可控硅(晶闸管)
可控硅的工作原理

可控硅的工作原理
可控硅(也叫做晶闸管)是一种用于控制电流流动的半导体器件。
它的工作原理基于PN结的特性和未加偏压时的绝缘行为。
可控硅的结构由三个不同区域形成:P型区、N型区和P型区。
根据不同的控制电压,可控硅可以处于三种不同的工作状态:封锁状态、导通状态和关断状态。
在封锁状态下,当两个P-N结之间未加控制电压时,可控硅
表现出绝缘行为,电流无法通过。
然而,一旦加上一个正向偏压,使得P结和N结之间的电势差大于某个阈值电压(称为
开启电压),可控硅进入导通状态。
在导通状态下,可控硅的P-N结产生了电子和空穴对,使得
电流可以通过器件。
而且,一旦可控硅进入导通状态,即使控制电压被移除,它仍将维持导通状态直到电流降至零或反向电压被施加。
为了将可控硅从导通状态切换到关断状态,需要施加一个反向电压或者减小电流至其维持电流以下。
这样,可控硅就会进入关断状态,电流无法通过。
总结来说,可控硅的工作原理是通过施加正向偏压使其进入导通状态,而施加反向电压或减小电流使其进入关断状态。
这使得可控硅成为一种非常有用的电力控制器件。
IGBT、晶闸管(可控硅)、MOS场效应管的测量

IGBT、晶闸管(可控硅)、MOS场效应管的测量IGBT好坏判断:将万用表拨在R×10KΩ挡,用黑表笔接IGBT 的漏极(D),红表笔接IGBT 的源极(S),此时万用表的指针指在无穷处。
用手指同时触及一下栅极(G)和漏极(D),这时IGBT 被触发导通,万用表的指针摆向阻值较小的方向,并能站住指示在某一位置。
然后再用手指同时触及一下源极(S)和栅极(G),这时IGBT 被阻断,万用表的指针回到无穷处。
此时即可判断IGBT 是好的。
注意:若进第二次测量时,应短接一下源极(S)和栅极(G)。
任何指针式万用表皆可用于检测IGBT.注意判断IGBT 好坏时,一定要将万用表拨在R×10K Ω挡,因R×1KΩ挡以下各档万用表内部电池电压太低,检测好坏时不能使IGBT 导通,而无法判断IGBT 的好坏。
此方法同样也可以用于检测功率场效应晶体管(P-MOSFET)的好坏.场效应管好坏的简单判断:用机械万用表的R×1挡,红表笔接场效应管的漏极D,黑表笔接源极s,这时表针应该摆在中间位置,除这样测量有阻值以外,其余各脚问都不应该有阻值,然后交换表笔,黑表笔接D,红表笔接s,万用表置高阻挡(内部电池电压高),用左手的食指触摸一下G极,此时表针如果摆动到接近零位,说明场效应管是好的.晶闸管(可控硅)的好坏判断:1、将万用表拨在R×1Ω挡,黑笔接A(阳极),红笔接K(阴极),指针不动;2、短接A(阳极)、G(控制极),指针向右摆动,读数为几十Ω;3、断开导线,读数不变,指针保持不动;4、短接G(控制极)、K(阴极),指针回归到原位置无穷大处。
场效应管的好坏判断:1、R×10KΩ档,黑笔接G,红笔接S,充电3秒,指针不动;2、黑笔接D,红笔接S,指针回摆到0Ω附近,说明触发成功;3、红笔接G,黑笔接S,指针在左边无穷大处;4、黑笔接D,红笔接S,指针在左边无穷大处,说明MOS管是好的。
晶闸管

峰值电压。
反向重复峰值电压URRM
——在门极断路而结温为额定值 时,允许重复加在器件上的反向 峰值电压。
2)额定电流 通态平均电流 IT(AV)
——在环境温度为40C和规定的冷却状态下,稳定结温 不超过额定结温时所允许流过的最大工频正弦半波电流的 平均值。标称其额定电流的参数。 ——使用时应按有效值相等的原则来选取晶闸管。
1-20
3、型号KP100-3、维持电流 IH=4mA的晶闸管,使用在下图 中是否合理?为什么?(不考虑裕 量)
(1)
(2)
1-21
(3)
1-22
1-13
4)其他参数
(1)维持电流 IH ——使晶闸管维持导通所必需的最小电流。 (2)擎住电流 IL ——晶闸管刚从断态转入通态并移除触发 信号后, 能维持导通所需的最小电流。 对同一晶闸管来说,通常IL约为IH的2~4 倍。 (3)浪涌电流ITSM ——指由于电路异常情况引起的并使结温 超过额定结温的不重复性最大正向过载电 流。 (4)门极触发电流IGT/触发电压UGT
2.2
半控器件—晶闸管· 引言
晶闸管(Thyristor):晶体闸流管,可控硅整流 器(Silicon Controlled Rectifier——SCR)
1956年美国贝尔实验室发明了晶闸管。 1957年美国通用电气公司开发出第一只晶闸管产品。 1958年商业化。 开辟了电力电子技术迅速发展和广泛应用的崭新时代。 20世纪80年代以来,开始被全控型器件取代。 能承受的电压和电流容量最高,工作可靠,在大容量 的场合具有重要地位。
雪崩 击穿
-IA
图1-8 晶闸管的伏安特性
IG2>IG1>IG
(2)反向特性
反向特性类似二极管的反 向特性。 反向阻断状态时,只有极 小的反相漏电流流过。 当反向电压达到反向击穿
什么是晶闸管及其分类

什么是晶闸管及其分类
晶闸管是晶体闸流管(Thyristor)的简称,谷称可控硅,它是一种大功率开关型半导体器件,在电路中用文字符号为“V”、“VT”表示(旧标准中用字母“SCR”表示)。
晶闸管具有硅整流器件的特性,能在高电压、大电流条件下工作,且其工作过程可以控制、被广泛应用于可控整流、交流调压、无触点电子开关、逆变及变频等电子电路中。
一、晶闸管的种类
晶闸管有多种分类方法。
(一)按关断、导通及控制方式分类
晶闸管按其关断、导通及控制方式可分为普通晶闸管、双向晶闸管、逆导晶闸管、门极关断晶闸管(GTO)、BTG晶闸管、温控晶闸管和光控晶闸管等多种。
(二)按引脚和极性分类
晶闸管按其引脚和极性可分为二极晶闸管、三极晶闸管和四极晶闸管。
(三)按封装形式分类
晶闸管按其封装形式可分为金属封装晶闸管、塑封晶闸管和陶瓷封装晶闸管三种类型。
其中,金属封装晶闸管又分为螺栓形、平板形、圆壳形等多种;塑封晶闸管又分为带散热片型和不带散热片型两种。
(四)按电流容量分类
晶闸管按电流容量可分为大功率晶闸管、中功率晶闸管和小功率晶闸管三种。
通常,大功率晶闸管多采用金属壳封装,而中、小功率晶闸管则多采用塑封或陶瓷封装。
(五)按关断速度分类
晶闸管按其关断速度可分为普通晶闸管和高频(快速)晶闸管。
图8-1是晶闸管的分类图,图8-2是晶闸管的外形,图8-3是晶闸管的电路图形符号。
bta41600可控硅参数

bta41600可控硅参数
BTA41600是一种可控硅(也称为晶闸管)型号,具有以下主要参数:
额定电压(VDRM):额定电压是可控硅能够承受的最大反向电压,通常以VDRM表示。
对于BTA41600来说,额定电压可能为400V,表示可控硅在正常工作条件下能够承受的最大反向电压为400伏特。
平均电流(IT(RMS)):平均电流是可控硅能够承受的最大平均电流,通常以IT(RMS)表示。
对于BTA41600来说,平均电流可能为16A,表示可控硅在正常工作条件下能够承受的最大平均电流为16安培。
额定门极触发电流(IGT):额定门极触发电流是可控硅能够触发的最小门极电流,通常以IGT表示。
对于BTA41600来说,额定门极触发电流可能为50mA,表示当门极电流达到50毫安时,可控硅将开始导通。
额定封闭电压(VTM):额定封闭电压是可控硅在导通状态下的最大压降,通常以VTM表示。
对于BTA41600来说,额定封闭电压可能为1.6V,表示在正常工作条件下,可控硅导通时的压降为1.6伏特。
触发时间(tq):触发时间是可控硅从开始触发到完全导通所需的时间,通常以tq表示。
对于BTA41600来说,触发时间可能为50微秒,表示从门极电流达到额定门极触发电流开始,到可控硅完全导通所需的时间为50微秒。
封装类型:BTA41600可控硅可能采用不同的封装类型,常见的封装类型包括TO-220、TO-220AB等。
以上是BTA41600可控硅的一些主要参数,具体的参数可能会因
制造商、生产批次等因素而有所不同,请参考数据手册或产品规格表获取准确的参数信息。
3ct103s可控硅的参数

3CT103S是一种可控硅(晶闸管)器件,其参数包括电气特性、物理特性、热特性和其他参数。
首先,从电气角度来看,3CT103S是一种大功率的可控硅。
其触发电流通常在10-50毫安之间,触发电压则在1.5-3伏特之间。
这种器件的额定正向平均电流为10安培,反向峰值电压为800伏特,而正向阻断峰值电压则高达1600伏特。
这种器件的关断时间通常在5-25微秒之间,而其开通时间则介于15-60微秒之间。
其次,从物理角度来看,3CT103S是一种平板式可控硅,具有三个引脚。
其外壳通常采用TO-220封装,这种封装具有优良的散热性能和方便的安装方式。
再者,从热角度来看,3CT103S具有较高的热稳定性和耐热性。
其额定结温为125摄氏度,最大结温则为150摄氏度。
此外,该器件具有较低的功耗和较高的热阻,有利于提高其热性能。
最后,其他参数包括其储存温度范围为-40至+150摄氏度,重量为4克(仅指TO-220封装),并且符合RoHS标准。
总的来说,3CT103S可控硅是一款性能优良的大功率半导体器件,适用于各种需要大功率控制的应用场景。
然而,使用时仍需注意其参数特性,以确保安全和稳定的工作。
晶闸管如何关断,双向晶闸管关断条件
晶闸管如何关断,双向晶闸管关断条件
晶闸管如何关断,双向晶闸管关断条件
双向晶闸管导通条件:一是晶闸管(可控硅)阳极与阴极间加正向电压,二是控制极也要加正向电压。
两个条件具备,晶闸管(可控硅)才会处于导通。
晶闸管(可控硅)一旦导通后,即使降低控制极电压或去掉控制极电压,晶闸管(可控硅)仍然导通。
双向晶闸管(可控硅)关断条件:降低或去掉加在晶闸管(可控硅)阳极至阴极的正向电压,使阳极电流小于最小维持电流以下。
1.晶闸管的导通条件
(1)闸管导通的条件是:阳极承受正向电压,处于阻断状态的晶闸管,只有在门极加正向触发电压,才能使其导通。
门极所加正向触发脉冲的最小宽度,应能使阳极电流达到维持通态所需要的最小阳极电流,即擎住电流IL以上。
导通后的晶闸管管压降很小,使导通了的晶闸管关断的条件是使流过晶闸管的电流减小至一个小的数值,即维持电流IH一下。
(2)闸管导通的方法如下:
1)减小正向阳极电压至一个数值一下,或加反向阳极电压;
2)增加负载回路中的电阻。
2.晶闸管的关断的条件
(1)闸管关断的条件是:使主端子间的正向电流小于维持电流。
(2)晶闸管的关断方法有:
1)减小主端子A、K之间之间的正向电压,直至为零,或加反向电压;
2)利用储能电路强迫关断。
晶闸管可控硅与mos管
晶闸管可控硅与mos管
晶闸管、可控硅和MOS管都是电子器件,它们在电子电路中起着不同的作用和功能。
让我从不同的角度来回答你关于这些器件的问题。
首先,让我们来看看晶闸管和可控硅。
晶闸管是一种四层半导体器件,它具有双向导通特性,可以用于控制交流电流。
而可控硅是一种三层半导体器件,也被称为双向可控硅,它可以用来控制大功率的交流电路。
晶闸管和可控硅都可以用来控制电流,但可控硅通常用于更高功率的应用,如电动机控制和电炉控制。
另一方面,MOS管是金属氧化物半导体场效应晶体管的简称。
它是一种三端器件,通常用作电压控制开关。
MOS管可以在数字电路和模拟电路中使用,它的特点是具有高输入阻抗和低功耗。
MOS 管在集成电路中得到了广泛的应用,例如微处理器和存储器。
从应用角度来看,晶闸管和可控硅通常用于功率控制和变频调速领域,如交流调压器和交流调速器。
而MOS管则广泛应用于数字集成电路、模拟集成电路和微处理器等领域。
总的来说,晶闸管、可控硅和MOS管都是重要的电子器件,它们在不同的领域和应用中发挥着重要作用。
通过深入了解它们的特性和功能,我们可以更好地选择和应用这些器件,从而满足不同电路和系统的需求。
希望这些信息能够帮助你更好地理解晶闸管、可控硅和MOS管。
晶闸管调功器说明
目前,在交流电源领域中,可控硅有两种基本控制方式:调功(调节功率 P)与调压(调节电压 V)。 相应的产品称之为:调功器与调压器。调功、调压作为两个不同的概念,在使用中也是有所区别的。
(1) 调功器
调功器也称之为周波数控制器,可控硅在电压(或电流)过零点导通,也截止于电压(或电流)过零 点,因此输出的波形为完整的正弦波。如果设定一个固定的时间周期 T,在这个周期时间内,通过控 制导通时间 TON 与截止时间 TOFF,就可以达到控制输出周波数(导通率)的目的。见图一。
1、环境温度 -10℃ ~ +55℃ 2、空气相对湿度 ≤ 85% (25℃ 条件下) 3、海拔高度 ≤ 2000 米 4、工作环境:不含导电尘埃、粉尘及没有腐蚀性气体或湿气场合。 5、无剧烈振动和冲击场合。 三、型号说明
可控硅调功器技术参数
交流输入
交流输出
外形示意图
型号
相数 电压 容量
功率范围 电流
二、使用条件 1、环境温度: -15℃ ~ +55℃ 2、空气相对湿度: ≤ 85% 3、海拔高度: ≤ 2000 米 4、工作环境:不含导电尘埃及没有腐蚀性气体或湿气的场合,无剧烈震动和冲击 的场合。 控硅调压器
产品简介(可控硅调压器) 一、用途及特点 可控硅调压器是一种利用可控硅进行移相调压的电源设备,可以通过电位器手动调节或通过 各类控制仪表自动实现输出电压的无极连续调节,具有控制容量大、可靠性高、维护简单等 特点。 根据加热元件的变化特性,可控硅调压器控制对象主要为盐熔炉、钼丝、硅钼棒、硅碳棒、 感应加热炉及低压大电流带变压器的加热元件。可广泛用于工业电器设备的调压、调速、电 加热的温控设备及灯光控制,适用于冶金、化工、窑炉等多种领域。 *本机制造符合 JB 3283-83 标准。 二、使用条件
可控硅的一些基本知识
可控硅的一些基本知识摘要:可控硅(Silicon Controlled Rectifier) 简称SCR,是一种大功率电器元件,也称晶闸管。
它具有体积小、效率高、寿命长等优点。
在自动控制系统中,可作为大功率驱动器件,实现用小功率控件控制大功率设备。
它在交直流电机调速系统、调功系统及随动系统中得到了广泛的应用。
可控硅分单向可控硅和双向可控硅两种可控硅(Silicon Controlled Rectifier) 简称SCR,是一种大功率电器元件,也称晶闸管。
它具有体积小、效率高、寿命长等优点。
在自动控制系统中,可作为大功率驱动器件,实现用小功率控件控制大功率设备。
它在交直流电机调速系统、调功系统及随动系统中得到了广泛的应用。
可控硅分单向可控硅和双向可控硅两种。
双向可控硅也叫三端双向可控硅,简称TRIAC。
双向可控硅在结构上相当于两个单向可控硅反向连接,这种可控硅具有双向导通功能。
其通断状态由控制极G决定。
在控制极G上加正脉冲(或负脉冲)可使其正向(或反向)导通。
这种装置的优点是控制电路简单,没有反向耐压问题,因此特别适合做交流无触点开关使用。
结构编辑大家使用的是单向晶闸管,也就是人们常说的普通晶闸可控硅管,它是由四层半导体材料组成的,有三个PN结,对外有三个电极第一层P型半导体引出的电极叫阳极A,第三层P型半导体引出的电极叫控制极G,第四层N型半导体引出的电极叫阴极K。
从晶闸管的电路符号可以看到,它和二极管一样是一种单方向导电的器件,关键是多了一个控制极G,这就使它具有与二极管完全不同的工作特性。
以硅单晶为基本材料的P1N1P2N2四层三端器件,起始于1957年,因为它的特性类似于真空闸流管,所以国际上通称为硅晶体闸流管,简称晶闸管T,又因为晶闸管最初的在静止整流方面,所以又被称之为硅可控整流元件,简称为可控硅SCR。
在性能上,可控硅不仅具有单向导电性,而且还具有比硅整流元件(俗称"死硅")更为可贵的可控性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这个实验告诉我们,要使晶闸管导通,一是在它的阳极A与阴极K之间外加正向电压,
二是在它的控制极G与阴极K之间输入一个正向触发电压。晶闸管导通后,松开按钮开关,
去掉触发电压,仍然维持导通状态。
晶闸管特点
“一触即发”。但是,如果阳极或控制极外加的是反向电压,晶闸管就不能导通。控制极
的作用是通过外加正向触发脉冲使晶闸管导通,却不能使它关断。那么,用什么方法才能使
导通的晶闸管关断呢?使导通的晶闸管关断,可以断开阳极电源(图3中的开关S)或使阳
极电流小于维持导通的最小值(称为维持电流)。如果晶闸管阳极和阴极之间外加的是交流
电压或脉动直流电压,那么,在电压过零时,晶闸管会自行关断。
典型应用电路