率为零时,纯镍的平衡熔点为1723K ,假设镍的球形试样半径是1cm ,1μm 、μm ,其熔点温度各为多少已知△H=18058J/mol ,V m =606cm 3/mol ,σ=255×107J/cm 2 6. (与第18题重复)证明在相同的过冷度下均质形核时,球形晶核与立方形晶核哪种更易形成。 答:对于球形晶核:过冷液中出现一个晶胚时,总的自由能变化为ΔG=(4πr 3ΔG V /3)+4πr 2σ。临界晶核的半径为r *,由d ΔG/dr=0求得:r *=-2σ/ΔG v =2σT m /L m ΔT ,则临界形核的功及形核功为:ΔG *球=16πσ3/3ΔG v 2=16πσ3T m 2/3(L m ΔT)2. 对于立方形晶核:同理推得临界半径形r *=-4σ/ΔG v ,形核功ΔG *方=32σ3/ΔG v 2。 则ΔG *球<ΔG *方,所以在相同的过冷度下均质形核时,球形晶核比立方形晶核更容易。 7. 用平面图表示,为什么晶体长大时,快速长大的晶体平面会消失,而留下长的速度较慢的平面。 8.用相变热力学分析为何形核一定要在过冷的条件下进行。 答:在一定温度下,从一相转变为另一相的自由能变化:ΔG=ΔH-T ΔS 。令液相到固相转变的单位体积自由能变化为:ΔG V =G S -G L ,(G S 、G L 分别为固相和液相单位体积自由能)。由G=H-S 可知,ΔG V =(H S -H L )—T(S S -S L )。由于恒压下,ΔH P =H S -H L =—L m ,ΔS m =S S -S L =—L m /T m ,(L m 为熔化热,ΔS m 为熔化熵)。整理以上各式得:m m V T T L G ?-= ?,其中ΔT=T m -T 。由上式可知:要使V G ?<0,必须使ΔT>0,即T

自然辩证法课后思考题及复习题

1.自然辩证学科的性质和任务。 (人们认识自然、改造自然界的根本观点和思维方式,是关于自然界、科学和技术发展的一般规律以及人们认识自然和改造自然的一般方法的学问。) (性质: 属于哲学任务:为科学技术发展提供正确的世界观和方法论启迪,以帮助和促进而不是替代科学技术的认识与实践. ) (自然辩证法是关于自然界和自然科学发展的普遍规律的科学。它是马克思主义的自然观和科学观,又是认识自然和改造自然的方法论。自然辩证法是科学技术哲学主要内容之一,主要研究内容有三个方面:自然观——关于自然界的总的看法,包括自然界辩证发展的总图景及其规律性、人与自然的辩证关系等;自然科学观——关于自然科学自身发展及其与社会关系的总看法,包括自然科学的性质结构、发展规律、发展模式及其在社会发展中的地位和与社会的相互关系等;自然科学方法论——关于研究自然界运动、变化规律的一般方法论。)2.人类自然观发展的几个阶段及每个阶段的特点。 古代朴素的自然观(朴素的唯物主义、辩证思想,粗糙,笼统,神秘) 中世纪宗教神学的自然观(大倒退) 宗教改革、文艺复兴和启蒙运动时期的自然观(新旧交替的阶段) 近代机械的自然观(唯物但是机械) 辩证唯物主义自然观(辩证的,联系的) 早期的自然观被马克思主义称之为古代朴素辩证法自然观,它标志着人类对自然界的认识已冲破原始神话和宗教的藩篱,开始了运用理性思维去探索自然的本质和规律,是人类在认识自然的道路上的一次巨大进步。人类对自然的认识终于以自然哲学的形式出现,意味着哲学和自然科学之间存在着天然的联系。为自然观的进一步发展开启了大门。 近代机械自然观,是以机械的观点去看待自然界和人的。它承认自然界是物质的,物质是按规律运动着的,但用纯粹力学的观点来考察和解释自然界的一切现象,认为自然界是一部机械,把自然界的各种运动形式都归结为机械运动形式。 在唯物论方面,由于对自然界在细节方面认识的深入,有利于坚持自然观的唯物主义立场。在机械论方面: 一、将一切运动都归结为机械运动,认为宇宙、人都是机器,抹杀了独特性。 二、外因论,力学,力是使物体状态改变的的原因,所有物体的变化都是外力作用的。 三、机械决定论 虽然它在坚持唯物论方面比古代有了一些进步,但是其机械论和形而上学的观点却是人类对自然界总体认识上的一种倒退,因为它并没有如实地反映自然界的本质,从而也就不可能把唯物论坚持到底。 18-19世纪理论自然科学的产生及其在各个领域涌现出的一系列的重大发现,为马克思主义的辩证唯物主义自然观的建立提供了自然科学的基础, 在人们面前展示了一个全新的自然图景:自然界是普遍联系的,运动发展变化的,并不是如形而上学者所宣扬的那样,孤立的、静止的、不变的,从而在形而上学自然观上打开了一个

(原文)细晶强化的机理及其应用

细晶强化的机理及其应用 摘要:本文讲述了细晶强化的含义及其微观机理,介绍了三种推导Hall-Petch关系式的物理模型,并说明了微量碳在钢铁材料中细晶强化时对Hall-Petch关系式中σ0和k的影响。本文还介绍了一种细晶强化金属材料的新方法-不对称挤压法。 关键词:细晶强化,Hall-Petch关系式,位错。 1 引言 通常金属是由许多晶粒组成的多晶体,晶粒的大小可以用单位体积晶粒的数目来表示,数目越多,晶粒越细。实验表明,在常温下的细晶粒金属比粗晶粒金属有更高的强度、硬度、塑性和韧性。这是因为细晶粒受到外力发生塑性变形可分散在更多的晶粒进行,塑性变形较均匀,应力集中较小;此外,晶粒越细,晶界面积越大,晶界越曲折,越不利于裂纹的扩展。故工业上将通过细化晶粒以提高材料强度的方法称为细晶强化。 细晶强化的关键在于晶界对位错滑移的阻滞效应。位错在多晶体中运动时,由于晶界两侧晶粒的取向不同,加之这里杂质原子较多,也增大了晶界附近的滑移阻力,因而一侧晶粒中的滑移带不能直接进入第二个晶粒,而且要满足晶界上形变的协调性,需要多个滑移系统同时动作。这同样导致位错不易穿过晶界,而是塞积在晶界处,引起了强度的增高。可见,晶界面是位错运动的障碍,因而晶粒越细小,晶界越多,位错被阻滞的地方就越多,多晶体的强度就越高,已经有大量实验和理论的研究工作证实了这一点。另外,位错在晶体中是三维分布的,位错网在滑移面上的线段可以成为位错源,在应力的作用下,此位错源不断放出位错,使晶体产生滑移。位错在运动的过程中,首先必须克服附近位错网的阻碍,当位错移动到晶界时,又必须克服晶界的障碍,才能使变形由一个晶粒转移到另一个晶粒上,使材料产生屈服。因此,材料的屈服强度取决于使位错源运动所需的力、位错网给予移动位错的阻力和晶界对位错的阻碍大小。晶粒越细小,晶界就越多,障碍也就越大,需要加大外力才能使晶体产生滑移。所以,晶粒越细小,材料的屈服强度就越大。 细化晶粒是众多材料强化方法中唯一可在提高强度的同时提高材料塑性、韧性的强化方法。其提高塑性机制为:晶粒越细,在一定体积的晶粒数目多,则在同样塑性变形量下,变形分散在更多的晶粒进行,变形较均匀,且每个晶粒中塞积的位错少,因应力集中引起的开裂机会较少,有可能在断裂之前承受较大的变形量。提高强度机制为:晶界增多,而晶界上的原子排列不规则,杂质和缺陷多,能量较高,阻碍位错的通过。 2 细晶强化的经典理论 一般而言,细晶试样不但强度高,而且韧性也好。所以细晶强化成为金属材料的一种重要强化方式,获得了广泛的应用。在大量试验基础上,建立了晶粒大小与金属强度的定量关系的一般表达式为: σy=σ0+kd-n (1)式中,σy为流变应力,σ0为晶格摩擦力,d为晶粒直径,k为与材料有关的参数,指数n常

第四章课后作业解答

第四章课后作业解答 练习一 一、判断题(T 或F ) 1、T; 2、F; 3、F; 4、T; 5、F; 6、T; 7、T; 8、F; 9、T; 10、 二、问答题 1、答: (1)图(a )及图(b)分别属于“固相无扩散而液相充分混合均匀”及“平衡凝固”溶质再分配情况。 (2)图(b)中: C s C S =?的物理内涵为:液固界面上刚刚析出的固相成分与固相整体平均成分一致。从另一角度说,固相不同部位的成分处处相同。 C 的物理内涵为:液固界面上的液相成分与液相整体平均成分一致。从另一角度说,液相不同部位的成分处处相同。 L L C =?上述物理内涵的原因在于,在图(b)描述的 “平衡凝固”溶质再分配情况下,固相、液相的成分在凝固过程的任一瞬间(或温度)与平衡相图的固相线、液相线吻合,固相及液相成分能够及时地、充分地均匀化。 2、答:(1)、(2)、(3)、(4)的内容见下图。 C 0 C 0 K C 0/K 0 X (5)若凝固速度R 突然降低到R 12定值时,在新、旧 稳定状态之间,由于< K C ,所以C ? L C S <C 0。重新恢复到稳定时,C S 又回到C 。如右图所示。 03、答:在“液相中部分混合”的溶质再分配条件下,当达到稳定状态时,由于C 表 达式右端分母必然大于平衡分配系数K ?L ,所以其C ?值必然小于C /K 000L ,即稳定状态时,其C ?值小于“液相只有有限扩散”的C ;又因为C = K ?L L ?S 0 C ,所以其时C 也小于C ?L ? S (“液相只有有限扩散” 稳定状态的C ?) 。 0S 从实际物理过程看,由于“液相只有有限扩散”条件下液相无对流存在,而“液

(完整版)自然辩证法概论_课后题答案

1.1 何谓自然观?它与自然科学的发展有怎样的联系? (1)自然观是人们对于自然界的根本看法或总的观点,它既是世界观的重要组成部分,又是人们认识和 改造自然的方法论。 (2)自然观是建立在科学的发展的基础上,是对自然科学的总结和概括,它随着科学技术的进步而逐渐 发展;正确、科学、先进的自然观将指导科学取得更大的进步与发展。 1.2 在人类历史上,唯物主义自然观经历了哪几个重要形态?试评述古朴和机唯自然观。 (1)唯物主义自然观的演变经历了三个阶段:古代朴素辩证法自然观、机械唯物主义自然观和辩证唯物 主义自然观。(2)古代朴素辩证法自然观的基本特点是直观性、思辨性和猜测性。它的产生,标志着人类对自然界的认识已冲破原始神话和宗教和藩篱,开始运用理性思维去探索自然的本质和规律。(3)近代机械唯物主义自然观摒弃了古代朴素辩证法自然观的直观性、思辨性和猜测性,是巨大的进步,对于近代自然科学和唯物主义哲学的发展有历史性的贡献。但它的局限性表现在机械性、形而上学性和不彻底性。 1.5 辩证唯物主义自然观的创立有何重大意义? (1)实现了自然观发展史上的革命性变革。(2)为马克思主义的科学观、科学方法论以及科学与社会的 研究奠定了理论基础。(3)为科学与技术提供了世界观、认识论、方法论与价值论的理论前提。(4)为自然科学与人的科学的结合提供了理论依据。 2.2 什么是系统?如何理解系统是自然界物质的普遍存在方式?系统的基本特点是什么? (1)系统的含义:所谓系统,是由若干相互联系、相互作用的要素组成的具有特定结构与功能的有机整体。这一概念包含以下四个要义:①系统是由若干要素组成的,要是构成系统的组成部分或单元,单一要素不能成为系统,即系统内部具有可分析的结构;②系统在于“系”,即系统内诸要素之间,系统要素与系统整体之间相互联系,相互作用,形成特定的结构;③系统还在于“统”,即要素彼此之间联系成为一个统一的有机整体;④系统作为一个整体对环境表现特定的功能,功能之所以为整体所具有,是由于功能以结构为载体,并在系统诸要素的功能耦合中突现出来。 (2)系统是自然界物质存在的普遍方式: ①不仅要把整个自然界看做一个系统,而且要认识到自然界中的所有物质客体都自成系统。②自然界的一切物质客体不仅自成系统,而且又互成系统。③系统与要素的规定是相对的。 (3)系统的特点:①开放性依据系统与外界环境之间是否存在物质、能量和信息的交换,可以将其区分为孤立系统、封闭系统和开放系统。自然界的物质系统都是与环境存在相互作用的开放系统。②动态性现实的自然系统都是开放系统,都有物流、能流、信息流的不断运动,任何自然系统的这种运动、发展、变化过程,就是它的动态性。③整体性整体性是自然系统最突出、最基本的特征。系统的整体性是指系统的各个要素按一定的方式组成有机整体,系统是诸要素的有机集合而不是各要素的简单机械相加。因此,系统具有各要素所不具有的性质和功能。④层次性系统的层次性是指一方面系统由一定的要素组成,这些要素是由更小一层次的要素组成的子系统,另一方面系统自身又是更大系统的组成要素。 3.1 从生态自然观的产生说明这种自然观是对辩证唯物主义自然观的丰富和发展。 生态自然观是系统自然观在人类生态领域的具体体现,是辩证唯物主义自然观的现代形式之一。马克思、恩格斯的生态思想是现代生态自然观的直接的理论来源。 1)马克思、恩格斯生态思想的基本观点 <1> 自然界是人类生存和发展的前提和基础<2> 环境创造人,人也创造环境。<3> 自然生产力是社会生产力的基础。<4> 人要与自然和谐一致。<5> 改革不合理的社会制度,是实现人与自然协调发展的重要途径。 2) 以生态科学为基础的生态自然观是当代人类对“生态危机”进行反思和对生态科学进行概括与总结的结晶。“生态危机”是指由于人类不合理的活动,在全球规模或局部区域导致生态过程即生态系统的结构和功能的损害、生命维持系统瓦解,从而危害人的利益、威胁人类生存和发展的现象。其表现为:人口激增、自然资源消耗、短缺、环境污染。现代生态学的发展,特别是人类生态学的研究彰显了人在生态系统中的位置,具体而生动的体现了人与自然的关系。

材料强化基本原理

第十章材料的强韧化 第一节材料强化基本原理 结合键和原子排列方式的不同,是金属材料、陶瓷材料、高分子材料力学性能不同的根本原因。通过改变材料的内部结构可以达到控制材料性能的目的。不同种类的材料,提高其强度的机理、方法也不同。 一、金属材料的强化原理 纯金属经过适当的合金化后强度、硬度提高的现象, 称为固溶强化。其原因可归结于溶质原子和位错的交互作 用,这些作用起源于溶质引发的局部点阵畸变。固溶体可 分为无序固溶体和有序固溶体,其强化机理也不相同。 (1)无序固溶强化固溶强化的实质是溶质原子的 长程应力场和位错的交互作用导致致错运动受阻。溶质相 位错的交互作用是二者应力场之间的作用。作用的大小要 看溶质本身及溶质与基体之间的交互作用,这种作用使位 错截交成弯曲形状。如图10—l所示. 图中的A、B、C表示溶质原子强烈地钉扎了位错。 x—x',A未被钉扎的乎直位错线,被钉后呈观曲线形状。 处于位错线上的少数溶质原子与位错线的相互作用很强, 这些原子允许位错线的局部曲率远大于根据平均内应力 求出的曲率。钉扎的第一个效应就是使位错线呈曲折形 状。相对于x—x'的偏离为x在受到垂直方向的外加切应力τ作用下,由于B点位错张力的协助作用,将使ABC段位错移到AB'C,在B'处又被钉扎起来。位错之所以能够这样弯曲,其原因是因位错长度的增加而升高的弹件能被强钉扎所释放的能量抵偿旧有余,位错的弹性能反而有所降低.位错经热激活可以脱钉,因而被钉扎时相对处于低能态。在切应力τ的作用下,ABC 段移动到AB'C.ABC和AB'C是相邻的平衡位置,阻力最大在位错处于中间位置AC时产生,外加切应力要克服这样的阻力方可使位错移动。若AC≈2y,ABC比2y略大,近似地当作2y。由ABC变为AC方面要脱钉需要能量,另一方面要缩短位错长度释放能量。总共需要 式中:Eb是位错脱扎所需能量;EI为单位长度位错由于加长而升高的能量,EI与Eb相比小而略去。由ABC 变为AC,平均位移为x/2,外加切应力需要做功为τb(2y)·x/2,故

相关文档
最新文档